Articles | Volume 22, issue 13
https://doi.org/10.5194/acp-22-8597-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-8597-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Dramatic changes in atmospheric pollution source contributions for a coastal megacity in northern China from 2011 to 2020
Baoshuang Liu
State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
CMA-NKU Cooperative Laboratory for Atmospheric Environment–Health Research, Tianjin 300350, China
Yanyang Wang
State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
CMA-NKU Cooperative Laboratory for Atmospheric Environment–Health Research, Tianjin 300350, China
He Meng
Qingdao Eco-environment Monitoring Center of Shandong Province, Qingdao 266003, China
State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
CMA-NKU Cooperative Laboratory for Atmospheric Environment–Health Research, Tianjin 300350, China
Liuli Diao
State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
CMA-NKU Cooperative Laboratory for Atmospheric Environment–Health Research, Tianjin 300350, China
Jianhui Wu
State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
CMA-NKU Cooperative Laboratory for Atmospheric Environment–Health Research, Tianjin 300350, China
Laiyuan Shi
Qingdao Eco-environment Monitoring Center of Shandong Province, Qingdao 266003, China
Jing Wang
Qingdao Eco-environment Monitoring Center of Shandong Province, Qingdao 266003, China
Yufen Zhang
CORRESPONDING AUTHOR
State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
CMA-NKU Cooperative Laboratory for Atmospheric Environment–Health Research, Tianjin 300350, China
State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
CMA-NKU Cooperative Laboratory for Atmospheric Environment–Health Research, Tianjin 300350, China
Related authors
Zhongwei Luo, Yan Han, Kun Hua, Yufen Zhang, Jianhui Wu, Xiaohui Bi, Qili Dai, Baoshuang Liu, Yang Chen, Xin Long, and Yinchang Feng
Geosci. Model Dev., 16, 6757–6771, https://doi.org/10.5194/gmd-16-6757-2023, https://doi.org/10.5194/gmd-16-6757-2023, 2023
Short summary
Short summary
This study explores how the variation in the source profiles adopted in chemical transport models (CTMs) impacts the simulated results of chemical components in PM2.5 based on sensitivity analysis. The impact on PM2.5 components cannot be ignored, and its influence can be transmitted and linked between components. The representativeness and timeliness of the source profile should be paid adequate attention in air quality simulation.
Baoshuang Liu, Yuan Cheng, Ming Zhou, Danni Liang, Qili Dai, Lu Wang, Wei Jin, Lingzhi Zhang, Yibin Ren, Jingbo Zhou, Chunling Dai, Jiao Xu, Jiao Wang, Yinchang Feng, and Yufen Zhang
Atmos. Chem. Phys., 18, 7019–7039, https://doi.org/10.5194/acp-18-7019-2018, https://doi.org/10.5194/acp-18-7019-2018, 2018
Zhongwei Luo, Yan Han, Kun Hua, Yufen Zhang, Jianhui Wu, Xiaohui Bi, Qili Dai, Baoshuang Liu, Yang Chen, Xin Long, and Yinchang Feng
Geosci. Model Dev., 16, 6757–6771, https://doi.org/10.5194/gmd-16-6757-2023, https://doi.org/10.5194/gmd-16-6757-2023, 2023
Short summary
Short summary
This study explores how the variation in the source profiles adopted in chemical transport models (CTMs) impacts the simulated results of chemical components in PM2.5 based on sensitivity analysis. The impact on PM2.5 components cannot be ignored, and its influence can be transmitted and linked between components. The representativeness and timeliness of the source profile should be paid adequate attention in air quality simulation.
Yu Lin, Leiming Zhang, Qinchu Fan, He Meng, Yang Gao, Huiwang Gao, and Xiaohong Yao
Atmos. Chem. Phys., 22, 16073–16090, https://doi.org/10.5194/acp-22-16073-2022, https://doi.org/10.5194/acp-22-16073-2022, 2022
Short summary
Short summary
In this study, we analyzed 7-year (from May 2014 to April 2021) concentration data of six criteria air pollutants (PM2.5, PM10, O3, NO2, CO and SO2) as well as the sum of NO2 and O3 in six cities in South China. Three different analysis methods were used to identify emission-driven interannual variations and perturbations from varying weather conditions. In addition, a self-developed method was further introduced to constrain analysis uncertainties.
Xinyao Feng, Yingze Tian, Qianqian Xue, Danlin Song, Fengxia Huang, and Yinchang Feng
Atmos. Chem. Phys., 21, 16219–16235, https://doi.org/10.5194/acp-21-16219-2021, https://doi.org/10.5194/acp-21-16219-2021, 2021
Short summary
Short summary
This study focused on PM2.5 compositions and sources and explored their spatiotemporal and policy-related variations based on observation at 19 sites during wintertime of 2015–2019 in a fast-developing megacity. We found that PM2.5 compositions for the outermost zone in 2019 were similar to those for the core zone 2 or 3 years ago. Percentage contributions of coal and biomass combustion dramatically declined in the core zone, while the traffic source showed an increasing trend.
Yingze Tian, Yinchang Feng, Yongli Liang, Yixuan Li, Qianqian Xue, Zongbo Shi, Jingsha Xu, and Roy M. Harrison
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-507, https://doi.org/10.5194/acp-2020-507, 2020
Revised manuscript not accepted
Short summary
Short summary
Size distributions of inorganic and organic components in particulate matter (PM) can provide critical information on sources and pollution processes. Ions, elements, carbon fractions, n-alkanes, PAHs, hopanes and steranes in size-resolved PM were analyzed during one year in a northern Chinese megacity. Results reveal that size distributions of inorganic and organic aerosol components are dependent on seasons and pollution levels as a result of differing sources and physicochemical processes.
Ruihe Lyu, Zongbo Shi, Mohammed Salim Alam, Xuefang Wu, Di Liu, Tuan V. Vu, Christopher Stark, Pingqing Fu, Yinchang Feng, and Roy M. Harrison
Atmos. Chem. Phys., 19, 10865–10881, https://doi.org/10.5194/acp-19-10865-2019, https://doi.org/10.5194/acp-19-10865-2019, 2019
Short summary
Short summary
Severe pollution of the Beijing atmosphere is a frequent occurrence. The airborne particles which characterize the episodes of haze contain a wide range of chemical constituents but organic compounds make up a substantial proportion. In this study individual compounds are analysed under both haze and non-haze conditions, and the measurements are compared with samples collected in London, where the air pollution climate and sources are very different.
Qili Dai, Benjamin C. Schulze, Xiaohui Bi, Alexander A. T. Bui, Fangzhou Guo, Henry W. Wallace, Nancy P. Sanchez, James H. Flynn, Barry L. Lefer, Yinchang Feng, and Robert J. Griffin
Atmos. Chem. Phys., 19, 9641–9661, https://doi.org/10.5194/acp-19-9641-2019, https://doi.org/10.5194/acp-19-9641-2019, 2019
Short summary
Short summary
The formation processes of secondary organic aerosol remain to be fully understood. We reported the measurement data from two field campaigns within Houston, TX, to investigate the effects of aqueous-phase chemistry and photochemistry in processing oxygenated organic aerosol (OOA) in winter and summer. Both photochemistry and aqueous-phase processing appear to facilitate more-oxidized OOA formation. The processing mechanism of less-oxidized OOA apparently depended on relative humidity.
Jing Ding, Pusheng Zhao, Jie Su, Qun Dong, Xiang Du, and Yufen Zhang
Atmos. Chem. Phys., 19, 7939–7954, https://doi.org/10.5194/acp-19-7939-2019, https://doi.org/10.5194/acp-19-7939-2019, 2019
Short summary
Short summary
Aerosol acidity plays a key role in secondary aerosol formation. To provide a more comprehensive reference for aerosol pH and a basis for controlling secondary aerosol generation, this study used the latest data covering four seasons and different particle sizes to obtain the characteristics of aerosol pH and explore the main factors affecting aerosol pH and gas–particle partitioning in the Beijing area.
