Articles | Volume 23, issue 7
https://doi.org/10.5194/acp-23-4489-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-4489-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Measurement report: Radiative efficiencies of (CF3)2CFCN, CF3OCFCF2, and CF3OCF2CF3
Beni Adi Trisna
Greenhouse Gas Metrology team, Korea Research Institute of Standard
and Science (KRISS), Science of Measurement, University of Science and
Technology (UST), Daejeon 34113, Republic of Korea
Seungnam Park
National Centre of Standard Reference Data (NCSRD), KRISS, Daejeon
34113, Republic of Korea
Injun Park
Interface Materials and Chemical Engineering Research Centre, Korea
Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic
of Korea
Greenhouse Gas Metrology team, Korea Research Institute of Standard
and Science (KRISS), Science of Measurement, University of Science and
Technology (UST), Daejeon 34113, Republic of Korea
Greenhouse Gas Metrology team, Korea Research Institute of Standard
and Science (KRISS), Science of Measurement, University of Science and
Technology (UST), Daejeon 34113, Republic of Korea
Related authors
Beni Adi Trisna, Sang Woo Kim, Yong-Doo Kim, Miyeon Park, Seung-Nam Park, and Jeongsoon Lee
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-153, https://doi.org/10.5194/amt-2024-153, 2024
Revised manuscript not accepted
Short summary
Short summary
Manuscript presents a novel calibration method for measuring absorption cross sections (ACSs) of atmospheric gases using a compact UV-DOAS spectrometer. Combining precise lab measurements with advanced simulations, we accurately determined ACSs for various gases, including reactive ones, without costly reference materials. This approach lowers uncertainty, ensures traceability to standard units, and enhances measurement reliability, making it ideal for field applications.
Dongkyum Kim and Jeongsoon Lee
EGUsphere, https://doi.org/10.5194/egusphere-2025-4415, https://doi.org/10.5194/egusphere-2025-4415, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This study presents the global warming potential (GWP) of COF2 by measuring the ACS and atmospheric lifetime of COF2 under selected atmospheric conditions. The results showed that COF2 has a much lower global warming potential than conventional fluorinated gases. Thus, it validates the use of COF2 as a sustainable alternative for reducing the climate footprint of semiconductor and display manufacturing processes.
Beni Adi Trisna, Sang Woo Kim, Yong-Doo Kim, Miyeon Park, Seung-Nam Park, and Jeongsoon Lee
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-153, https://doi.org/10.5194/amt-2024-153, 2024
Revised manuscript not accepted
Short summary
Short summary
Manuscript presents a novel calibration method for measuring absorption cross sections (ACSs) of atmospheric gases using a compact UV-DOAS spectrometer. Combining precise lab measurements with advanced simulations, we accurately determined ACSs for various gases, including reactive ones, without costly reference materials. This approach lowers uncertainty, ensures traceability to standard units, and enhances measurement reliability, making it ideal for field applications.
Haeyoung Lee, Edward J. Dlugokencky, Jocelyn C. Turnbull, Sepyo Lee, Scott J. Lehman, John B. Miller, Gabrielle Pétron, Jeong-Sik Lim, Gang-Woong Lee, Sang-Sam Lee, and Young-San Park
Atmos. Chem. Phys., 20, 12033–12045, https://doi.org/10.5194/acp-20-12033-2020, https://doi.org/10.5194/acp-20-12033-2020, 2020
Short summary
Short summary
To understand South Korea's CO2 emissions and sinks as well as those of the surrounding region, we used flask-air samples collected for 2 years at Anmyeondo (36.53° N, 126.32° E; 46 m a.s.l.), South Korea, for analysis of observed 14C in atmospheric CO2 as a tracer of fossil fuel CO2 contribution (Cff). Here, we showed our observation result of 14C and Cff. SF6 and CO can be good proxies of Cff in this study, and the ratio of CO to Cff was compared to a bottom-up inventory.
Cited articles
Allen, M. R., Shine, K. P., Fuglestvedt, J. S., Millar, R. J., Cain, M.,
Frame, D. J., and Macey, A. H.: A solution to the misrepresentations of
CO2-equivalent emissions of short-lived climate pollutants under
ambitious mitigation, NPJ Clim. Atmos. Sci., 1, 1–8,
https://doi.org/10.1038/s41612-018-0026-8, 2018.
Beni, A. T., Park, S., Park, I., Lee, J., and Lim, J. S.: Measurement report:
Radiative efficiency estimates of (CF3)2CFCN, CF3OCFCF2, and CF3OCF2CF3
using high-resolution Fourier transform infrared spectroscopy, Zenodo [data set],
https://doi.org/10.5281/zenodo.7132870, 2022.
