Articles | Volume 23, issue 9
https://doi.org/10.5194/acp-23-5263-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-5263-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Aerosol–cloud impacts on aerosol detrainment and rainout in shallow maritime tropical clouds
Gabrielle R. Leung
CORRESPONDING AUTHOR
Department of Atmospheric Science, Colorado State University, Fort
Collins, CO 80521, USA
Stephen M. Saleeby
Department of Atmospheric Science, Colorado State University, Fort
Collins, CO 80521, USA
G. Alexander Sokolowsky
Department of Atmospheric Science, Colorado State University, Fort
Collins, CO 80521, USA
Sean W. Freeman
Department of Atmospheric Science, Colorado State University, Fort
Collins, CO 80521, USA
Susan C. van den Heever
Department of Atmospheric Science, Colorado State University, Fort
Collins, CO 80521, USA
Publisher’s note: During proofreading some figures were mixed up and appeared incorrectly in the originally published article. On 20 September 2023 we exchanged the article with the correct version.
Related authors
G. Alexander Sokolowsky, Sean W. Freeman, William K. Jones, Julia Kukulies, Fabian Senf, Peter J. Marinescu, Max Heikenfeld, Kelcy N. Brunner, Eric C. Bruning, Scott M. Collis, Robert C. Jackson, Gabrielle R. Leung, Nils Pfeifer, Bhupendra A. Raut, Stephen M. Saleeby, Philip Stier, and Susan C. van den Heever
Geosci. Model Dev., 17, 5309–5330, https://doi.org/10.5194/gmd-17-5309-2024, https://doi.org/10.5194/gmd-17-5309-2024, 2024
Short summary
Short summary
Building on previous analysis tools developed for atmospheric science, the original release of the Tracking and Object-Based Analysis (tobac) Python package, v1.2, was open-source, modular, and insensitive to the type of gridded input data. Here, we present the latest version of tobac, v1.5, which substantially improves scientific capabilities and computational efficiency from the previous version. These enhancements permit new uses for tobac in atmospheric science and potentially other fields.
Ewan Crosbie, Luke D. Ziemba, Michael A. Shook, Claire E. Robinson, Edward L. Winstead, K. Lee Thornhill, Rachel A. Braun, Alexander B. MacDonald, Connor Stahl, Armin Sorooshian, Susan C. van den Heever, Joshua P. DiGangi, Glenn S. Diskin, Sarah Woods, Paola Bañaga, Matthew D. Brown, Francesca Gallo, Miguel Ricardo A. Hilario, Carolyn E. Jordan, Gabrielle R. Leung, Richard H. Moore, Kevin J. Sanchez, Taylor J. Shingler, and Elizabeth B. Wiggins
Atmos. Chem. Phys., 22, 13269–13302, https://doi.org/10.5194/acp-22-13269-2022, https://doi.org/10.5194/acp-22-13269-2022, 2022
Short summary
Short summary
The linkage between cloud droplet and aerosol particle chemical composition was analyzed using samples collected in a polluted tropical marine environment. Variations in the droplet composition were related to physical and dynamical processes in clouds to assess their relative significance across three cases that spanned a range of rainfall amounts. In spite of the pollution, sea salt still remained a major contributor to the droplet composition and was preferentially enhanced in rainwater.
Connor Stahl, Ewan Crosbie, Paola Angela Bañaga, Grace Betito, Rachel A. Braun, Zenn Marie Cainglet, Maria Obiminda Cambaliza, Melliza Templonuevo Cruz, Julie Mae Dado, Miguel Ricardo A. Hilario, Gabrielle Frances Leung, Alexander B. MacDonald, Angela Monina Magnaye, Jeffrey Reid, Claire Robinson, Michael A. Shook, James Bernard Simpas, Shane Marie Visaga, Edward Winstead, Luke Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 21, 14109–14129, https://doi.org/10.5194/acp-21-14109-2021, https://doi.org/10.5194/acp-21-14109-2021, 2021
Short summary
Short summary
A total of 159 cloud water samples were collected and measured for total organic carbon (TOC) during CAMP2Ex. On average, 30 % of TOC was speciated based on carboxylic/sulfonic acids and dimethylamine. Results provide a critical constraint on cloud composition and vertical profiles of TOC and organic species ranging from ~250 m to ~ 7 km and representing a variety of cloud types and air mass source influences such as biomass burning, marine emissions, anthropogenic activity, and dust.
Dié Wang, Roni Kobrosly, Tao Zhang, Tamanna Subba, Susan van den Heever, Siddhant Gupta, and Michael Jensen
Atmos. Chem. Phys., 25, 9295–9314, https://doi.org/10.5194/acp-25-9295-2025, https://doi.org/10.5194/acp-25-9295-2025, 2025
Short summary
Short summary
We aim to understand how tiny particles in the air, called aerosols, affect rain clouds in the Houston–Galveston area. More aerosols generally do not make these clouds grow much taller, with an average height increase of about 1 km. However, their effects on rainfall strength and cloud expansion are less certain. Clouds influenced by sea breezes show a stronger aerosol impact, possibly due to factors that are unaccounted for like vertical winds in near-surface layers.