Xiaohui Bi, Qili Dai, Jianhui Wu, Qing Zhang, Wenhui Zhang, Ruixue Luo, Yuan Cheng, Jiaying Zhang, Lu Wang, Zhuojun Yu, Yufen Zhang, Yingze Tian, and Yinchang Feng
Atmos. Chem. Phys., 19, 3223–3243, https://doi.org/10.5194/acp-19-3223-2019, https://doi.org/10.5194/acp-19-3223-2019, 2019
Short summary
Short summary
Source profiles are of great importance for the application of receptor models in source apportionment studies, as they characterize specific sources from a chemical point of view, revealing the signatures of source emissions. Here, a total of 3326 chemical profiles of the main primary sources across China from 1987 to 2017 are reviewed. The results highlight the urgent need for increased investigation of more specific markers beyond routinely measured components to better discriminate sources.
Ruihe Lyu, Mohammed S. Alam, Christopher Stark, Ruixin Xu, Zongbo Shi, Yinchang Feng, and Roy M. Harrison
Atmos. Chem. Phys., 19, 2233–2246, https://doi.org/10.5194/acp-19-2233-2019, https://doi.org/10.5194/acp-19-2233-2019, 2019
Short summary
Short summary
Organic matter comprises a substantial proportion of the mass of toxic airborne particles which cause poor health and premature death. In this paper, new measurements of three important groups of organic compounds are reported and are analysed to infer their sources and their contributions to airborne particle concentrations.
Benjamin C. Schulze, Henry W. Wallace, Alexander T. Bui, James H. Flynn, Matt H. Erickson, Sergio Alvarez, Qili Dai, Sascha Usenko, Rebecca J. Sheesley, and Robert J. Griffin
Atmos. Chem. Phys., 18, 14217–14241, https://doi.org/10.5194/acp-18-14217-2018, https://doi.org/10.5194/acp-18-14217-2018, 2018
Short summary
Short summary
Atmospheric field measurements at a coastal site near Houston, TX, were used to investigate the influence of shipping vessel emissions on aerosol mass and composition over the Gulf of Mexico. Results suggest that, despite recent regulations, these vessels still produce a considerable fraction of inorganic and organic aerosol mass in the region. Secondary effects of shipping emissions on organic aerosol composition, such as influences on aerosol aging, were also identified.
Congbo Song, Yan Liu, Shida Sun, Luna Sun, Yanjie Zhang, Chao Ma, Jianfei Peng, Qian Li, Jinsheng Zhang, Qili Dai, Baoshuang Liu, Peng Wang, Yi Zhang, Ting Wang, Lin Wu, Min Hu, and Hongjun Mao
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-387, https://doi.org/10.5194/acp-2018-387, 2018
Revised manuscript not accepted
Short summary
Short summary
Vehicular emission is a key contributor to ambient volatile organic compounds (VOCs) and NOx in Chinese megacities. Information on real-world emission factors (EFs) for a typical urban fleet is still limited. We found that improvement of fuel quality can significantly reduce feet-average EFs of VOCs (especially for BTEX). Our study provided implications for O3 control in China from the view of primary emission, and highlighted the importance of further control of evaporative emissions.
Baoshuang Liu, Yuan Cheng, Ming Zhou, Danni Liang, Qili Dai, Lu Wang, Wei Jin, Lingzhi Zhang, Yibin Ren, Jingbo Zhou, Chunling Dai, Jiao Xu, Jiao Wang, Yinchang Feng, and Yufen Zhang
Atmos. Chem. Phys., 18, 7019–7039, https://doi.org/10.5194/acp-18-7019-2018, https://doi.org/10.5194/acp-18-7019-2018, 2018
Xing Peng, Jian Gao, Guoliang Shi, Xurong Shi, Yanqi Huangfu, Jiayuan Liu, Yuechong Zhang, Yinchang Feng, Wei Wang, Ruoyu Ma, Cesunica E. Ivey, and Yi Deng
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-997, https://doi.org/10.5194/acp-2017-997, 2018
Preprint withdrawn
Short summary
Short summary
A finding here is that source emission dominates the level of pollutants and short-term meteorological condition determines the variation of pollutants. Primary source impact levels are mainly influenced by source emissions, and secondary source impact levels are mainly influenced by synoptic scale fluctuations and source emissions. The implications of results are for source apportionment analyses conducted with data from different geographical locations and under various weather conditions.
S. Han, Y. Zhang, J. Wu, X. Zhang, Y. Tian, Y. Wang, J. Ding, W. Yan, X. Bi, G. Shi, Z. Cai, Q. Yao, H. Huang, and Y. Feng
Atmos. Chem. Phys., 15, 11165–11177, https://doi.org/10.5194/acp-15-11165-2015, https://doi.org/10.5194/acp-15-11165-2015, 2015
Short summary
Short summary
It is crucial for studying regional-scale PM pollution and for the development of efficient joint control policy to improve understanding of the regional background PM concentration. Based on the vertical variation periodic characteristics of particle mass concentration, the atmospheric boundary layer structure, as well as the vertical distribution of chemical composition and pollution source apportionment, a method to estimate regional background PM concentration is proposed.
Y. Z. Tian, J. Wang, X. Peng, G. L. Shi, and Y. C. Feng
Atmos. Chem. Phys., 14, 9469–9479, https://doi.org/10.5194/acp-14-9469-2014, https://doi.org/10.5194/acp-14-9469-2014, 2014
Related subject area
Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Oxidative potential in rural, suburban and city centre atmospheric environments in central Europe
Secondary aerosol formation during a special dust transport event: impacts from unusually enhanced ozone and dust backflows over the ocean
Intra-event evolution of elemental and ionic concentrations in wet deposition in an urban environment
Spatial and diurnal variations of aerosol organosulfates in summertime Shanghai, China: potential influence of photochemical processes and anthropogenic sulfate pollution
Characterizing water-soluble brown carbon in fine particles in four typical cities in northwestern China during wintertime: integrating optical properties with chemical processes
Chemical composition-dependent hygroscopic behavior of individual ambient aerosol particles collected at a coastal site
Gas–particle partitioning of semivolatile organic compounds when wildfire smoke comes to town
Enrichment of calcium in sea spray aerosol: insights from bulk measurements and individual particle analysis during the R/V Xuelong cruise in the summertime in Ross Sea, Antarctica
Source apportionment study on particulate air pollution in two high-altitude Bolivian cities: La Paz and El Alto
Morphological features and water solubility of iron in aged fine aerosol particles over the Indian Ocean
What chemical species are responsible for new particle formation and growth in the Netherlands? A hybrid positive matrix factorization (PMF) analysis using aerosol composition (ACSM) and size (SMPS)
Measurement report: Stoichiometry of dissolved iron and aluminum as an indicator of the factors controlling the fractional solubility of aerosol iron – results of the annual observations of size-fractionated aerosol particles in Japan
In-depth study of the formation processes of single atmospheric particles in the south-eastern margin of the Tibetan Plateau
Climatology of aerosol properties at an atmospheric monitoring site on the northern California coast
Concurrent photochemical whitening and darkening of ambient brown carbon
High-time-resolution chemical composition and source apportionment of PM2.5 in northern Chinese cities: implications for policy
Measurement report: New insights into the mixing structures of black carbon on the eastern Tibetan Plateau – soot redistribution and fractal dimension enhancement by liquid–liquid phase separation
Source Apportionment of Soot Particles and Aqueous-Phase Processing of Black Carbon Coatings in an Urban Environment
Seasonal variations in the production of singlet oxygen and organic triplet excited states in aqueous PM2.5 in Hong Kong SAR, South China
Nighttime NO emissions strongly suppress chlorine and nitrate radical formation during the winter in Delhi
Influence of natural and anthropogenic aerosols on cloud base droplet size distributions in clouds over the South China Sea and West Pacific
The important contribution of secondary formation and biomass burning to oxidized organic nitrogen (OON) in a polluted urban area: insights from in situ measurements of a chemical ionization mass spectrometer (CIMS)