Bravo, I., Aranda, A., Hurley, M. D., Marston, G., Nutt, D. R., Shine, K.
P., Smith, K., and Wallington, T. J.: Infrared absorption spectra, radiative
efficiencies, and global warming potentials of perfluorocarbons: Comparison
between experiment and theory, J. Geophys. Res.-Atmos.,
115, D24317, https://doi.org/10.1029/2010JD014771, 2010.
Denison, S., Forster, P. M., and Smith, C. J.: Guidance on emissions metrics for
nationally determined contributions under the Paris Agreement, Environ.
Res. Lett., 14, 124002, https://doi.org/10.1088/1748-9326/ab4df4, 2019.
Fleisher, A. J., Adkins, E. M., Reed, Z. D., Yi, H., Long, D. A., Fleurbaey,
H. M., and Hodges, J. T.: Twenty-five-fold reduction in measurement uncertainty
for a molecular line intensity, Phys. Rev. Lett., 123, 043001,
https://doi.org/10.1103/PhysRevLett.123.043001, 2019.
Forster, P., Storelvmo, T.,
Alterskjæ, K., et al.: IPCC sixth assessment report (AR6) working group 1: the
physical science basis, chap. 7, University Press, UK, https://www.ipcc.ch/report/ar6/wg1/downloads (last access: 25 August 2022), 2021.
Gordon, I. E., Rothman, L. S., Hill, C., Kochanov, R. V., Tan, Y., Bernath,
P. F., Birk, M., Boudon, V., Campargue, A., and Chance, K.: The HITRAN2016
molecular spectroscopic database, J. Quant. Spectrosc.
Ra., 203, 3–69, https://doi.org/10.1016/j.jqsrt.2017.06.038, 2017.
Harrison, J. J., Allen, N. D., and Bernath, P. F.: Infrared absorption cross
sections for ethane (C2H6) in the 3 µm region, J.
Quant. Spectrosc. Ra., 111, 357–363, https://doi.org/10.1016/j.jqsrt.2009.09.010, 2010.
Harrison, J. J.: Infrared absorption cross sections for
1,1,1,2-tetrafluoroethane, J. Quant. Spectrosc.
Ra., 151, 210–216, https://doi.org/10.1016/j.jqsrt.2014.09.023, 2015.
Harrison, J. J.: New infrared absorption cross sections for the infrared
limb sounding of sulfur hexafluoride (SF6), J. Quant.
Spectrosc. Ra., 254, 107202, https://doi.org/10.1016/j.jqsrt.2020.107202, 2020.
Hase, F., Blumenstock, T., and Paton-Walsh, C.: Analysis of the instrumental
line shape of high-resolution Fourier transform IR spectrometers with gas
cell measurements and new retrieval software, Appl. Optics, 38, 3417–3422,
https://doi.org/10.1364/AO.38.003417, 1999.
Hashemi, R., Gordon, I. E., Adkins, E. M., Hodges, J. T., Long, D. A., Birk,
M., Loos, J., Boone, C. D., Fleisher, A. J., Predoi-Cross, A., and Rothman, L.
S.: Improvement of the spectroscopic parameters of the air- and
self-broadened NO and CO lines for the HITRAN2020 database applications,
J. Quant. Spectrosc. Ra., 271, 107735,
https://doi.org/10.1016/j.jqsrt.2021.107735, 2021.
Hodnebrog, Ø., Etminan, M., Fuglestvedt, J. S., Marston, G., Myhre, G.,
Nielsen, C. J., Shine, K. P., and Wallington, T. J.: Global warming potentials
and radiative efficiencies of halocarbons and related compounds: A
comprehensive review, Rev. Geophys., 51, 300-378, https://doi.org/10.1002/rog.20013, 2013.
Hodnebrog, Ø., Aamaas, B., Fuglestvedt, J. S., Marston, G., Myhre, G.,
Nielsen, C. J., Sandstad, M., Shine, K. P., and Wallington, T. J.: Updated
global warming potentials and radiative efficiencies of halocarbons and
other weak atmospheric absorbers, Rev. Geophys., 58, e2019RG000691,
https://doi.org/10.1029/2019RG000691, 2020.
Hurley, M., Wallington, T., Buchanan, G., Gohar, L., Marston, G., and Shine, K.:
IR spectrum and radiative forcing of CF4 revisited, J.
Geophys. Res.-Atmos., 110, D02102, https://doi.org/10.1029/2004JD005201, 2005.
