Articles | Volume 23, issue 5
https://doi.org/10.5194/acp-23-3267-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-3267-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Very-long-period oscillations in the atmosphere (0–110 km) – Part 2: Latitude– longitude comparisons and trends
Dirk Offermann
CORRESPONDING AUTHOR
Institut für Atmosphären- und Umweltforschung, Bergische
Universität Wuppertal, Wuppertal, Germany
Christoph Kalicinsky
Institut für Atmosphären- und Umweltforschung, Bergische
Universität Wuppertal, Wuppertal, Germany
Ralf Koppmann
Institut für Atmosphären- und Umweltforschung, Bergische
Universität Wuppertal, Wuppertal, Germany
Johannes Wintel
Institut für Atmosphären- und Umweltforschung, Bergische
Universität Wuppertal, Wuppertal, Germany
Elementar Analysensysteme GmbH, Langenselbold, Germany
Related authors
Dirk Offermann, Christoph Kalicinsky, Ralf Koppmann, and Johannes Wintel
Atmos. Chem. Phys., 21, 1593–1611, https://doi.org/10.5194/acp-21-1593-2021, https://doi.org/10.5194/acp-21-1593-2021, 2021
Short summary
Short summary
Atmospheric oscillations with periods of up to several 100 years exist at altitudes up to 110 km. They are also seen in computer models (GCMs) of the atmospheric. They are often attributed to external influences from the sun, from the oceans, or from atmospheric constituents. This is difficult to verify as the atmosphere cannot be manipulated in an experiment. However, a GCM can be changed arbitrarily. Doing so, we find that long-period oscillations may be excited internally in the atmosphere.
Christoph Kalicinsky, Robert Reisch, and Peter Knieling
EGUsphere, https://doi.org/10.5194/egusphere-2025-3102, https://doi.org/10.5194/egusphere-2025-3102, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Planetary waves are important for driving large scale circulations. We observed planetary waves in a ground-based data set spanning more than 30 years. The waves can be assigned to expected waves due to their periods. The wave activity is strongest in winter for waves with periods greater than 20 days and shows maxima around equinoxes for periods below 20 days. The long-term behaviour shows a quasi-20 year oscillation of the wave activity with respect to the magnitude of the wave amplitudes.
Bärbel Vogel, C. Michael Volk, Johannes Wintel, Valentin Lauther, Jan Clemens, Jens-Uwe Grooß, Gebhard Günther, Lars Hoffmann, Johannes C. Laube, Rolf Müller, Felix Ploeger, and Fred Stroh
Atmos. Chem. Phys., 24, 317–343, https://doi.org/10.5194/acp-24-317-2024, https://doi.org/10.5194/acp-24-317-2024, 2024
Short summary
Short summary
Over the Indian subcontinent, polluted air is rapidly uplifted to higher altitudes during the Asian monsoon season. We present an assessment of vertical transport in this region using different wind data provided by the European Centre for Medium-Range Weather Forecasts (ECMWF), as well as high-resolution aircraft measurements. In general, our findings confirm that the newest ECMWF reanalysis product, ERA5, yields a better representation of transport compared to the predecessor, ERA-Interim.
M. Dolores Andrés Hernández, Andreas Hilboll, Helmut Ziereis, Eric Förster, Ovid O. Krüger, Katharina Kaiser, Johannes Schneider, Francesca Barnaba, Mihalis Vrekoussis, Jörg Schmidt, Heidi Huntrieser, Anne-Marlene Blechschmidt, Midhun George, Vladyslav Nenakhov, Theresa Harlass, Bruna A. Holanda, Jennifer Wolf, Lisa Eirenschmalz, Marc Krebsbach, Mira L. Pöhlker, Anna B. Kalisz Hedegaard, Linlu Mei, Klaus Pfeilsticker, Yangzhuoran Liu, Ralf Koppmann, Hans Schlager, Birger Bohn, Ulrich Schumann, Andreas Richter, Benjamin Schreiner, Daniel Sauer, Robert Baumann, Mariano Mertens, Patrick Jöckel, Markus Kilian, Greta Stratmann, Christopher Pöhlker, Monica Campanelli, Marco Pandolfi, Michael Sicard, José L. Gómez-Amo, Manuel Pujadas, Katja Bigge, Flora Kluge, Anja Schwarz, Nikos Daskalakis, David Walter, Andreas Zahn, Ulrich Pöschl, Harald Bönisch, Stephan Borrmann, Ulrich Platt, and John P. Burrows
Atmos. Chem. Phys., 22, 5877–5924, https://doi.org/10.5194/acp-22-5877-2022, https://doi.org/10.5194/acp-22-5877-2022, 2022
Short summary
Short summary
EMeRGe provides a unique set of in situ and remote sensing airborne measurements of trace gases and aerosol particles along selected flight routes in the lower troposphere over Europe. The interpretation uses also complementary collocated ground-based and satellite measurements. The collected data help to improve the current understanding of the complex spatial distribution of trace gases and aerosol particles resulting from mixing, transport, and transformation of pollution plumes over Europe.