Charles M. Davis, Susan C. van den Heever, Leah D. Grant, Sonia M. Kreidenweis, Claudia Mignani, Russell J. Perkins, and Elizabeth A. Stone
EGUsphere, https://doi.org/10.5194/egusphere-2025-2968, https://doi.org/10.5194/egusphere-2025-2968, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Plant- and other biological matter is released into the air from the earth’s surface when it rains. When present in clouds, these particles promote ice formation. We simulate three kinds of storms to see whether they pick up surface air from rainy regions where these particles would be. We find that all the storms ingest similar amounts of air from regions of light rain, but the types of storms that are typically longer-lived and more severe ingest more air from regions of heavy rain.
Jeffrey S. Reid, Robert E. Holz, Chris A. Hostetler, Richard A. Ferrare, Juli I. Rubin, Elizabeth J. Thompson, Susan C. van den Heever, Corey G. Amiot, Sharon P. Burton, Joshua P. DiGangi, Glenn S. Diskin, Joshua H. Cossuth, Daniel P. Eleuterio, Edwin W. Eloranta, Ralph Kuehn, Willem J. Marais, Hal B. Maring, Armin Sorooshian, Kenneth L. Thornhill, Charles R. Trepte, Jian Wang, Peng Xian, and Luke D. Ziemba
EGUsphere, https://doi.org/10.5194/egusphere-2025-2605, https://doi.org/10.5194/egusphere-2025-2605, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We document air and ship born measurements of the vertical distribution of pollution and biomass burning aerosol particles transported within the Maritime Continent’s monsoonal flows for 1000’s of kilometers, and yet still exhibit intricate patterns around clouds near the ocean’s surface. Findings demonstrate that, while aerosol transport occurs near the surface, there is heterogeneity in particle extinction that must be considered for both in situ observations and satellite retrievals.
Sean W. Freeman, Jennie Bukowski, Leah D. Grant, Peter J. Marinescu, J. Minnie Park, Stacey M. Hitchcock, Christine A. Neumaier, and Susan C. van den Heever
EGUsphere, https://doi.org/10.5194/egusphere-2024-2425, https://doi.org/10.5194/egusphere-2024-2425, 2025
Short summary
Short summary
In this work, we tested different placements of a temperature and humidity sensor onboard a drone to understand what the relative errors are. Understanding these errors is critical as we want to collect more meteorological data from non-specialized platforms, such as drone swarms and drone package delivery.
Corey G. Amiot, Timothy J. Lang, Susan C. van den Heever, Richard A. Ferrare, Ousmane O. Sy, Lawrence D. Carey, Sundar A. Christopher, John R. Mecikalski, Sean W. Freeman, George Alexander Sokolowsky, Chris A. Hostetler, and Simone Tanelli
EGUsphere, https://doi.org/10.5194/egusphere-2024-2384, https://doi.org/10.5194/egusphere-2024-2384, 2024
Short summary
Short summary
Decoupling aerosol and environmental impacts on convection is challenging. Using airborne data, we correlated microwave-frequency convective metrics with aerosol concentrations in several different environments. Medium-to-high aerosol concentrations were often strongly and positively correlated with convective intensity and frequency, especially in favorable environments based on temperature lapse rates and K-Index. Storm environment is important to consider when evaluating aerosol effects.
G. Alexander Sokolowsky, Sean W. Freeman, William K. Jones, Julia Kukulies, Fabian Senf, Peter J. Marinescu, Max Heikenfeld, Kelcy N. Brunner, Eric C. Bruning, Scott M. Collis, Robert C. Jackson, Gabrielle R. Leung, Nils Pfeifer, Bhupendra A. Raut, Stephen M. Saleeby, Philip Stier, and Susan C. van den Heever
Geosci. Model Dev., 17, 5309–5330, https://doi.org/10.5194/gmd-17-5309-2024, https://doi.org/10.5194/gmd-17-5309-2024, 2024
Short summary
Short summary
Building on previous analysis tools developed for atmospheric science, the original release of the Tracking and Object-Based Analysis (tobac) Python package, v1.2, was open-source, modular, and insensitive to the type of gridded input data. Here, we present the latest version of tobac, v1.5, which substantially improves scientific capabilities and computational efficiency from the previous version. These enhancements permit new uses for tobac in atmospheric science and potentially other fields.
Ewan Crosbie, Luke D. Ziemba, Michael A. Shook, Claire E. Robinson, Edward L. Winstead, K. Lee Thornhill, Rachel A. Braun, Alexander B. MacDonald, Connor Stahl, Armin Sorooshian, Susan C. van den Heever, Joshua P. DiGangi, Glenn S. Diskin, Sarah Woods, Paola Bañaga, Matthew D. Brown, Francesca Gallo, Miguel Ricardo A. Hilario, Carolyn E. Jordan, Gabrielle R. Leung, Richard H. Moore, Kevin J. Sanchez, Taylor J. Shingler, and Elizabeth B. Wiggins
Atmos. Chem. Phys., 22, 13269–13302, https://doi.org/10.5194/acp-22-13269-2022, https://doi.org/10.5194/acp-22-13269-2022, 2022
Short summary
Short summary
The linkage between cloud droplet and aerosol particle chemical composition was analyzed using samples collected in a polluted tropical marine environment. Variations in the droplet composition were related to physical and dynamical processes in clouds to assess their relative significance across three cases that spanned a range of rainfall amounts. In spite of the pollution, sea salt still remained a major contributor to the droplet composition and was preferentially enhanced in rainwater.