Jain, A. K., Briegleb, B. P., Minschwaner, K., and Wuebbles, D. J.: Radiative
forcings and global warming potentials of 39 greenhouse gases, J.
Geophys. Res.-Atmos., 105, 20773–20790, https://doi.org/10.1029/2000JD900241, 2000.
JCGM: Evaluation of measurement data – guide for the expression of
uncertainty in measurement, Joint Committee for Guides in Metrology
(JCGM/WG1), BIPM, France, https://www.bipm.org/documents/20126/2071204/JCGM_100_2008_E.pdf/cb0ef43f-baa5-11cf-3f85-4dcd86f77bd6 (last access: 25 August 2022), 2008.
Johnson, T. J., Hughey, K. D., Blake, T. A., Sharpe, S. W., Myers, T. L.,
and Sams, R. L.: Confirmation of PNNL quantitative infrared cross-sections for
isobutane, J. Phys. Chem. A, 125, 3793–3801, https://doi.org/10.1021/acs.jpca.1c01933, 2021.
Kim, J. W., Yoo, Y. S., Lee, J. Y., Lee, J. B., and Hahn, J. W.: Uncertainty
analysis of absolute concentration measurement with continuous-wave cavity
ringdown spectroscopy, Appl. Optics, 40, 5509–5516, https://doi.org/10.1364/AO.40.005509, 2001.
Kim, J. and Lee, J.: Estimation of the global warming potential of fluorinated
green house gases, J. Korean Soc. Atmos. Environ.,
30, 387-397, https://doi.org/10.5572/KOSAE.2014.30.4.387, 2014.
Kovács, T., Feng, W., Totterdill, A., Plane, J., Dhomse, S.,
Gómez-Martín, J. C., Stiller, G. P., Haenel, F. J., Smith, C.,
and Forster, P. M.: Determination of the atmospheric lifetime and global warming
potential of sulfur hexafluoride using a three-dimensional model,
Atmos. Chem. Phys., 17, 883–898, https://doi.org/10.5194/acp-17-883-2017, 2017.
Laruelle, E., Kieffel, Y., and Ficheux, A.: In international conference on
eco-design in electrical engineering, Springer, 139–146, https://link.springer.com/book/10.1007/978-3-319-58172-9 (last access: 25 August 2022), 2017.
Li, Z., Tao, Z., Naik, V., Good, D. A., Hansen, J. C., Jeong, G. R.,
Francisco, J. S., Jain, A. K., and Wuebbles, D. J.: Radiative forcings and
global warming potentials of 39 greenhouse gases, J. Geophys.
Res.-Atmos., 105, 4019-4029, https://doi.org/10.1029/2000JD900241, 2000.
Loos, J., Birk, M., and Wagner, G.: Pressure broadening, -shift, speed
dependence and line mixing in the ν3 rovibrational band of N2O,
J. Quant. Spectrosc. Ra., 151, 300–309,
https://doi.org/10.1016/j.jqsrt.2014.10.008, 2015.
Lynch, J., Cain, M., Pierrehumbert, R., and Allen, M.: Demonstrating GWP*: a
means of reporting warming-equivalent emissions that captures the
contrasting impacts of short- and long-lived climate pollutants,
Environ. Res. Lett., 15, 044023, https://doi.org/10.1088/1748-9326/ab6d7e, 2020.
Nelson, C. T., Overzet, L. J., and Goeckner, M. J.: Temperature dependence of
the infrared absorption cross-sections of neutral species commonly found in
fluorocarbon plasmas, J. Vac. Sci. Technol. A, 30,
021305, https://doi.org/10.1116/1.3679408, 2012.
Nwaboh, J. A., Witzel, O., Pogány, A., Werhahn, O., and Ebert, V.: Optical
path length calibration: a standard approach for use in absorption
cell-based IR-spectrometric gas analysis, Int. J.
Spectrosc., 2014, 132607, https://doi.org/10.1155/2014/132607,
2014.
Pagliano, E. and Meija, J.: Reducing the matrix effects in chemical analysis:
fusion of isotope dilution and standard addition methods, Metrologia, 53,
829–834, https://doi.org/10.1088/0026-1394/53/2/829, 2016.
Pan, B., Wang, G., Shi, H., Shen, J., Ji, H.-K., and Kil, G.-S.: Green gas for
grid as an eco-friendly alternative insulation gas to SF6: a review,
Appl. Sci., 10, 2526, https://doi.org/10.3390/app10072526,
2020.