Valentin Lauther, Bärbel Vogel, Johannes Wintel, Andrea Rau, Peter Hoor, Vera Bense, Rolf Müller, and C. Michael Volk
Atmos. Chem. Phys., 22, 2049–2077, https://doi.org/10.5194/acp-22-2049-2022, https://doi.org/10.5194/acp-22-2049-2022, 2022
Short summary
Short summary
We show airborne in situ measurements of the very short-lived ozone-depleting substances CH2Cl2 and CHCl3, revealing particularly high concentrations of both species in the lower stratosphere. Back-trajectory calculations and 3D model simulations show that the air masses with high concentrations originated in the Asian boundary layer and were transported via the Asian summer monsoon. We also identify a fast transport pathway into the stratosphere via the North American monsoon and by hurricanes.
Christoph Kalicinsky, Sabine Griessbach, and Reinhold Spang
Atmos. Meas. Tech., 14, 1893–1915, https://doi.org/10.5194/amt-14-1893-2021, https://doi.org/10.5194/amt-14-1893-2021, 2021
Short summary
Short summary
For an airborne viewing geometry, radiative transfer simulations of infrared limb emission spectra in the presence of polar stratospheric clouds – nitric acid trihydrate (NAT), supercooled ternary solution, ice, and mixtures – were used to develop a size-sensitive NAT detection algorithm. Characteristic size-dependent spectral features in the 810–820 cm−1 region were exploited to subgroup the NAT into three size regimes: small NAT (≤ 1.0 μm), medium NAT (1.5–4.0 μm), and large NAT (≥ 3.5 μm).
Dirk Offermann, Christoph Kalicinsky, Ralf Koppmann, and Johannes Wintel
Atmos. Chem. Phys., 21, 1593–1611, https://doi.org/10.5194/acp-21-1593-2021, https://doi.org/10.5194/acp-21-1593-2021, 2021
Short summary
Short summary
Atmospheric oscillations with periods of up to several 100 years exist at altitudes up to 110 km. They are also seen in computer models (GCMs) of the atmospheric. They are often attributed to external influences from the sun, from the oceans, or from atmospheric constituents. This is difficult to verify as the atmosphere cannot be manipulated in an experiment. However, a GCM can be changed arbitrarily. Doing so, we find that long-period oscillations may be excited internally in the atmosphere.
Cited articles
Dai, A., Fyfe, J. C., Xie, S.-P., and Dai, X.: Decadal modulation of global surface temperature by internal climate variability, Nat. Clim. Change, 5, 555–559, 2015.
Desai, A. R., Paleri, S., Mineau, J., Kadum, H., Wanner, L., Mauder, M.,
Butterwoerth, B. J., Durden, D. J., and Metzger, S.: Scaling land-atmosphere interactions: Special or fundamental?, J. Geophys. Res.-Biogeo., 127, e2022JG007097, https://doi.org/10.1029/2022JG007097, 2022.
Deser, C.: Certain uncertainty: The role of internal climate variability in
projections of regional climate change and risk management, Earth's Future,
8, e2020EF001854, https://doi.org/10.1007/s00382-010-0977-x, 2020.
Deser, C., Phillips, A., Bourdette, V., and Teng, H.: Uncertainty in climate change projections: the role of internal variability, Clim. Dynam., 38, 527–546, 2012.
Deser, C., Phillips, A. S., Alexander, M. A., and Smoliak, B. V.: Projecting
North American climate over the next 50 years: Uncertainty due to internal
variability, J. Climate, 27, 2271–2296, 2014.