Measurement report: A 1-year study to estimate maritime contributions to PM10 in a coastal area in northern France
Marine Carbohydrates in Arctic Aerosol Particles and Fog – Diversity of Oceanic Sources and Atmospheric Transformations
Evolution and chemical characteristics of organic aerosols during wintertime PM2.5 episodes in Shanghai, China: insights gained from online measurements of organic molecular markers
Arctic observations of hydroperoxymethyl thioformate (HPMTF) – seasonal behavior and relationship to other oxidation products of dimethyl sulfide at the Zeppelin Observatory, Svalbard
Summertime response of ozone and fine particulate matter to mixing layer meteorology over the North China Plain
Trace elements in PM2.5 aerosols in East Asian outflow in the spring of 2018: Emission, transport, and source apportionment
A 1-year aerosol chemical speciation monitor (ACSM) source analysis of organic aerosol particle contributions from anthropogenic sources after long-range transport at the TROPOS research station Melpitz
Contributions of primary emissions and secondary formation to nitrated aromatic compounds in themountain background region of Southeast China
Mist cannon trucks can exacerbate the formation of water-soluble organic aerosol and PM2.5 pollution in the road environment
Amino acids, carbohydrates, and lipids in the tropical oligotrophic Atlantic Ocean: sea-to-air transfer and atmospheric in situ formation
Ambient carbonaceous aerosol levels in Cyprus and the role of pollution transport from the Middle East
High contribution of anthropogenic combustion sources to atmospheric inorganic reactive nitrogen in South China evidenced by isotopes
Measurement report: Diurnal variations of brown carbon during two distinct seasons in a megacity in northeast China
Source Apportionment of PM2.5 in Montréal, Canada and Health Risk Assessment for Potentially Toxic Elements
Characterization of water-soluble brown carbon chromophores from wildfire plumes in the western US using size exclusion chromatography
pH-Dependence of Brown Carbon Optical Properties in Cloud Water
Vertical profiles of volatile organic compounds and fine particles in atmospheric air by using an aerial drone with miniaturized samplers and portable devices
Multiple pathways for the formation of secondary organic aerosol in the North China Plain in summer
Seasonal variations in composition and sources of atmospheric ultrafine particles in urban Beijing based on near-continuous measurements
Insights into characteristics and formation mechanisms of secondary organic aerosols in the Guangzhou urban area
Particulate-bound alkyl nitrate pollution and formation mechanisms in Beijing, China
An attribution of the low single-scattering albedo of biomass burning aerosol over the southeastern Atlantic
Measurement report: Rapid changes of chemical characteristics and health risks for highly time resolved trace elements in PM2.5 in a typical industrial city in response to stringent clean air actions
Measurement report: Summertime fluorescence characteristics of atmospheric water-soluble organic carbon in the marine boundary layer of the western Arctic Ocean
High frequency of new particle formation events driven by summer monsoon in the central Tibetan Plateau, China
Chemical precursors of new particle formation in coastal New Zealand
Insights into the single-particle composition, size, mixing state, and aspect ratio of freshly emitted mineral dust from field measurements in the Moroccan Sahara using electron microscopy
Investigating the contribution of grown new particles to cloud condensation nuclei with largely varying pre-existing particles – Part 1: Observational data analysis
Máté Vörösmarty, Gaëlle Uzu, Jean-Luc Jaffrezo, Pamela Dominutti, Zsófia Kertész, Enikő Papp, and Imre Salma
Atmos. Chem. Phys., 23, 14255–14269, https://doi.org/10.5194/acp-23-14255-2023, https://doi.org/10.5194/acp-23-14255-2023, 2023
Short summary
Short summary
Poor air quality caused by high concentrations of particulate matter is one of the most severe public health concerns for humans worldwide. One of the most important biological mechanisms inducing adverse health effects is the oxidant–antioxidant imbalance. We showed that the oxidative stress changed substantially and in a complex manner with location and season. Biomass burning exhibited the dominant influence, while motor vehicles played an important role in the non-heating period.
Da Lu, Hao Li, Mengke Tian, Guochen Wang, Xiaofei Qin, Na Zhao, Juntao Huo, Fan Yang, Yanfen Lin, Jia Chen, Qingyan Fu, Yusen Duan, Xinyi Dong, Congrui Deng, Sabur F. Abdullaev, and Kan Huang
Atmos. Chem. Phys., 23, 13853–13868, https://doi.org/10.5194/acp-23-13853-2023, https://doi.org/10.5194/acp-23-13853-2023, 2023
Short summary
Short summary
Environmental conditions during dust are usually not favorable for secondary aerosol formation. However in this study, an unusual dust event was captured in a Chinese mega-city and showed “anomalous” meteorology and a special dust backflow transport pathway. The underlying formation mechanisms of secondary aerosols are probed in the context of this special dust event. This study shows significant implications for the varying dust aerosol chemistry in the future changing climate.
Thomas Audoux, Benoit Laurent, Karine Desboeufs, Gael Noyalet, Franck Maisonneuve, Olivier Lauret, and Servanne Chevaillier
Atmos. Chem. Phys., 23, 13485–13503, https://doi.org/10.5194/acp-23-13485-2023, https://doi.org/10.5194/acp-23-13485-2023, 2023
Short summary
Short summary
In the Paris region, a campaign was conducted to study wet deposition of aerosol particles during rainfall events. Simultaneous measurements of aerosol and wet deposition allowed us to discuss their transfer from the atmosphere to rain. Chemical evolution within events revealed meteorology, atmospheric conditions and local vs. long range sources as key factors. This study highlights the variability of wet deposition and the need to consider event-specific factors to understand its mechanisms.
Ting Yang, Yu Xu, Qing Ye, Yi-Jia Ma, Yu-Chen Wang, Jian-Zhen Yu, Yu-Sen Duan, Chen-Xi Li, Hong-Wei Xiao, Zi-Yue Li, Yue Zhao, and Hua-Yun Xiao
Atmos. Chem. Phys., 23, 13433–13450, https://doi.org/10.5194/acp-23-13433-2023, https://doi.org/10.5194/acp-23-13433-2023, 2023
Short summary
Short summary
In this study, 130 OS species were quantified in ambient fine particulate matter (PM2.5) collected in urban and suburban Shanghai (East China) in the summer of 2021. The daytime OS formation was concretized based on the interactions among OSs, ultraviolet (UV), ozone (O3), and sulfate. Our finding provides field evidence for the influence of photochemical process and anthropogenic sulfate on OS formation and has important implications for the mitigation of organic particulate pollution.
Miao Zhong, Jianzhong Xu, Huiqin Wang, Li Gao, Haixia Zhu, Lixiang Zhai, Xinghua Zhang, and Wenhui Zhao
Atmos. Chem. Phys., 23, 12609–12630, https://doi.org/10.5194/acp-23-12609-2023, https://doi.org/10.5194/acp-23-12609-2023, 2023
Short summary
Short summary
This study focus on coal-combustion-dominated aerosol in urban areas in northwestern China and combines the results of optical measurement and chemical analysis to deduce the evolution of these characteristics in the atmosphere, which has previously been unknown. The results provide insights into the effects of atmospheric processes and emissions on brown carbon properties.
Li Wu, Hyo-Jin Eom, Hanjin Yoo, Dhrubajyoti Gupta, Hye-Rin Cho, Pingqing Fu, and Chul-Un Ro
Atmos. Chem. Phys., 23, 12571–12588, https://doi.org/10.5194/acp-23-12571-2023, https://doi.org/10.5194/acp-23-12571-2023, 2023
Short summary
Short summary
Hygroscopicity of ambient marine aerosols is of critical relevance to investigate their atmospheric impacts, which, however, remain uncertain due to their complex compositions and mixing states. Therefore, a study on the hygroscopic behavior of ambient marine aerosols for understanding the phase states when interacting with water vapor at different RH levels and their subsequent impacts on the heterogeneous chemical reactions, atmospheric environment, and human health is of vital importance.