Eva-Lou Edwards, Jeffrey S. Reid, Peng Xian, Sharon P. Burton, Anthony L. Cook, Ewan C. Crosbie, Marta A. Fenn, Richard A. Ferrare, Sean W. Freeman, John W. Hair, David B. Harper, Chris A. Hostetler, Claire E. Robinson, Amy Jo Scarino, Michael A. Shook, G. Alexander Sokolowsky, Susan C. van den Heever, Edward L. Winstead, Sarah Woods, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 22, 12961–12983, https://doi.org/10.5194/acp-22-12961-2022, https://doi.org/10.5194/acp-22-12961-2022, 2022
Short summary
Short summary
This study compares NAAPS-RA model simulations of aerosol optical thickness (AOT) and extinction to those retrieved with a high spectral resolution lidar near the Philippines. Agreement for AOT was good, and extinction agreement was strongest below 1500 m. Substituting dropsonde relative humidities into NAAPS-RA did not drastically improve agreement, and we discuss potential reasons why. Accurately modeling future conditions in this region is crucial due to its susceptibility to climate change.
Mariko Oue, Stephen M. Saleeby, Peter J. Marinescu, Pavlos Kollias, and Susan C. van den Heever
Atmos. Meas. Tech., 15, 4931–4950, https://doi.org/10.5194/amt-15-4931-2022, https://doi.org/10.5194/amt-15-4931-2022, 2022
Short summary
Short summary
This study provides an optimization of radar observation strategies to better capture convective cell evolution in clean and polluted environments as well as a technique for the optimization. The suggested optimized radar observation strategy is to better capture updrafts at middle and upper altitudes and precipitation particle evolution of isolated deep convective clouds. This study sheds light on the challenge of designing remote sensing observation strategies in pre-field campaign periods.
J. Minnie Park and Susan C. van den Heever
Atmos. Chem. Phys., 22, 10527–10549, https://doi.org/10.5194/acp-22-10527-2022, https://doi.org/10.5194/acp-22-10527-2022, 2022
Short summary
Short summary
This study explores how increased aerosol particles impact tropical sea breeze cloud systems under different environments and how a range of environments modulate these cloud responses. Overall, sea breeze flows and clouds that develop therein become weaker due to interactions between aerosols, sunlight, and land surface. In addition, surface rainfall also decreases with more aerosol particles. Weakening of cloud and rain with more aerosols is found irrespective of 130 different environments.
Connor Stahl, Ewan Crosbie, Paola Angela Bañaga, Grace Betito, Rachel A. Braun, Zenn Marie Cainglet, Maria Obiminda Cambaliza, Melliza Templonuevo Cruz, Julie Mae Dado, Miguel Ricardo A. Hilario, Gabrielle Frances Leung, Alexander B. MacDonald, Angela Monina Magnaye, Jeffrey Reid, Claire Robinson, Michael A. Shook, James Bernard Simpas, Shane Marie Visaga, Edward Winstead, Luke Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 21, 14109–14129, https://doi.org/10.5194/acp-21-14109-2021, https://doi.org/10.5194/acp-21-14109-2021, 2021
Short summary
Short summary
A total of 159 cloud water samples were collected and measured for total organic carbon (TOC) during CAMP2Ex. On average, 30 % of TOC was speciated based on carboxylic/sulfonic acids and dimethylamine. Results provide a critical constraint on cloud composition and vertical profiles of TOC and organic species ranging from ~250 m to ~ 7 km and representing a variety of cloud types and air mass source influences such as biomass burning, marine emissions, anthropogenic activity, and dust.
Cited articles
Adler, R. F. and Mack, R. A.: Thunderstorm Cloud Height–Rainfall Rate
Relations for Use with Satellite Rainfall Estimation Techniques, J. Appl. Meteorol. Clim., 23, 280–296, 1984.
Albrecht, B. A.: Aerosols, Cloud Microphysics, and Fractional Cloudiness,
Science, 245, 1227–1230, https://doi.org/10.1126/science.245.4923.1227, 1989.
Altaratz, O., Koren, I., Remer, L. A., and Hirsch, E.: Review: Cloud
invigoration by aerosols – Coupling between microphysics and dynamics,
Atmos. Res., 140–141, 38–60, https://doi.org/10.1016/j.atmosres.2014.01.009, 2014.
Atwater, M. A.: Planetary Albedo Changes Due to Aerosols, Science, 170,
64–66, 1970.
