Forster, P., Storelvmo, T.,
Alterskjæ, K., et al.: IPCC sixth assessment report (AR6) working group 1: the
physical science basis, chap. 7, University Press, UK,
https://www.ipcc.ch/report/ar6/wg1/downloads (last access: 25 August 2022), 2021.
Gordon, I. E., Rothman, L. S., Hill, C., Kochanov, R. V., Tan, Y., Bernath,
P. F., Birk, M., Boudon, V., Campargue, A., and Chance, K.: The HITRAN2016
molecular spectroscopic database, J. Quant. Spectrosc.
Ra., 203, 3–69, https://doi.org/10.1016/j.jqsrt.2017.06.038, 2017.
Harrison, J. J., Allen, N. D., and Bernath, P. F.: Infrared absorption cross
sections for ethane (C
2H
6) in the 3
µm region, J.
Quant. Spectrosc. Ra., 111, 357–363, https://doi.org/10.1016/j.jqsrt.2009.09.010, 2010.
Harrison, J. J.: Infrared absorption cross sections for
1,1,1,2-tetrafluoroethane, J. Quant. Spectrosc.
Ra., 151, 210–216, https://doi.org/10.1016/j.jqsrt.2014.09.023, 2015.
Harrison, J. J.: New infrared absorption cross sections for the infrared
limb sounding of sulfur hexafluoride (SF
6), J. Quant.
Spectrosc. Ra., 254, 107202, https://doi.org/10.1016/j.jqsrt.2020.107202, 2020.
Hase, F., Blumenstock, T., and Paton-Walsh, C.: Analysis of the instrumental
line shape of high-resolution Fourier transform IR spectrometers with gas
cell measurements and new retrieval software, Appl. Optics, 38, 3417–3422,
https://doi.org/10.1364/AO.38.003417, 1999.
Hashemi, R., Gordon, I. E., Adkins, E. M., Hodges, J. T., Long, D. A., Birk,
M., Loos, J., Boone, C. D., Fleisher, A. J., Predoi-Cross, A., and Rothman, L.
S.: Improvement of the spectroscopic parameters of the air- and
self-broadened NO and CO lines for the HITRAN2020 database applications,
J. Quant. Spectrosc. Ra., 271, 107735,
https://doi.org/10.1016/j.jqsrt.2021.107735, 2021.
Hodnebrog, Ø., Etminan, M., Fuglestvedt, J. S., Marston, G., Myhre, G.,
Nielsen, C. J., Shine, K. P., and Wallington, T. J.: Global warming potentials
and radiative efficiencies of halocarbons and related compounds: A
comprehensive review, Rev. Geophys., 51, 300-378, https://doi.org/10.1002/rog.20013, 2013.
Hodnebrog, Ø., Aamaas, B., Fuglestvedt, J. S., Marston, G., Myhre, G.,
Nielsen, C. J., Sandstad, M., Shine, K. P., and Wallington, T. J.: Updated
global warming potentials and radiative efficiencies of halocarbons and
other weak atmospheric absorbers, Rev. Geophys., 58, e2019RG000691,
https://doi.org/10.1029/2019RG000691, 2020.
Hurley, M., Wallington, T., Buchanan, G., Gohar, L., Marston, G., and Shine, K.:
IR spectrum and radiative forcing of CF
4 revisited, J.
Geophys. Res.-Atmos., 110, D02102, https://doi.org/10.1029/2004JD005201, 2005.
Jain, A. K., Briegleb, B. P., Minschwaner, K., and Wuebbles, D. J.: Radiative
forcings and global warming potentials of 39 greenhouse gases, J.
Geophys. Res.-Atmos., 105, 20773–20790, https://doi.org/10.1029/2000JD900241, 2000.