Yutong Liang, Rebecca A. Wernis, Kasper Kristensen, Nathan M. Kreisberg, Philip L. Croteau, Scott C. Herndon, Arthur W. H. Chan, Nga L. Ng, and Allen H. Goldstein
Atmos. Chem. Phys., 23, 12441–12454, https://doi.org/10.5194/acp-23-12441-2023, https://doi.org/10.5194/acp-23-12441-2023, 2023
Short summary
Short summary
We measured the gas–particle partitioning behaviors of biomass burning markers and examined the effect of wildfire organic aerosol on the partitioning of semivolatile organic compounds. Most compounds measured are less volatile than model predictions. Wildfire aerosol enhanced the condensation of polar compounds and caused some nonpolar (e.g., polycyclic aromatic hydrocarbons) compounds to partition into the gas phase, thus affecting their lifetimes in the atmosphere and the mode of exposure.
Bojiang Su, Xinhui Bi, Zhou Zhang, Yue Liang, Congbo Song, Tao Wang, Yaohao Hu, Lei Li, Zhen Zhou, Jinpei Yan, Xinming Wang, and Guohua Zhang
Atmos. Chem. Phys., 23, 10697–10711, https://doi.org/10.5194/acp-23-10697-2023, https://doi.org/10.5194/acp-23-10697-2023, 2023
Short summary
Short summary
During the R/V Xuelong cruise observation over the Ross Sea, Antarctica, the mass concentrations of water-soluble Ca2+ and the mass spectra of individual calcareous particles were measured. Our results indicated that lower temperature, lower wind speed, and the presence of sea ice may facilitate Ca2+ enrichment in sea spray aerosols and highlighted the potential contribution of organically complexed calcium to calcium enrichment, which is inaccurate based solely on water-soluble Ca2+ estimation.
Valeria Mardoñez, Marco Pandolfi, Lucille Joanna S. Borlaza, Jean-Luc Jaffrezo, Andrés Alastuey, Jean-Luc Besombes, Isabel Moreno R., Noemi Perez, Griša Močnik, Patrick Ginot, Radovan Krejci, Vladislav Chrastny, Alfred Wiedensohler, Paolo Laj, Marcos Andrade, and Gaëlle Uzu
Atmos. Chem. Phys., 23, 10325–10347, https://doi.org/10.5194/acp-23-10325-2023, https://doi.org/10.5194/acp-23-10325-2023, 2023
Short summary
Short summary
La Paz and El Alto are two fast-growing, high-altitude Bolivian cities forming the second-largest metropolitan area in the country. The sources of particulate matter (PM) in this conurbation were not previously investigated. This study identified 11 main sources of PM, of which dust and vehicular emissions stand out as the main ones. The influence of regional biomass combustion and local waste combustion was also observed, with the latter being a major source of hazardous compounds.
Sayako Ueda, Yoko Iwamoto, Fumikazu Taketani, Mingxu Liu, and Hitoshi Matsui
Atmos. Chem. Phys., 23, 10117–10135, https://doi.org/10.5194/acp-23-10117-2023, https://doi.org/10.5194/acp-23-10117-2023, 2023
Short summary
Short summary
We examine iron in atmospheric fine aerosol particles collected over the Indian Ocean during shipborne observations in November 2018. Transmission electron microscopy analysis with water dialysis shows that various types of iron (fly ash, iron oxide, and mineral dust) co-exist with ammonium sulfate and that their solubility differs depending on the iron type. Using PM2.5 bulk samples and global model simulations, we elucidate their origins, aging, and implications for present iron simulations.
Farhan R. Nursanto, Roy Meinen, Rupert Holzinger, Maarten C. Krol, Xinya Liu, Ulrike Dusek, Bas Henzing, and Juliane L. Fry
Atmos. Chem. Phys., 23, 10015–10034, https://doi.org/10.5194/acp-23-10015-2023, https://doi.org/10.5194/acp-23-10015-2023, 2023
Short summary
Short summary
Particulate matter (PM) is a harmful air pollutant that depends on the complex mixture of natural and anthropogenic emissions into the atmosphere. Thus, in different regions and seasons, the way that PM is formed and grows can differ. In this study, we use a combined statistical analysis of the chemical composition and particle size distribution to determine what drives particle formation and growth across seasons, using varying wind directions to elucidate the role of different sources.
Kohei Sakata, Aya Sakaguchi, Yoshiaki Yamakawa, Chihiro Miyamoto, Minako Kurisu, and Yoshio Takahashi
Atmos. Chem. Phys., 23, 9815–9836, https://doi.org/10.5194/acp-23-9815-2023, https://doi.org/10.5194/acp-23-9815-2023, 2023
Short summary
Short summary
Anthropogenic iron is the dominant source of dissolved Fe in aerosol particles, but its contribution to dissolved Fe in aerosol particles has not been quantitatively evaluated. We established the molar concentration ratio of dissolved Fe to dissolved Al as a new indicator to evaluate the contribution of anthropogenic iron. As a result, about 10 % of dissolved Fe in aerosol particles was derived from anthropogenic iron when aerosol particles were transported from East Asia to the Pacific Ocean.
Li Li, Qiyuan Wang, Jie Tian, Huikun Liu, Yong Zhang, Steven Sai Hang Ho, Weikang Ran, and Junji Cao
Atmos. Chem. Phys., 23, 9597–9612, https://doi.org/10.5194/acp-23-9597-2023, https://doi.org/10.5194/acp-23-9597-2023, 2023
Short summary
Short summary
The Tibetan Plateau has a unique geographical location, but there is a lack of detailed research on the real-time characteristics of full aerosol composition. This study elaborates the changes in chemical characteristics between transport and local fine particles during the pre-monsoon, reveals the size distribution and the mixing states of different individual particles, and highlights the contributions of photooxidation and aqueous reaction to the formation of the secondary species.
Erin K. Boedicker, Elisabeth Andrews, Patrick J. Sheridan, and Patricia K. Quinn
Atmos. Chem. Phys., 23, 9525–9547, https://doi.org/10.5194/acp-23-9525-2023, https://doi.org/10.5194/acp-23-9525-2023, 2023
Short summary
Short summary
We present 15 years of measurements from a marine site on the northern California coast and characterize the seasonal trends of aerosol ion composition and optical properties at the site. We investigate the relationship between the chemical and optical properties and show that they both support similar seasonal variations in aerosol sources at the site. Additionally, we show through comparisons to other marine aerosol observations that the site is representative of a clean marine environment.
Qian Li, Dantong Liu, Xiaotong Jiang, Ping Tian, Yangzhou Wu, Siyuan Li, Kang Hu, Quan Liu, Mengyu Huang, Ruijie Li, Kai Bi, Shaofei Kong, Deping Ding, and Chenjie Yu
Atmos. Chem. Phys., 23, 9439–9453, https://doi.org/10.5194/acp-23-9439-2023, https://doi.org/10.5194/acp-23-9439-2023, 2023
Short summary
Short summary
By attributing the shortwave absorption from black carbon, primary organic aerosol and secondary organic aerosol in a suburban environment, we firstly observed that the photochemically produced nitrogen-containing secondary organic aerosol may contribute to the enhancement of brown carbon absorption, partly compensating for some bleaching effect on the absorption of primary organic aerosol, hereby exerting radiative impacts.
Yong Zhang, Jie Tian, Qiyuan Wang, Lu Qi, Manousos Ioannis Manousakas, Yuemei Han, Weikang Ran, Yele Sun, Huikun Liu, Renjian Zhang, Yunfei Wu, Tianqu Cui, Kaspar Rudolf Daellenbach, Jay Gates Slowik, André S. H. Prévôt, and Junji Cao
Atmos. Chem. Phys., 23, 9455–9471, https://doi.org/10.5194/acp-23-9455-2023, https://doi.org/10.5194/acp-23-9455-2023, 2023
Short summary
Short summary
PM2.5 pollution still frequently occurs in northern China during winter, and it is necessary to figure out the causes of air pollution based on intensive real-time measurement. The findings elaborate the chemical characteristics and source contributions of PM2.5 in three pilot cities, reveal potential formation mechanisms of secondary aerosols, and highlight the importance of controlling biomass burning and inhibiting generation of secondary aerosol for air quality improvement.