Bardakov, R., Krejci, R., Riipinen, I., and Ekman, A. M. L.: The Role of
Convective Up- and Downdrafts in the Transport of Trace Gases in the Amazon,
J. Geophys. Res.-Atmos. 127, e2022JD037265, https://doi.org/10.1029/2022JD037265, 2022.
Berg, W., L'Ecuyer, T., and van den Heever, S.: Evidence for the impact of
aerosols on the onset and microphysical properties of rainfall from a
combination of satellite observations and cloud-resolving model simulations,
J. Geophys. Res.-Atmos., 113, D14S23, https://doi.org/10.1029/2007JD009649, 2008.
Boucher, O., Randall, D. A., Artaxo, P., Bretherton, C. S., Feingold, G.,
Forster, P., Kerminen, V.-M., Kondo, Y., Liao, H.-T., Lohmann, U., Rasch, P.
J., Satheesh, S. K., Sherwood, S. C., Stevens, B., and Zhang, X. Y.: Clouds
and Aerosols, in: Climate Change 2013: The Physical Science Basis.
Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, Cambridge University Press,
Cambridge, 571–658, https://doi.org/10.1017/CBO9781107415324.016, 2013.
Chen, G., Xue, H., Feingold, G., and Zhou, X.: Vertical transport of pollutants by shallow cumuli from large eddy simulations, Atmos. Chem. Phys., 12, 11319–11327, https://doi.org/10.5194/acp-12-11319-2012, 2012.
Corr, C. A., Ziemba, L. D., Scheuer, E., Anderson, B. E., Beyersdorf, A. J.,
Chen, G., Crosbie, E., Moore, R. H., Shook, M., Thornhill, K. L., Winstead,
E., Lawson, R. P., Barth, M. C., Schroeder, J. R., Blake, D. R., and Dibb,
J. E.: Observational evidence for the convective transport of dust over the
Central United States, J. Geophys. Res.-Atmos., 121, 1306–1319, https://doi.org/10.1002/2015JD023789, 2016.
Cotton, W. R., Alexander, G. D., Hertenstein, R., Walko, R. L., McAnelly, R.
L., and Nicholls, M.: Cloud venting – A review and some new global annual
estimates, Earth-Sci. Rev., 39, 169–206, https://doi.org/10.1016/0012-8252(95)00007-0, 1995.
Cotton, W. R., Pielke Sr., R. A., Walko, R. L., Liston, G. E., Tremback, C.
J., Jiang, H., McAnelly, R. L., Harrington, J. Y., Nicholls, M. E., Carrio,
G. G., and McFadden, J. P.: RAMS 2001: Current status and future directions,
Meteorol. Atmos. Phys., 82, 5–29, https://doi.org/10.1007/s00703-001-0584-9, 2003.
Cui, Z. and Carslaw, K. S.: Enhanced vertical transport efficiency of aerosol in convective clouds due to increases in tropospheric aerosol abundance, J. Geophys. Res.-Atmos., 111, D15212, https://doi.org/10.1029/2005JD006781, 2006.
Dagan, G.: Equilibrium climate sensitivity increases with aerosol concentration due to changes in precipitation efficiency, Atmos. Chem. Phys., 22, 15767–15775, https://doi.org/10.5194/acp-22-15767-2022, 2022.
Dagan, G. and Stier, P.: Ensemble daily simulations for elucidating cloud–aerosol interactions under a large spread of realistic environmental conditions, Atmos. Chem. Phys., 20, 6291–6303, https://doi.org/10.5194/acp-20-6291-2020, 2020.
Dagan, G., Koren, I., and Altaratz, O.: Aerosol effects on the timing of
warm rain processes, Geophys. Res. Lett., 42, 4590–4598,
https://doi.org/10.1002/2015GL063839, 2015.
Dagan, G., Koren, I., Altaratz, O., and Lehahn, Y.: Shallow Convective Cloud
Field Lifetime as a Key Factor for Evaluating Aerosol Effects, iScience, 10,
192–202, https://doi.org/10.1016/j.isci.2018.11.032, 2018.
DeMott, P. J., Prenni, A. J., Liu, X., Kreidenweis, S. M., Petters, M. D.,
Twohy, C. H., Richardson, M. S., Eidhammer, T., and Rogers, D. C.: Predicting global atmospheric ice nuclei distributions and their impacts on climate, P. Natl. Acad. Sci. USA, 107, 11217–11222, https://doi.org/10.1073/pnas.0910818107, 2010.
Engström, A., Ekman, A. M. L., Krejci, R., Ström, J., de Reus, M., and Wang, C.: Observational and modelling evidence of tropical deep convective clouds as a source of mid-tropospheric accumulation mode aerosols, Geophys. Res. Lett., 35, L23813, https://doi.org/10.1029/2008GL035817, 2008.
Ervens, B., Sorooshian, A., Aldhaif, A. M., Shingler, T., Crosbie, E., Ziemba, L., Campuzano-Jost, P., Jimenez, J. L., and Wisthaler, A.: Is there an aerosol signature of chemical cloud processing?, Atmos. Chem. Phys., 18, 16099–16119, https://doi.org/10.5194/acp-18-16099-2018, 2018.