Pinnock, S. and Shine, K. P.: The effects of changes in HITRAN and
uncertainties in the spectroscopy on infrared irradiance calculations,
J. Atmos. Sci., 55, 1950–1964, https://doi.org/10.1175/1520-0469(1998)055<1950:TEOCIH>2.0.CO;2, 1998.
Pinnock, S., Hurley, M. D., Shine, K. P., Wallington, T. J., and Smyth, T.:
Radiative forcing of climate by hydrochlorofluorocarbons and
hydrofluorocarbons, J. Geophys. Res.-Atmos., 100,
23227–23238, https://doi.org/10.1029/95JD02323, 1995.
Rhoderick, G., Guenther, F., Duewer, D., Lee, J., Moon, D., Lee, J., Lim, J.
S., and Kim, J. S.: Final report on international comparison CCQM-K83:
Halocarbons in dry whole air, Metrologia, 51, 08009, https://doi.org/10.1088/0026-1394/51/1A/08009, 2014.
Robson, J., Gohar, L., Hurley, M., Shine, K., and Wallington, T.: Revised IR
spectrum, radiative efficiency and global warming potential of nitrogen
trifluoride, Geophys. Res. Lett., 33, L10817, https://doi.org/10.1029/2006GL026210, 2006.
Rosenzweig, C., Ruane, A. C., Antle, J., Elliott, J., Ashfaq, M., Chatta, A.
A., Ewert, F., Folberth, C., Hathie, I., and Havlik, P.: Coordinating AgMIP data
and models across global and regional scales for 1.5 ∘C and
2.0 ∘C assessments, Philos. T. R.
Soc. A, 376, 20160455, https://doi.org/10.1098/rsta.2016.0455, 2018.
Shine, K. P. and Myhre, G.: The spectral nature of stratospheric temperature
adjustment and its application to halocarbon radiative forcing, J.
Adv. Model. Ea. Sy., 12, e2019MS001951, https://doi.org/10.1029/2019MS001951, 2020.
Sixth Assessment Report (AR6): Climate Change 2021: The Physical Science Basis; The Intergovernmental Panel on Climate Change (IPCC)-WGI: Cambridge University Press, UK, https://www.ipcc.ch/report/ar6/wg1/downloads (last access: 25 August 2022), 2021.
Smith, T., Wooster, M., Tattaris, M., and Griffith, D.: Absolute accuracy and
sensitivity analysis of OP-FTIR retrievals of CO2, CH4 and CO over
concentrations representative of “clean air” and “polluted plumes”,
Atmos. Meas. Tech., 4, 97–116, https://doi.org/10.5194/amt-4-97-2011, 2011.
Sulbaek Andersen, M. P., Kyte, M., Andersen, S. T., Nielsen, C. J., and Nielsen,
O. J.: Atmospheric chemistry of (CF3)2CF–C ≡ N: a
replacement compound for the most potent industrial greenhouse gas,
SF6, Environ. Sci. Technol., 51, 1321–1329, https://doi.org/10.1021/acs.est.6b03758, 2017.
Sulbaek Andersen, M. P., Nielsen, O. J., and Sherman J. D.: The global warming
potentials for anesthetic gas sevoflurane need significant corrections,
Environ. Sci. Technol., 55, 10189–10191, https://doi.org/10.1021/acs.est.1c02573, 2021.
UNFCCC secretariat: Report of the conference of the parties on its
twenty-first session, part two: action taken by the conference of the
parties at its twenty-first session, United Nations Framework Convention on
Climate Change (UNFCCC), UN, NYC, https://unfccc.int/process-and-meetings/conferences/past-conferences/paris-climate-change-conference-november-2015/cop-21/cop-21-reports (last access: 25 August 2022),
2015.
Zhao, M., Han, D., Zhou, Z., and Zhang, G.: Experimental and theoretical
analysis on decomposition and by-product formation process of
(CF3)2CFCN mixture, AIP Adv., 9, 105204, https://doi.org/10.1063/1.5116211, 2019.
Short summary
An accurate estimate of radiative efficiency (RE) is substantial for an accurate assessment of global warming potential (GWP). In this study, we report accurate estimates of RE values of emerging greenhouse gases (GHGs) by using high-resolution Fourier transform infrared spectroscopy (FTIR). CF3OCFCF2 and CF3OCF2CF3 are reported for the first time. In addition, hidden errors in RE values of (CF3)2CFCN and CF3OCFCF2 in previous studies are pointed out.
An accurate estimate of radiative efficiency (RE) is substantial for an accurate assessment of...
Altmetrics
Final-revised paper
Preprint