Dijkstra, H. A., te Raa, L., Schmeits, M., and Gerrits, J.: On the physics of
the Atlantic Multidecadal Oscillation, Ocean Dynam., 56, 36–50, https://doi.org/10.1007/s10236-005-0043-0, 2006.
Eyring, V., Gillett, N. P., Achuta Rao, K. M., Barimalala, R., Barreiro Parrillo, M., Bellouin, N., Cassou, C., Durack, P. J., Kosaka, Y., McGregor, S., Min, S., Morgenstern, O., and Sun, Y.: Human Influence on the Climate System, in: Climate Change 2021: The Physical Science Basis, Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, in press, August 2021.
Gettelman, A., Birner, T., Eyring, V., Akiyoshi, H., Bekki, S., Brühl, C., Dameris, M., Kinnison, D. E., Lefevre, F., Lott, F., Mancini, E., Pitari, G., Plummer, D. A., Rozanov, E., Shibata, K., Stenke, A., Struthers, H., and Tian, W.: The Tropical Tropopause Layer 1960–2100, Atmos. Chem. Phys., 9, 1621–1637, https://doi.org/10.5194/acp-9-1621-2009, 2009.
Giorgetta, M. A., Jungclaus, J., Reick, C. H., Legutke, S., Bader, J., Böttinger, M., Brovkin, V., Crueger, T., Esch, M., Fieg, K., Glushak, K., Gayler, V., Haak, H., Hollweg, H.-D., Ilyina, T., Kinne, S., Kornblueh, L., Matei, D., Mauritsen, T., Mikolajewicz, U., Mueller, W., Notz, D., Pithan, F., Raddatz, T., Rast, S., Redler, R., Roeckner, E., Schmidt, H., Schnur, R., Segschneider, J., Six, K. D., Stockhause, M., Timmreck, C., Wegner, J., Widmann, H., Wieners, K.-H., Claussen, M., Marotzke, J., and Stevens, B.: Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the coupled model intercomparison project phase 5, J. Adv. Model. Earth Syst., 5, 572–597, https://doi.org/10.1002/jame.20038, 2013.
Han, Y., Xie, F., Zhang, S., Zhang, R., Wang, F., and Zhang, J.: An analysis of tropical cold-point tropopause warming in 1999, Hindawi, Adv. Meteorol., 2017, 4572532, https://doi.org/10.1155/2017/4572532, 2017.
Hu, S. and Vallis, G. K.: Meridional structure and future changes of tropopause height and temperature, Q. J. Roy. Meteorol. Soc. 145, 2698–2717,
2019.
Konopka, P., Tao, M., Ploeger, F., Hurst, D. F., Santee, M. L., Wright, J. S., and Riese, M.: Stratospheric moistening after 2000, Geophys. Res. Lett., 49, e2022GL097609, https://doi.org/10.1029/2021GL097609, 2022.
Lu, J., Hu, A., and Zeng, Z.: On the possible interaction between internal climate variability and forced climate change, Geophys. Res. Lett., 41, 2962–2970, 2014.
Meehl, G. A., Hu, A., Arblaster, J., Fasullo, J., and Trenberth, K. E.:
Externally forced and internally generated decadal climate variability associated with the Interdecadal Pacific Oscillation, J. Climate, 26, 7298–7310, 2013.
Meehl, G. A., Hu, A., Santer, B. D., and Xie, S.-P.: Contribution 35 of Interdecadal Pacific Oscillation to twentieth-century global surface temperature trends, Nat. Clim. Change, 6, 1005–1008, https://doi.org/10.1038/nclimate3107, 2016.
Offermann, D., Kalicinsky, C., Koppmann, R., and Wintel, J.: Very long-period oscillations in the atmosphere (0–110 km), Atmos. Chem. Phys., 21, 1593—1611, https://doi.org/10.5194/acp-21-1593-2021, 2021.
Pan, L. L., Honomichl, S. B., Bui, T. V., Thornberry, T., Rollins, A., Hintsa, E., and Jensen, E.: Lapse rate or cold point:The tropicaltropopause identified by in situ trace gas measurements, Geophys. Res. Lett., 45, 10756–10763, 2018.