Fan, J., Yuan, T., Comstock, J. M., Ghan, S., Khain, A., Leung, L. R., Li,
Z., Martins, V. J., and Ovchinnikov, M.: Dominant role by vertical wind
shear in regulating aerosol effects on deep convective clouds, J. Geophys. Res.-Atmos., 114, D22206, https://doi.org/10.1029/2009JD012352, 2009.
Feingold, G. and Kreidenweis, S.: Does cloud processing of aerosol enhance
droplet concentrations?, J. Geophys. Res.-Atmos., 105, 24351–24361, https://doi.org/10.1029/2000JD900369, 2000.
Glassmeier, F. and Lohmann, U.: Constraining Precipitation Susceptibility of
Warm-, Ice-, and Mixed-Phase Clouds with Microphysical Equations, J. Atmos. Sci., 73, 5003–5023, https://doi.org/10.1175/JAS-D-16-0008.1, 2016.
Grant, L. D. and van den Heever, S. C.: Aerosol-cloud-land surface
interactions within tropical sea breeze convection, J. Geophys. Res.-Atmos. 119, 8340–8361, https://doi.org/10.1002/2014JD021912, 2014.
Gryspeerdt, E., Stier, P., and Partridge, D. G.: Satellite observations of cloud regime development: the role of aerosol processes, Atmos. Chem. Phys., 14, 1141–1158, https://doi.org/10.5194/acp-14-1141-2014, 2014.
Harrington, J. Y.: Effects of radiative and microphysical processes on simulated warm and transition season Arctic stratus, PhD dissertation, Colorado State University, 289 pp., 1997.
Haywood, J. M. and Boucher, O.: Estimates of the direct and indirect
radiative forcing due to tropospheric aerosols: A review, Rev. Geophys., 38, 513–543, https://doi.org/10.1029/1999RG000078, 2000.
Haywood, J. M., Jones, A., Bellouin, N., and Stephenson, D.: Asymmetric
forcing from stratospheric aerosols impacts Sahelian rainfall, Nat. Clim.
Change, 3, 660–665, https://doi.org/10.1038/nclimate1857, 2013.
Hegg, D. A., Covert, D. S., Jonsson, H., Khelif, D., and Friehe, C. A.:
Observations of the impact of cloud processing on aerosol light-scattering
efficiency, Tellus B, 56, 285–293, https://doi.org/10.1111/j.1600-0889.2004.00099.x, 2004.
Heikenfeld, M., Marinescu, P. J., Christensen, M., Watson-Parris, D., Senf, F., van den Heever, S. C., and Stier, P.: tobac 1.2: towards a flexible framework for tracking and analysis of clouds in diverse datasets, Geosci. Model Dev., 12, 4551–4570, https://doi.org/10.5194/gmd-12-4551-2019, 2019.
Herbener, S. R., Saleeby, S. M., van den Heever, S. C., and Twohy, C. H.:
Tropical storm redistribution of Saharan dust to the upper troposphere and
ocean surface, Geophys. Res. Lett., 43, 10463–10471, https://doi.org/10.1002/2016GL070262, 2016.
Herbert, R., Stier, P., and Dagan, G.: Isolating Large-Scale Smoke Impacts
on Cloud and Precipitation Processes Over the Amazon With Convection
Permitting Resolution, J. Geophys. Res.-Atmos. 126, e2021JD034615, https://doi.org/10.1029/2021JD034615, 2021.
Jiang, H., Feingold, G., and Sorooshian, A.: Effect of Aerosol on the
Susceptibility and Efficiency of Precipitation in Warm Trade Cumulus Clouds,
J. Atmos. Sci., 67, 3525–3540, https://doi.org/10.1175/2010JAS3484.1, 2010.
Jiang, J. H., Su, H., Huang, L., Wang, Y., Massie, S., Zhao, B., Omar, A.,
and Wang, Z.: Contrasting effects on deep convective clouds by different
types of aerosols, Nat. Commun., 9, 3874, https://doi.org/10.1038/s41467-018-06280-4, 2018.
Johnson, R. H., Rickenbach, T. M., Rutledge, S. A., Ciesielski, P. E., and
Schubert, W. H.: Trimodal Characteristics of Tropical Convection, J.
Climate, 12, 2397–2418, 1999.
Khain, A. P., BenMoshe, N., and Pokrovsky, A.: Factors Determining the
Impact of Aerosols on Surface Precipitation from Clouds: An Attempt at
Classification, J. Atmos. Sci., 65, 1721–1748, https://doi.org/10.1175/2007JAS2515.1, 2008.
Kim, D., Wang, C., Ekman, A. M. L., Barth, M. C., and Lee, D.-I.: The
responses of cloudiness to the direct radiative effect of sulfate and
carbonaceous aerosols, J. Geophys. Res.-Atmos., 119, 1172–1185, https://doi.org/10.1002/2013JD020529, 2014.
Kim, M. J., Yeh, S.-W., and Park, R. J.: Effects of sulfate aerosol forcing
on East Asian summer monsoon for 1985–2010, Geophys. Res. Lett., 43, 1364–1372, https://doi.org/10.1002/2015GL067124, 2016.