JCGM: Evaluation of measurement data – guide for the expression of
uncertainty in measurement, Joint Committee for Guides in Metrology
(JCGM/WG1), BIPM, France,
https://www.bipm.org/documents/20126/2071204/JCGM_100_2008_E.pdf/cb0ef43f-baa5-11cf-3f85-4dcd86f77bd6 (last access: 25 August 2022), 2008.
Johnson, T. J., Hughey, K. D., Blake, T. A., Sharpe, S. W., Myers, T. L.,
and Sams, R. L.: Confirmation of PNNL quantitative infrared cross-sections for
isobutane, J. Phys. Chem. A, 125, 3793–3801, https://doi.org/10.1021/acs.jpca.1c01933, 2021.
Kim, J. W., Yoo, Y. S., Lee, J. Y., Lee, J. B., and Hahn, J. W.: Uncertainty
analysis of absolute concentration measurement with continuous-wave cavity
ringdown spectroscopy, Appl. Optics, 40, 5509–5516, https://doi.org/10.1364/AO.40.005509, 2001.
Kim, J. and Lee, J.: Estimation of the global warming potential of fluorinated
green house gases, J. Korean Soc. Atmos. Environ.,
30, 387-397, https://doi.org/10.5572/KOSAE.2014.30.4.387, 2014.
Kovács, T., Feng, W., Totterdill, A., Plane, J., Dhomse, S.,
Gómez-Martín, J. C., Stiller, G. P., Haenel, F. J., Smith, C.,
and Forster, P. M.: Determination of the atmospheric lifetime and global warming
potential of sulfur hexafluoride using a three-dimensional model,
Atmos. Chem. Phys., 17, 883–898, https://doi.org/10.5194/acp-17-883-2017, 2017.
Laruelle, E., Kieffel, Y., and Ficheux, A.: In international conference on
eco-design in electrical engineering, Springer, 139–146,
https://link.springer.com/book/10.1007/978-3-319-58172-9 (last access: 25 August 2022), 2017.
Li, Z., Tao, Z., Naik, V., Good, D. A., Hansen, J. C., Jeong, G. R.,
Francisco, J. S., Jain, A. K., and Wuebbles, D. J.: Radiative forcings and
global warming potentials of 39 greenhouse gases, J. Geophys.
Res.-Atmos., 105, 4019-4029, https://doi.org/10.1029/2000JD900241, 2000.
Loos, J., Birk, M., and Wagner, G.: Pressure broadening, -shift, speed
dependence and line mixing in the
ν3 rovibrational band of N
2O,
J. Quant. Spectrosc. Ra., 151, 300–309,
https://doi.org/10.1016/j.jqsrt.2014.10.008, 2015.
Lynch, J., Cain, M., Pierrehumbert, R., and Allen, M.: Demonstrating GWP*: a
means of reporting warming-equivalent emissions that captures the
contrasting impacts of short- and long-lived climate pollutants,
Environ. Res. Lett., 15, 044023, https://doi.org/10.1088/1748-9326/ab6d7e, 2020.
Nelson, C. T., Overzet, L. J., and Goeckner, M. J.: Temperature dependence of
the infrared absorption cross-sections of neutral species commonly found in
fluorocarbon plasmas, J. Vac. Sci. Technol. A, 30,
021305, https://doi.org/10.1116/1.3679408, 2012.
Nwaboh, J. A., Witzel, O., Pogány, A., Werhahn, O., and Ebert, V.: Optical
path length calibration: a standard approach for use in absorption
cell-based IR-spectrometric gas analysis, Int. J.
Spectrosc., 2014, 132607, https://doi.org/10.1155/2014/132607,
2014.
Pagliano, E. and Meija, J.: Reducing the matrix effects in chemical analysis:
fusion of isotope dilution and standard addition methods, Metrologia, 53,
829–834, https://doi.org/10.1088/0026-1394/53/2/829, 2016.