Qi Yuan, Yuanyuan Wang, Yixin Chen, Siyao Yue, Jian Zhang, Yinxiao Zhang, Liang Xu, Wei Hu, Dantong Liu, Pingqing Fu, Huiwang Gao, and Weijun Li
Atmos. Chem. Phys., 23, 9385–9399, https://doi.org/10.5194/acp-23-9385-2023, https://doi.org/10.5194/acp-23-9385-2023, 2023
Short summary
Short summary
This study for the first time found large amounts of liquid–liquid phase separation particles with soot redistributing in organic coatings instead of sulfate cores in the eastern Tibetan Plateau atmosphere. The particle size and the ratio of the organic matter coating thickness to soot size are two of the major possible factors that likely affect the soot redistribution process. The soot redistribution process promoted the morphological compaction of soot particles.
Ryan N. Farley, Sonya Collier, Christopher D. Cappa, Leah R. Williams, Timothy B. Onasch, Lynn M. Russell, Hwajin Kim, and Qi Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2023-1818, https://doi.org/10.5194/egusphere-2023-1818, 2023
Short summary
Short summary
Soot particles, also known as black carbon (BC), have important implication on global climate and regional air quality. After the particles are emitted, BC can be coated with other material, impacting the aerosol properties. We selectively measured the composition of particles containing BC to explore their sources and chemical transformations in the atmosphere. We focus on a persistent, multiday fog event in order to study the effects of chemical reactions occurring within liquid droplets.
Yuting Lyu, Yin Hau Lam, Yitao Li, Nadine Borduas-Dedekind, and Theodora Nah
Atmos. Chem. Phys., 23, 9245–9263, https://doi.org/10.5194/acp-23-9245-2023, https://doi.org/10.5194/acp-23-9245-2023, 2023
Short summary
Short summary
We measured singlet oxygen (1O2*) and triplet excited states of organic matter (3C*) in illuminated aqueous extracts of PM2.5 collected in different seasons at different sites in Hong Kong SAR, South China. In contrast to the locations, seasonality had significant effects on 3C* and 1O2* production due to seasonal variations in long-range air mass transport. The steady-state concentrations of 3C* and 1O2* correlated with the concentration and absorbance of water-soluble organic carbon.
Sophie L. Haslett, David M. Bell, Varun Kumar, Jay G. Slowik, Dongyu S. Wang, Suneeti Mishra, Neeraj Rastogi, Atinderpal Singh, Dilip Ganguly, Joel Thornton, Feixue Zheng, Yuanyuan Li, Wei Nie, Yongchun Liu, Wei Ma, Chao Yan, Markku Kulmala, Kaspar R. Daellenbach, David Hadden, Urs Baltensperger, Andre S. H. Prevot, Sachchida N. Tripathi, and Claudia Mohr
Atmos. Chem. Phys., 23, 9023–9036, https://doi.org/10.5194/acp-23-9023-2023, https://doi.org/10.5194/acp-23-9023-2023, 2023
Short summary
Short summary
In Delhi, some aspects of daytime and nighttime atmospheric chemistry are inverted, and parodoxically, vehicle emissions may be limiting other forms of particle production. This is because the nighttime emissions of nitrogen oxide (NO) by traffic and biomass burning prevent some chemical processes that would otherwise create even more particles and worsen the urban haze.
Rose Marie Miller, Robert M. Rauber, Larry Di Girolamo, Matthew Rilloraza, Dongwei Fu, Greg M. McFarquhar, Stephen W. Nesbitt, Luke D. Ziemba, Sarah Woods, and Kenneth Lee Thornhill
Atmos. Chem. Phys., 23, 8959–8977, https://doi.org/10.5194/acp-23-8959-2023, https://doi.org/10.5194/acp-23-8959-2023, 2023
Short summary
Short summary
The influence of human-produced aerosols on clouds remains one of the uncertainties in radiative forcing of Earth’s climate. Measurements of aerosol chemistry from sources around the Philippines illustrate the linkage between aerosol chemical composition and cloud droplet characteristics. Differences in aerosol chemical composition in the marine layer from biomass burning, industrial, ship-produced, and marine aerosols are shown to impact cloud microphysical structure just above cloud base.
Yiyu Cai, Chenshuo Ye, Wei Chen, Weiwei Hu, Wei Song, Yuwen Peng, Shan Huang, Jipeng Qi, Sihang Wang, Chaomin Wang, Caihong Wu, Zelong Wang, Baolin Wang, Xiaofeng Huang, Lingyan He, Sasho Gligorovski, Bin Yuan, Min Shao, and Xinming Wang
Atmos. Chem. Phys., 23, 8855–8877, https://doi.org/10.5194/acp-23-8855-2023, https://doi.org/10.5194/acp-23-8855-2023, 2023
Short summary
Short summary
We studied the variability and molecular composition of ambient oxidized organic nitrogen (OON) in both gas and particle phases using a state-of-the-art online mass spectrometer in urban air. Biomass burning and secondary formation were found to be the two major sources of OON. Daytime nitrate radical chemistry for OON formation was more important than previously thought. Our results improved the understanding of the sources and molecular composition of OON in the polluted urban atmosphere.
Frédéric Ledoux, Cloé Roche, Gilles Delmaire, Gilles Roussel, Olivier Favez, Marc Fadel, and Dominique Courcot
Atmos. Chem. Phys., 23, 8607–8622, https://doi.org/10.5194/acp-23-8607-2023, https://doi.org/10.5194/acp-23-8607-2023, 2023
Short summary
Short summary
We quantify the emissions from the marine sector in northern France, whether from natural or human-made sources. Therefore, a 1-year PM10 sampling campaign was conducted at a French coastal site. Results showed that sea salts contributed 37 %, while secondary nitrate and sulfate contributed 42 %, biomass burning 8 %, and heavy-fuel-oil combustion from shipping emissions 5 %. Sources contributing more than 80 % of PM10 are of regional and/or long-range origin.
Sebastian Zeppenfeld, Manuela van Pinxteren, Markus Hartmann, Moritz Zeising, Astrid Bracher, and Hartmut Herrmann
EGUsphere, https://doi.org/10.5194/egusphere-2023-1607, https://doi.org/10.5194/egusphere-2023-1607, 2023
Short summary
Short summary
Marine carbohydrates are produced in the surface of the ocean, enter the atmophere as part of sea spray aerosol particles and potentially contribute to the formation of clouds. Here, we present the results of a sea-air transfer study of marine carbohydrates conducted in the high Arctic. Besides a chemo-selective transfer, we observed a quick atmospheric aging of carbohydrates, possibly as a result of both biotic and abiotic processes.
Shuhui Zhu, Min Zhou, Liping Qiao, Dan Dan Huang, Qiongqiong Wang, Shan Wang, Yaqin Gao, Shengao Jing, Qian Wang, Hongli Wang, Changhong Chen, Cheng Huang, and Jian Zhen Yu
Atmos. Chem. Phys., 23, 7551–7568, https://doi.org/10.5194/acp-23-7551-2023, https://doi.org/10.5194/acp-23-7551-2023, 2023
Short summary
Short summary
Organic aerosol (OA) is increasingly important in urban PM2.5 pollution as inorganic ions are becoming lower. We investigated the chemical characteristics of OA during nine episodes in Shanghai. The availability of bi-hourly measured molecular markers revealed that the control of local urban sources such as vehicular and cooking emissions lessened the severity of local episodes. Regional control of precursors and biomass burning would reduce PM2.5 episodes influenced by regional transport.
Karolina Siegel, Yvette Gramlich, Sophie L. Haslett, Gabriel Freitas, Radovan Krejci, Paul Zieger, and Claudia Mohr
Atmos. Chem. Phys., 23, 7569–7587, https://doi.org/10.5194/acp-23-7569-2023, https://doi.org/10.5194/acp-23-7569-2023, 2023
Short summary
Short summary
Hydroperoxymethyl thioformate (HPMTF) is a recently discovered oxidation product of dimethyl sulfide (DMS). We present a full year of concurrent gas- and particle-phase observations of HPMTF and other DMS oxidation products from the Arctic. We did not observe significant amounts of HPMTF in the particle phase but a good agreement between gas-phase HMPTF and methanesulfonic acid in the summer. Our study provides information about the relationship between HPMTF and other DMS oxidation products.