Kipling, Z., Stier, P., Johnson, C. E., Mann, G. W., Bellouin, N., Bauer, S. E., Bergman, T., Chin, M., Diehl, T., Ghan, S. J., Iversen, T., Kirkevåg, A., Kokkola, H., Liu, X., Luo, G., van Noije, T., Pringle, K. J., von Salzen, K., Schulz, M., Seland, Ø., Skeie, R. B., Takemura, T., Tsigaridis, K., and Zhang, K.: What controls the vertical distribution of aerosol? Relationships between process sensitivity in HadGEM3–UKCA and inter-model variation from AeroCom Phase II, Atmos. Chem. Phys., 16, 2221–2241, https://doi.org/10.5194/acp-16-2221-2016, 2016.
Lee, S.-S. and Feingold, G.: Precipitating cloud-system response to aerosol
perturbations, Geophys. Res. Lett., 37, L23806, https://doi.org/10.1029/2010GL045596, 2010.
Lee, S. S., Feingold, G., McComiskey, A., Yamaguchi, T., Koren, I., Martins,
J. V., and Yu, H.: Effect of gradients in biomass burning aerosol on shallow
cumulus convective circulations, J. Geophys. Res.-Atmos., 119, 9948–9964, https://doi.org/10.1002/2014JD021819, 2014.
Leung, G. R. and van den Heever, S. C.: Controls on the Development and
Circulation of Terminal versus Transient Congestus Clouds and Implications
for Midlevel Aerosol Transport, J. Atmos. Sci., 79,
3083–3101, https://doi.org/10.1175/JAS-D-21-0314.1, 2022.
Leung, G. R. and van den Heever, S. C.: Aerosol breezes drive cloud and precipitation increases, Nat. Commun., 14, 2508, https://doi.org/10.1038/s41467-023-37722-3, 2023a.
Leung, G. R. and van den Heever, S. C.: Code associated with “Aerosol–cloud impacts on aerosol detrainment and rainout in shallow maritime tropical clouds” (Leung et al. 2023), Version v1.0-acp, Zenodo [code], https://doi.org/10.5281/zenodo.7876434, 2023b.
Li, R. L., Studholme, J. H. P., Fedorov, A. V., and Storelvmo, T.: Precipitation efficiency constraint on climate change, Nat. Clim. Change, 12, 642–648, https://doi.org/10.1038/s41558-022-01400-x, 2022.
Li, X., Tao, W.-K., Masunaga, H., Gu, G., and Zeng, X.: Aerosol Effects on
Cumulus Congestus Population over the Tropical Pacific: A Cloud-Resolving
Modeling Study, J. Meteorol. Soc. Jpn., 91, 817–833, https://doi.org/10.2151/jmsj.2013-607, 2013.
Lutsko, N., Sherwood, S. C., and Zhao, M.: Precipitation efficiency and climate sensitivity (invited chapter for the AGU geophysical monograph series “clouds and climate”), ESS Open Archive, https://doi.org/10.1002/essoar.10507822.1, 2021.
Marinescu, P. J., van den Heever, S. C., Heikenfeld, M., Barrett, A. I.,
Barthlott, C., Hoose, C., Fan, J., Fridlind, A. M., Matsui, T., Miltenberger, A. K., Stier, P., Vie, B., White, B. A., and Zhang, Y.: Impacts of Varying Concentrations of Cloud Condensation Nuclei on Deep Convective Cloud Updrafts – A Multimodel Assessment, J. Atmos. Sci., 78, 1147–1172, https://doi.org/10.1175/JAS-D-20-0200.1, 2021.
Matsui, T., Zhang, S. Q., Lang, S. E., Tao, W.-K., Ichoku, C., and
Peters-Lidard, C. D.: Impact of radiation frequency, precipitation radiative
forcing, and radiation column aggregation on convection-permitting West
African monsoon simulations, Clim. Dynam., 55, 193–213, https://doi.org/10.1007/s00382-018-4187-2, 2020.
May, P. T., Bringi, V. N., and Thurai, M.: Do We Observe Aerosol Impacts on
DSDs in Strongly Forced Tropical Thunderstorms?, J. Atmos. Sci., 68, 1902–1910, https://doi.org/10.1175/2011JAS3617.1, 2011.
McCormick, R. A. and Ludwig, J. H.: Climate Modification by Atmospheric
Aerosols, Science, 156, 1358–1359, https://doi.org/10.1126/science.156.3780.1358, 1967.
Meyers, M. P., Walko, R. L., Harrington, J. Y., and Cotton, W. R.: New RAMS
cloud microphysics parameterization. Part II: The two-moment scheme, Atmos. Res., 45, 3–39, https://doi.org/10.1016/S0169-8095(97)00018-5, 1997.
Park, J. M. and van den Heever, S. C.: Weakening of tropical sea breeze convective systems through interactions of aerosol, radiation, and soil moisture, Atmos. Chem. Phys., 22, 10527–10549, https://doi.org/10.5194/acp-22-10527-2022, 2022.