Pan, B., Wang, G., Shi, H., Shen, J., Ji, H.-K., and Kil, G.-S.: Green gas for
grid as an eco-friendly alternative insulation gas to SF
6: a review,
Appl. Sci., 10, 2526, https://doi.org/10.3390/app10072526,
2020.
Pinnock, S. and Shine, K. P.: The effects of changes in HITRAN and
uncertainties in the spectroscopy on infrared irradiance calculations,
J. Atmos. Sci., 55, 1950–1964, https://doi.org/10.1175/1520-0469(1998)055<1950:TEOCIH>2.0.CO;2, 1998.
Pinnock, S., Hurley, M. D., Shine, K. P., Wallington, T. J., and Smyth, T.:
Radiative forcing of climate by hydrochlorofluorocarbons and
hydrofluorocarbons, J. Geophys. Res.-Atmos., 100,
23227–23238, https://doi.org/10.1029/95JD02323, 1995.
Rhoderick, G., Guenther, F., Duewer, D., Lee, J., Moon, D., Lee, J., Lim, J.
S., and Kim, J. S.: Final report on international comparison CCQM-K83:
Halocarbons in dry whole air, Metrologia, 51, 08009, https://doi.org/10.1088/0026-1394/51/1A/08009, 2014.
Robson, J., Gohar, L., Hurley, M., Shine, K., and Wallington, T.: Revised IR
spectrum, radiative efficiency and global warming potential of nitrogen
trifluoride, Geophys. Res. Lett., 33, L10817, https://doi.org/10.1029/2006GL026210, 2006.
Rosenzweig, C., Ruane, A. C., Antle, J., Elliott, J., Ashfaq, M., Chatta, A.
A., Ewert, F., Folberth, C., Hathie, I., and Havlik, P.: Coordinating AgMIP data
and models across global and regional scales for 1.5
∘C and
2.0
∘C assessments, Philos. T. R.
Soc. A, 376, 20160455, https://doi.org/10.1098/rsta.2016.0455, 2018.
Shine, K. P. and Myhre, G.: The spectral nature of stratospheric temperature
adjustment and its application to halocarbon radiative forcing, J.
Adv. Model. Ea. Sy., 12, e2019MS001951, https://doi.org/10.1029/2019MS001951, 2020.
Sixth Assessment Report (AR6): Climate Change 2021: The Physical Science Basis; The Intergovernmental Panel on Climate Change (IPCC)-WGI: Cambridge University Press, UK,
https://www.ipcc.ch/report/ar6/wg1/downloads (last access: 25 August 2022), 2021.
Smith, T., Wooster, M., Tattaris, M., and Griffith, D.: Absolute accuracy and
sensitivity analysis of OP-FTIR retrievals of CO
2, CH
4 and CO over
concentrations representative of “clean air” and “polluted plumes”,
Atmos. Meas. Tech., 4, 97–116, https://doi.org/10.5194/amt-4-97-2011, 2011.
Sulbaek Andersen, M. P., Kyte, M., Andersen, S. T., Nielsen, C. J., and Nielsen,
O. J.: Atmospheric chemistry of (CF
3)
2CF–C
≡ N: a
replacement compound for the most potent industrial greenhouse gas,
SF
6, Environ. Sci. Technol., 51, 1321–1329, https://doi.org/10.1021/acs.est.6b03758, 2017.
UNFCCC secretariat: Report of the conference of the parties on its
twenty-first session, part two: action taken by the conference of the
parties at its twenty-first session, United Nations Framework Convention on
Climate Change (UNFCCC), UN, NYC,
https://unfccc.int/process-and-meetings/conferences/past-conferences/paris-climate-change-conference-november-2015/cop-21/cop-21-reports (last access: 25 August 2022),
2015.
Zhao, M., Han, D., Zhou, Z., and Zhang, G.: Experimental and theoretical
analysis on decomposition and by-product formation process of
(CF
3)
2CFCN mixture, AIP Adv., 9, 105204, https://doi.org/10.1063/1.5116211, 2019.