Jiaqi Wang, Jian Gao, Fei Che, Xin Yang, Yuanqin Yang, Lei Liu, and Yan Xiang
EGUsphere, https://doi.org/10.5194/egusphere-2023-479, https://doi.org/10.5194/egusphere-2023-479, 2023
Short summary
Short summary
Regional-scale observations of surface O3, PM2.5 and its major chemical species, mixing layer height (MLH), and other meteorological parameters were made in the North China Plain during summertime. Unlike cold seasons, synchronized increases in MDA8 O3 and PM2.5 under medium MLH condition have been witnessed. The increasing trend of PM2.5 was associated with enhanced secondary chemical formation. The correlation between MLH and secondary air pollutants should be treated with care in hot seasons.
Takuma Miyakawa, Akinori Ito, Chunmao Zhu, Atsushi Shimizu, Erika Matsumoto, Yusuke Mizuno, and Yugo Kanaya
EGUsphere, https://doi.org/10.5194/egusphere-2023-1336, https://doi.org/10.5194/egusphere-2023-1336, 2023
Short summary
Short summary
This study conducted semi-continuous measurements of PM2.5 aerosols and their elemental composition in western Japan, during spring 2018. It analyzed the emissions, transport, and wet removal of elements such as Pb, Cu, Fe, and Mn. It also assessed the accuracy of modeled concentrations and found overestimations of BC and underestimations of Cu and anthropogenic Fe in East Asia. Insights into emissions, removals, and source apportionment of trace metals in the East Asian outflow were provided.
Samira Atabakhsh, Laurent Poulain, Gang Chen, Francesco Canonaco, André S. H. Prévôt, Mira Pöhlker, Alfred Wiedensohler, and Hartmut Herrmann
Atmos. Chem. Phys., 23, 6963–6988, https://doi.org/10.5194/acp-23-6963-2023, https://doi.org/10.5194/acp-23-6963-2023, 2023
Short summary
Short summary
The study focuses on the aerosol chemical variations found in the rural-background station of Melpitz based on ACSM and MAAP measurements. Source apportionment on both organic aerosol (OA) and black carbon (eBC) was performed, and source seasonality was also linked to air mass trajectories. Overall, three anthropogenic sources were identified in OA and eBC plus two additional aged OA. Our results demonstrate the influence of transported coal-combustion-related OA even during summer time.
Yanqin Ren, Gehui Wang, Jie Wei, Jun Tao, Zhisheng Zhang, and Hong Li
Atmos. Chem. Phys., 23, 6835–6848, https://doi.org/10.5194/acp-23-6835-2023, https://doi.org/10.5194/acp-23-6835-2023, 2023
Short summary
Short summary
Nine quantified nitrated aromatic compounds (NACs) in PM2.5 were examined at the peak of Mt. Wuyi. They manifested a significant rise in overall abundance in the winter and autumn. The transport of contaminants had a significant impact on NACs. Under low-NOx conditions, the formation of NACs was comparatively sensitive to NO2, suggesting that NACs would become significant in the aerosol characteristics when nitrate concentrations decreased as a result of emission reduction measures.
Yu Xu, Xin-Ni Dong, Chen He, Dai-She Wu, Hong-Wei Xiao, and Hua-Yun Xiao
Atmos. Chem. Phys., 23, 6775–6788, https://doi.org/10.5194/acp-23-6775-2023, https://doi.org/10.5194/acp-23-6775-2023, 2023
Short summary
Short summary
The air pollution associated with fine particles and secondary organic aerosol is not weakened by the application of mist cannon trucks but rather is aggravated. Our results provide not only new insights into the formation processes of aerosol water-soluble organic compounds associated with the water mist sprayed by mist cannon trucks in the road atmospheric environment but also crucial information for the decision makers to regulate the operation of mist cannon trucks in many cities in China.
Manuela van Pinxteren, Sebastian Zeppenfeld, Khanneh Wadinga Fomba, Nadja Triesch, Sanja Frka, and Hartmut Herrmann
Atmos. Chem. Phys., 23, 6571–6590, https://doi.org/10.5194/acp-23-6571-2023, https://doi.org/10.5194/acp-23-6571-2023, 2023
Short summary
Short summary
Important marine organic carbon compounds were identified in the Atlantic Ocean and marine aerosol particles. These compounds were strongly enriched in the atmosphere. Their enrichment was, however, not solely explained via sea-to-air transfer but also via atmospheric in situ formation. The identified compounds constituted about 50 % of the organic carbon on the aerosol particles, and a pronounced coupling between ocean and atmosphere for this oligotrophic region could be concluded.
Aliki Christodoulou, Iasonas Stavroulas, Mihalis Vrekoussis, Maximillien Desservettaz, Michael Pikridas, Elie Bimenyimana, Jonilda Kushta, Matic Ivančič, Martin Rigler, Philippe Goloub, Konstantina Oikonomou, Roland Sarda-Estève, Chrysanthos Savvides, Charbel Afif, Nikos Mihalopoulos, Stéphane Sauvage, and Jean Sciare
Atmos. Chem. Phys., 23, 6431–6456, https://doi.org/10.5194/acp-23-6431-2023, https://doi.org/10.5194/acp-23-6431-2023, 2023
Short summary
Short summary
Our study presents, for the first time, a detailed source identification of aerosols at an urban background site in Cyprus (eastern Mediterranean), a region strongly impacted by climate change and air pollution. Here, we identify an unexpected high contribution of long-range transported pollution from fossil fuel sources in the Middle East, highlighting an urgent need to further characterize these fast-growing emissions and their impacts on regional atmospheric composition, climate, and health.
Tingting Li, Jun Li, Zeyu Sun, Hongxing Jiang, Chongguo Tian, and Gan Zhang
Atmos. Chem. Phys., 23, 6395–6407, https://doi.org/10.5194/acp-23-6395-2023, https://doi.org/10.5194/acp-23-6395-2023, 2023
Short summary
Short summary
N-NH4+ and N-NO3- were vital components in nitrogenous aerosols and contributed 69 % to total nitrogen in PM2.5. Coal combustion was still the most important source of urban atmospheric NO3-. However, the non-agriculture sources play an increasingly important role in NH4+ emissions.
Yuan Cheng, Xu-bing Cao, Jiu-meng Liu, Ying-jie Zhong, Qin-qin Yu, Qiang Zhang, and Ke-bin He
Atmos. Chem. Phys., 23, 6241–6253, https://doi.org/10.5194/acp-23-6241-2023, https://doi.org/10.5194/acp-23-6241-2023, 2023
Short summary
Short summary
Brown carbon (BrC) aerosols were explored in the northernmost megacity in China during a frigid winter and an agricultural-fire-impacted spring. BrC was more light absorbing at night for both seasons, with more pronounced diurnal variations in spring, and the dominant drivers were identified as regulations on heavy-duty diesel trucks and open burning, respectively. Agricultural fires resulted in unique absorption spectra of BrC, which were characterized by a distinct peak at ∼365 nm.
Nansi Fakhri, Robin Stevens, Arnold Downey, Konstantina Oikonomou, Jean Sciare, Charbel Afif, and Patrick L. Hayes
EGUsphere, https://doi.org/10.5194/egusphere-2023-1039, https://doi.org/10.5194/egusphere-2023-1039, 2023
Short summary
Short summary
The chemical composition of PM2.5 and emission sources as well as potential human health risk associated with trace elements are investigated for an urban site in Montréal over a 3-month period (August–November). To our knowledge, this study represents the first time that such extensive composition measurements were included in an urban source apportionment study in Canada and provides greater resolution of PM2.5 sources than has been previously achieved using PMF in similar Canadian studies.