Pielke, R. A., Cotton, W. R., Walko, R. L., Tremback, C. J., Lyons, W. A.,
Grasso, L. D., Nicholls, M. E., Moran, M. D., Wesley, D. A., Lee, T. J., and
Copeland, J. H.: A comprehensive meteorological modeling system – RAMS,
Meteorol. Atmos. Phys., 49, 69–91, https://doi.org/10.1007/BF01025401, 1992.
Posselt, D. J., van den Heever, S. C., and Stephens, G. L.: Trimodal
cloudiness and tropical stable layers in simulations of radiative convective
equilibrium, Geophys. Res. Lett., 35, L08802, https://doi.org/10.1029/2007GL033029, 2008.
Radke, L. F., Hobbs, P. V., and Eltgroth, M. W.: Scavenging of Aerosol
Particles by Precipitation, Journal of Applied Meteorology (1962-1982), 19,
715–722, 1980.
Reid, J. S., Maring, H. B., Narisma, G. T., Heever, S. van den, Girolamo, L. D., Ferrare, R., Lawson, P., Mace, G. G., Simpas, J. B., Tanelli, S., Ziemba, L., Diedenhoven, B. van, Bruintjes, R., Bucholtz, A., Cairns, B., Cambaliza, M. O., Chen, G., Diskin, G. S., Flynn, J. H., Hostetler, C. A., Holz, R. E., Lang, T. J., Schmidt, K. S., Smith, G., Sorooshian, A., Thompson, E. J., Thornhill, K. L., Trepte, C., Wang, J., Woods, S., Yoon, S., Alexandrov, M., Alvarez, S., Amiot, C. G., Bennett, J. R., M., B., Burton, S. P., Cayanan, E., Chen, H., Collow, A., Crosbie, E., DaSilva, A., DiGangi, J. P., Flagg, D. D., Freeman, S. W., Fu, D., Fukada, E., Hilario, M. R. A., Hong, Y., Hristova-Veleva, S. M., Kuehn, R., Kowch, R. S., Leung, G. R., Loveridge, J., Meyer, K., Miller, R. M., Montes, M. J., Moum, J. N., Nenes, T., Nesbitt, S. W., Norgren, M., Nowottnick, E. P., Rauber, R. M., Reid, E. A., Rutledge, S., Schlosser, J. S., Sekiyama, T. T., Shook, M. A., Sokolowsky, G. A., Stamnes, S. A., Tanaka, T. Y., Wasilewski, A., Xian, P., Xiao, Q., Xu, Z., and Zavaleta, J.: The coupling between tropical meteorology, aerosol lifecycle, convection, and radiation, during the Cloud, Aerosol and Monsoon Processes Philippines Experiment (CAMP2Ex), B. Am. Meteorol. Soc., 1, https://doi.org/10.1175/BAMS-D-21-0285.1, online first, 2023.
Reutter, P., Su, H., Trentmann, J., Simmel, M., Rose, D., Gunthe, S. S., Wernli, H., Andreae, M. O., and Pöschl, U.: Aerosol- and updraft-limited regimes of cloud droplet formation: influence of particle number, size and hygroscopicity on the activation of cloud condensation nuclei (CCN), Atmos. Chem. Phys., 9, 7067–7080, https://doi.org/10.5194/acp-9-7067-2009, 2009.
Saleeby, S. M. and Cotton, W. R.: A Large-Droplet Mode and Prognostic Number
Concentration of Cloud Droplets in the Colorado State University Regional
Atmospheric Modeling System (RAMS). Part I: Module Descriptions and
Supercell Test Simulations, J. Appl. Meteorol. Clim.,
43, 182–195, https://doi.org/10.1175/1520-0450(2004)043<0182:ALMAPN> 2.0.CO;2, 2004.
Saleeby, S. M. and van den Heever, S. C.: Developments in the CSU-RAMS
Aerosol Model: Emissions, Nucleation, Regeneration, Deposition, and
Radiation, J. Appl. Meteorol. Clim., 52, 2601–2622,
https://doi.org/10.1175/JAMC-D-12-0312.1, 2013.
Saleeby, S. M., Herbener, S. R., van den Heever, S. C., and L'Ecuyer, T.:
Impacts of Cloud Droplet–Nucleating Aerosols on Shallow Tropical Convection, J. Atmos. Sci., 72, 1369–1385, https://doi.org/10.1175/JAS-D-14-0153.1, 2015.
Samset, B. H. and Myhre, G.: Vertical dependence of black carbon, sulphate
and biomass burning aerosol radiative forcing, Geophys. Res. Lett., 38, L24802, https://doi.org/10.1029/2011GL049697, 2011.
Savre, J.: Formation and maintenance of subsiding shells around
non-precipitating and precipitating cumulus clouds, Q. J. Roy. Meteor. Soc., 147, 728–745, https://doi.org/10.1002/qj.3942, 2021.