Pisoft, P., Sacha, P., Polvani, L. M., Anel, J. A., de la Torre, L., Eichinger, R., Foelsche, U., Huszar, P., Jacobi, C., Karlicky, Kuchar, A.,
Miksovcky, J., Zak, M., and Rieder, H. E.: Stratospheric contraction caused
by increasing greenhouse gases, Environ. Res. Lett., 16, 06438, https://doi.org/10.1088/1748-9326/abfe2b, 2021.
RavindraBabu, S., Akhil Raj, S. T., Basha, G., and Venkat Ratnam, M.: Recent trends in the UTLS temperature and tropical tropopause parameters over tropical South India region, J. Atmos. Sol.-Terr. Phy., 197, 105164, https://doi.org/10.1016/j.jastp.2019.105164, 2020.
Roeckner, E., Brokopf, R., Esch, M., Giorgetta, M., Hagemann, S., Kornblueh,
L., Manzini, E., Schlese, U., and Schulzweida, U.: Sensitivity of simulated
climate to horizontal and vertical resolution in the ECHAM5 atmosphere model, J. Climate, 19, 3771–3791, 2006.
Santer, B. D., Wigley, T. M. L., Simmons, A. J., Kallberg, P. W., Kelly, G. A., Uppala, S. M., Ammann, C., Boyle, J. S., Brüggemann, W., Doutriaux, C., Fiorino, M., Mears, C., Meehl, G. A., Sausen, R., Taylor, K. E., Washington, W. M., Wehner, M. F., and Wentz, F.: Identification of anthropogenic climate change using a second-generation reanalysis, J. Geophys. Res., 109, D21104, https://doi.org/10.1029/2004JD005075, 2004.
Schmidt, H., Brasseur, G. P., Charron, M., Manzini, E., Giorgetta, M. A.,
Diehl,T., Fomichev, V. I., Kinnison, D., Marsh, D., and Walters, S.: The HAMMONIA chemistry climate model: Sensitivity of the mesopause region to the 11-year solar cycle and CO2 doubling, J. Climate, 19, 3903–3931, https://doi.org/10.1175/JCLI3829.1, 2006.
Steiner, A. K., Ladstädter, F., Randel, W. J., Maycock, A. C., Fu, Q., Claud, C., Gleisner, H., Haimberger, L., Ho, S.-P., Keckhut, P., Leblanc, T., Mears, C., Polvani, M., Santer, B. D., Schmidt, T., Sofieva, V., Wing, R., and Zou, C.-Z.: Observed temperature changes in the troposphere and stratosphere from 1979 to 2018, J. Climate, 33, 8165–8194, 2020.
Stevens, B., Giorgetta, M., Esch, M., Mauritsen, T., Crueger, T., Rast, S.,
Salzmann, M., Schmidt, H., Bader, J., Block, K., Brokopf, R., Fast, I., Kinne, S., Kornblueh, L., Lohmann, U., Pincus, R., Reichler, T., and Roeckner, E.: The atmospheric component of the MPI-M earth system model:
ECHAM6, J. Adv. Model. Earth Syst., 5, 1–27, 2013.
Tegtmeier, S., Anstey, J., Davis, S., Dragani, R., Harada, Y., Ivanciu, I., Pilch Kedzierski, R., Krüger, K., Legras, B., Long, C., Wang, J. S., Wargan, K., and Wright, J. S.: Temperature and tropopause characteristics from reanalyses data in the tropical tropopause layer, Atmos. Chem. Phys., 20, 753–770, https://doi.org/10.5194/acp-20-753-2020, 2020.
Zhou, X.-L., Geller, M. A., and Zhang, M.: Cooling trend of the tropical cold
point tropopause temperatures and its implications, J. Geophys. Res., 106,
1511–1522, 2001.
Short summary
Atmospheric oscillations with periods between 5 and more than 200 years are believed to be self-excited (internal) in the atmosphere, i.e. non-anthropogenic. They are found at all altitudes up to 110 km and at four very different geographical locations (75° N, 70° E; 75° N, 280° E; 50° N, 7° E; 50° S, 7° E). Therefore, they hint at a global-oscillation mode. Their amplitudes are on the order of present-day climate trends, and it is therefore difficult to disentangle them.
Atmospheric oscillations with periods between 5 and more than 200 years are believed to be...
Altmetrics
Final-revised paper
Preprint