Lisa Azzarello, Rebecca A. Washenfelder, Michael A. Robinson, Alessandro Franchin, Caroline C. Womack, Christopher D. Holmes, Steven S. Brown, Ann Middlebrook, Tim Newberger, Colm Sweeney, and Cora J. Young
EGUsphere, https://doi.org/10.5194/egusphere-2023-1128, https://doi.org/10.5194/egusphere-2023-1128, 2023
Short summary
Short summary
We present a molecular size-resolved offline analysis of water-soluble brown carbon collected on an aircraft during FIREX-AQ. The smoke plumes were aged 0 to 5 h where absorption was dominated by small molecular weight molecules, brown carbon absorption downwind did not consistently decrease, and the measurements differed from online absorption measurements of the same samples. We show how differences between online and offline absorption could be related to different measurement conditions.
Christopher J. Hennigan, Michael McKee, Vikram Pratap, Bryanna Boegner, Jasper Reno, Lucia Garcia, Madison McLaren, and Sara M. Lance
EGUsphere, https://doi.org/10.5194/egusphere-2023-854, https://doi.org/10.5194/egusphere-2023-854, 2023
Short summary
Short summary
This study characterized the optical properties of light-absorbing organic compounds, called brown carbon (BrC), in atmospheric cloud water samples. In all samples, light absorption by BrC increased linearly with increasing pH. There was variability in the sensitivity of the absorption-pH relationship, depending on the degree of influence from fire emissions. Overall, these results show that the climate forcing of BrC is quite strongly affected by its pH-dependent absorption.
Eka Dian Pusfitasari, Jose Ruiz-Jimenez, Aleksi Tiusanen, Markus Suuronen, Jesse Haataja, Yusheng Wu, Juha Kangasluoma, Krista Luoma, Tuukka Petäjä, Matti Jussila, Kari Hartonen, and Marja-Liisa Riekkola
Atmos. Chem. Phys., 23, 5885–5904, https://doi.org/10.5194/acp-23-5885-2023, https://doi.org/10.5194/acp-23-5885-2023, 2023
Short summary
Short summary
A miniaturized air-sampling drone system was successfully applied for the collection of volatile organic compounds (VOCs) and for the measurement of black carbon (BC) and total particle number concentrations in atmospheric air. Here we report, for the first time, the vertical profiles of BC and aerosol number concentrations above the boreal forest in Hyytiälä (Finland) at high altitudes close to the boundary layer in autumn 2021. VOC composition with its distribution was studied as well.
Yifang Gu, Ru-Jin Huang, Jing Duan, Wei Xu, Chunshui Lin, Haobin Zhong, Ying Wang, Haiyan Ni, Quan Liu, Ruiguang Xu, Litao Wang, and Yong Jie Li
Atmos. Chem. Phys., 23, 5419–5433, https://doi.org/10.5194/acp-23-5419-2023, https://doi.org/10.5194/acp-23-5419-2023, 2023
Short summary
Short summary
Secondary organic aerosol (SOA) can be produced by various pathways, but its formation mechanisms are unclear. Observations were conducted in the North China Plain during a highly oxidizing atmosphere in summer. We found that fast photochemistry dominated SOA formation during daytime. Two types of aqueous-phase chemistry (nocturnal and daytime processing) take place at high relative humidity. The potential transformation from primary organic aerosol (POA) to SOA was also an important pathway.
Xiaoxiao Li, Yijing Chen, Yuyang Li, Runlong Cai, Yiran Li, Chenjuan Deng, Chao Yan, Hairong Cheng, Yongchun Liu, Markku Kulmala, Jiming Hao, James N. Smith, and Jingkun Jiang
EGUsphere, https://doi.org/10.5194/egusphere-2023-809, https://doi.org/10.5194/egusphere-2023-809, 2023
Short summary
Short summary
The near-continuous measurements reveal the composition, sources, and seasonal variations of UFPs in urban Beijing. Vehicle, cooking emissions, and new particle formation are the main sources of UFP numbers and aqueous/heterogeneous processes increase UFP mode diameters in urban Beijing. UFP numbers are the highest in winter due to the highest primary particle emission rates and new particle formation rates, and CHO fractions are the highest in summer due to the strongest photooxidation.
Miaomiao Zhai, Ye Kuang, Li Liu, Yao He, Biao Luo, Wanyun Xu, Jiangchuan Tao, Yu Zou, Fei Li, Changqin Yin, Chunhui Li, Hanbing Xu, and Xuejiao Deng
Atmos. Chem. Phys., 23, 5119–5133, https://doi.org/10.5194/acp-23-5119-2023, https://doi.org/10.5194/acp-23-5119-2023, 2023
Short summary
Short summary
Using year-long aerosol mass spectrometer measurements, roles of secondary organic aerosols (SOA) during haze formations in an urban area of southern China were systematically analyzed. Almost all severe haze events were accompanied by continuous daytime and nighttime SOA formations, whereas coordinated gas-phase photochemistry and aqueous-phase reactions likely played significant roles in quick daytime SOA formations, and nitrate radicals played significant roles in nighttime SOA formations.
Jiyuan Yang, Guoyang Lei, Jinfeng Zhu, Yutong Wu, Chang Liu, Kai Hu, Junsong Bao, Zitong Zhang, Weili Lin, and Jun Jin
EGUsphere, https://doi.org/10.5194/egusphere-2023-700, https://doi.org/10.5194/egusphere-2023-700, 2023
Short summary
Short summary
The atmospheric pollution and formation mechanisms of particulate-bound alkyl nitrate in Beijing were studied. Long-chain n-alkyl nitrates contributed more to the total n-alkyl nitrate in PM2.5. Long-chain n-alkyl nitrates negatively correlated with O3 but positively correlated with PM2.5 and NO2, so they may not be produced during photochemical reactions but form through reactions between alkanes and nitrates on PM surfaces. Particulate-bound n-alkyl nitrates strongly influence haze pollution.
Amie Dobracki, Paquita Zuidema, Steven G. Howell, Pablo Saide, Steffen Freitag, Allison C. Aiken, Sharon P. Burton, Arthur J. Sedlacek III, Jens Redemann, and Robert Wood
Atmos. Chem. Phys., 23, 4775–4799, https://doi.org/10.5194/acp-23-4775-2023, https://doi.org/10.5194/acp-23-4775-2023, 2023
Short summary
Short summary
Southern Africa produces approximately one-third of the world’s carbon from fires. The thick smoke layer can flow westward, interacting with the southeastern Atlantic cloud deck. The net radiative impact can alter regional circulation patterns, impacting rainfall over Africa. We find that the smoke is highly absorbing of sunlight, mostly because it contains more black carbon than smoke over the Northern Hemisphere.
Rui Li, Yining Gao, Yubao Chen, Meng Peng, Weidong Zhao, Gehui Wang, and Jiming Hao
Atmos. Chem. Phys., 23, 4709–4726, https://doi.org/10.5194/acp-23-4709-2023, https://doi.org/10.5194/acp-23-4709-2023, 2023
Short summary
Short summary
A random forest model was used to isolate the effects of emission and meteorology to trace elements in PM2.5 in Tangshan. The results suggested that control measures facilitated decreases of Ga, Co, Pb, Zn, and As, due to the strict implementation of coal-to-gas strategies and optimisation of industrial structure and layout. However, the deweathered levels of Ca, Cr, and Fe only displayed minor decreases, indicating that ferrous metal smelting and vehicle emission controls should be enhanced.
Jinyoung Jung, Yuzo Miyazaki, Jin Hur, Yun Kyung Lee, Mi Hae Jeon, Youngju Lee, Kyoung-Ho Cho, Hyun Young Chung, Kitae Kim, Jung-Ok Choi, Catherine Lalande, Joo-Hong Kim, Taejin Choi, Young Jun Yoon, Eun Jin Yang, and Sung-Ho Kang
Atmos. Chem. Phys., 23, 4663–4684, https://doi.org/10.5194/acp-23-4663-2023, https://doi.org/10.5194/acp-23-4663-2023, 2023
Short summary
Short summary
This study examined the summertime fluorescence properties of water-soluble organic carbon (WSOC) in aerosols over the western Arctic Ocean. We found that the WSOC in fine-mode aerosols in coastal areas showed a higher polycondensation degree and aromaticity than in sea-ice-covered areas. The fluorescence properties of atmospheric WSOC in the summertime marine Arctic boundary can improve our understanding of the WSOC chemical and biological linkages at the ocean–sea-ice–atmosphere interface.