Sheffield, A. M., Saleeby, S. M., and van den Heever, S. C.: Aerosol-induced
mechanisms for cumulus congestus growth, J. Geophys. Res.-Atmos., 120, 8941–8952, https://doi.org/10.1002/2015JD023743, 2015.
Smalley, K. M. and Rapp, A. D.: The Role of Cloud Size and Environmental
Moisture in Shallow Cumulus Precipitation, J. Appl. Meteorol. Clim., 59, 535–550, https://doi.org/10.1175/JAMC-D-19-0145.1, 2020.
Sokolowsky, G. A., Freeman, S. W., and van den Heever, S. C.: Sensitivities
of Maritime Tropical Trimodal Convection to Aerosols and Boundary Layer
Static Stability, J. Atmos. Sci., 79, 2549–2570, https://doi.org/10.1175/JAS-D-21-0260.1, 2022.
Spill, G., Stier, P., Field, P. R., and Dagan, G.: Effects of aerosol in simulations of realistic shallow cumulus cloud fields in a large domain, Atmos. Chem. Phys., 19, 13507–13517, https://doi.org/10.5194/acp-19-13507-2019, 2019.
Storer, R. L. and van den Heever, S. C.: Microphysical Processes Evident in
Aerosol Forcing of Tropical Deep Convective Clouds, J. Atmos. Sci., 70, 430–446, https://doi.org/10.1175/JAS-D-12-076.1, 2013.
Tao, W.-K., Chen, J.-P., Li, Z., Wang, C., and Zhang, C.: Impact of aerosols
on convective clouds and precipitation, Rev. Geophys., 50, RG2001,
https://doi.org/10.1029/2011RG000369, 2012.
tobac Community: tobac – Tracking and Object-based Analysis of Clouds, Version v1.4.2, Zenodo [code], https://doi.org/10.5281/zenodo.7662376, 2023.
Twohy, C. H., Anderson, B. E., Ferrare, R. A., Sauter, K. E., L'Ecuyer, T.
S., van den Heever, S. C., Heymsfield, A. J., Ismail, S., and Diskin, G. S.:
Saharan dust, convective lofting, aerosol enhancement zones, and potential
impacts on ice nucleation in the tropical upper troposphere, J. Geophys. Res.-Atmos. 122, 8833–8851, https://doi.org/10.1002/2017JD026933, 2017.
Twomey, S.: The Influence of Pollution on the Shortwave Albedo of Clouds,
J. Atmos. Sci., 34, 1149–1152,
https://doi.org/10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2, 1977.
van den Heever, S. C., Stephens, G. L., and Wood, N. B.: Aerosol Indirect
Effects on Tropical Convection Characteristics under Conditions of
Radiative–Convective Equilibrium, J. Atmos. Sci., 68, 699–718, https://doi.org/10.1175/2010JAS3603.1, 2011.
Walko, R. L., Band, L. E., Baron, J., Kittel, T. G. F., Lammers, R., Lee, T. J., Ojima, D., Pielke, R. A., Taylor, C., Tague, C., Tremback, C. J., and Vidale, P. L.: Coupled Atmosphere–Biophysics–Hydrology Models for Environmental Modeling, J. Appl. Meteorol. Clim., 39, 931–944, https://doi.org/10.1175/1520-0450(2000)039<0931:CABHMF>2.0.CO;2, 2000.
Wang, Y., Xia, W., Liu, X., Xie, S., Lin, W., Tang, Q., Ma, H.-Y., Jiang,
Y., Wang, B., and Zhang, G. J.: Disproportionate control on aerosol burden
by light rain, Nat. Geosci., 14, 72–76, https://doi.org/10.1038/s41561-020-00675-z, 2021a.
Wang, Y., Xia, W., and Zhang, G. J.: What rainfall rates are most important to wet removal of different aerosol types?, Atmos. Chem. Phys., 21, 16797–16816, https://doi.org/10.5194/acp-21-16797-2021, 2021b.
Williams, A. I. L., Stier, P., Dagan, G., and Watson-Parris, D.: Strong
control of effective radiative forcing by the spatial pattern of absorbing
aerosol, Nat. Clim. Change, 12, 735–742, https://doi.org/10.1038/s41558-022-01415-4, 2022.
Xue, H., Feingold, G., and Stevens, B.: Aerosol Effects on Clouds, Precipitation, and the Organization of Shallow Cumulus Convection, J. Atmos. Sci., 65, 392–406, https://doi.org/10.1175/2007JAS2428.1, 2008.
Download
Please read the editorial note first before accessing the article.
- Article
(5983 KB) - Full-text XML
-
Supplement
(1865 KB) - BibTeX
- EndNote
Short summary
This study uses a suite of high-resolution simulations to explore how the concentration and type of aerosol particles impact shallow tropical clouds and the overall aerosol budget. Under more-polluted conditions, there are more aerosol particles present, but we also find that clouds are less able to remove those aerosol particles via rainout. Instead, those aerosol particles are more likely to be detrained aloft and remain in the atmosphere for further aerosol–cloud interactions.
This study uses a suite of high-resolution simulations to explore how the concentration and type...
Altmetrics
Final-revised paper
Preprint