Lizi Tang, Min Hu, Dongjie Shang, Xin Fang, Jianjiong Mao, Wanyun Xu, Jiacheng Zhou, Weixiong Zhao, Yaru Wang, Chong Zhang, Yingjie Zhang, Jianlin Hu, Limin Zeng, Chunxiang Ye, Song Guo, and Zhijun Wu
Atmos. Chem. Phys., 23, 4343–4359, https://doi.org/10.5194/acp-23-4343-2023, https://doi.org/10.5194/acp-23-4343-2023, 2023
Short summary
Short summary
There was an evident distinction in the frequency of new particle formation (NPF) events at Nam Co station on the Tibetan Plateau: 15 % in pre-monsoon season and 80 % in monsoon season. The frequent NPF events in monsoon season resulted from the higher frequency of southerly air masses, which brought the organic precursors to participate in the NPF process. It increased the amount of aerosol and CCN compared with those in pre-monsoon season, which may markedly affect earth's radiation balance.
Maija Peltola, Clémence Rose, Jonathan V. Trueblood, Sally Gray, Mike Harvey, and Karine Sellegri
Atmos. Chem. Phys., 23, 3955–3983, https://doi.org/10.5194/acp-23-3955-2023, https://doi.org/10.5194/acp-23-3955-2023, 2023
Short summary
Short summary
We measured the chemical composition of ambient ions at a coastal New Zealand site and connected these data with aerosol size distribution data to study the chemical precursors of new particle formation at the site. Our results showed that iodine oxides and sulfur species were important for particle formation in marine air, while in land-influenced air sulfuric acid and organics were connected to new particle formation events.
Agnesh Panta, Konrad Kandler, Andres Alastuey, Cristina González-Flórez, Adolfo González-Romero, Martina Klose, Xavier Querol, Cristina Reche, Jesús Yus-Díez, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 23, 3861–3885, https://doi.org/10.5194/acp-23-3861-2023, https://doi.org/10.5194/acp-23-3861-2023, 2023
Short summary
Short summary
Desert dust is a major aerosol component of the Earth system and affects the climate. Dust properties are influenced by particle size, mineralogy, shape, and mixing state. This work characterizes freshly emitted individual mineral dust particles from a major source region using electron microscopy. Our new insights into critical particle-specific information will contribute to better constraining climate models that consider mineralogical variations in their representation of the dust cycle.
Xing Wei, Yanjie Shen, Xiao-Ying Yu, Yang Gao, Huiwang Gao, Ming Chu, Yujiao Zhu, and Xiaohong Yao
EGUsphere, https://doi.org/10.5194/egusphere-2023-539, https://doi.org/10.5194/egusphere-2023-539, 2023
Short summary
Short summary
To investigate the contribution of grown new particles to Nccn at a rural mountain site in North China Plain. The total particle number concentrations (Ncn) observed on eight NPF days were higher compared to non-NPF days. The Nccn at 0.2 %SS and 0.4 %SS on the NPF days were, however, significantly lower than those observed on non-NPF days. We concluded that grown new particles generally had no detectable contribution to Nccn, but incidentally did.
Cited articles
Alexander, B., Sherwen, T., Holmes, C. D., Fisher, J. A., Chen, Q., Evans, M. J., and Kasibhatla, P.:
Global inorganic nitrate production mechanisms: comparison of a global model with nitrate isotope observations, Atmos. Chem. Phys., 20, 3859–3877, https://doi.org/10.5194/acp-20-3859-2020, 2020.
Begum, B. A., Biswas, S. K., and Hopke, P. K.:
Key issues in controlling air pollutants in Dhaka, Bangladesh, Atmos. Environ., 45, 7705–7713, https://doi.org/10.1016/j.atmosenv.2010.10.022, 2011.
Beloconi, A., Probst-Hensch, N. M., and Vounatsou, P.:
Spatio-temporal modelling of changes in air pollution exposure associated to the COVID-19 lockdown measures across Europe, Sci. Total Environ., 787, 147607, https://doi.org/10.1016/j.scitotenv.2021.147607, 2021.
Bi, X., Dai, Q., Wu, J., Zhang, Q., Zhang, W., Luo, R., Cheng, Y., Zhang, J., Wang, L., Yu, Z., Zhang, Y., Tian, Y., and Feng, Y.:
Characteristics of the main primary source profiles of particulate matter across China from 1987 to 2017, Atmos. Chem. Phys., 19, 3223–3243, https://doi.org/10.5194/acp-19-3223-2019, 2019.
Bie, S. J., Yang, L. X., Zhang, Y., Huang, Q., Li, J. S., Zhao, T., Zhang, X. F., Wang, P. C., and Wang, W. X.:
Source appointment of PM2.5 in Qingdao Port, East of China, Sci. Total Environ., 755, 142456, https://doi.org/10.1016/j.scitotenv.2020.142456, 2021.
Bove, M. C., Brotto, P., Calzolai, G., Cassola, F., Cavalli, F., Fermo, P., Hjorth, J., Massabò, D., Nava, S., Piazzalunga, A., Schembari, C., and Prati, P.:
PM10 source apportionment applying PMF and chemical tracer analysis to ship-borne measurements in the Western Mediterranean, Atmos. Environ., 125, 140–151, https://doi.org/10.1016/j.atmosenv.2015.11.009, 2016.
Brown, S. G., Eberly, S., Paatero, P., and Norris, G. A.:
Methods for estimating uncertainty in PMF solutions: Examples with ambient air and water quality data and guidance on reporting PMF results, Sci. Total Environ., 518, 626–635, https://doi.org/10.1016/j.scitotenv.2015.01.022, 2015.
Carslaw, D. C.:
Worldmet: Import Surface Meteorological Data from NOAA Integrated Surface Database (ISD), http://github.com/davidcarslaw/ (last access: 5 September 2018), 2017.
Chen, J. Y., Shan, M., Xia, J. J., and Jiang, Y.:
Effects of space heating on the pollutant emission intensities in “2 + 26” cities, Building Environ., 175, 106817, https://doi.org/10.1016/j.buildenv.2020.106817, 2020.
Chen, Y., Zhang, S. M., Peng, C., Shi, G. M., Tian, M., Huang, R. J., Guo, D. M., Wang, H. B., Yao, X. J., and Yang, F. M.:
Impact of the COVID-19 pandemic and control measures on air quality and aerosol light absorption in Southwestern China, Sci. Total Environ., 749, 141419, https://doi.org/10.1016/j.scitotenv.2020.141419, 2020.
Chen, X., Wang, H., Lu, K., Li, C., Zhai, T., Tan, Z., Ma, X., Yang, X., Liu, Y., Chen, S., Dong, H., Li, X., Wu, Z., Hu, M., Zeng, L., and Zhang, Y.:
Field Determination of Nitrate Formation Pathway in Winter Beijing, Environ. Sci. Technol., 54, 9243–9253, https://doi.org/10.1021/acs.est.0c00972, 2020.
Cheng, N. L., Cheng, B. F., Li, S. S., and Ning, T. Z.:
Effects of meteorology and emission reduction measures on air pollution in Beijing during heating seasons, Atmos. Pollut. Res., 10, 971–979, https://doi.org/10.1016/j.apr.2019.01.005, 2019.
Choi, J.-K., Heo, J.-B., Ban, S.-J., Yi, S.-M., and Zoh, K.-D.:
Source apportionment of PM2.5 at the coastal area in Korea, Sci. Total Environ., 447, 370–380, https://doi.org/10.1016/j.scitotenv.2012.12.047, 2013.
Chu, B. W., Zhang, S. P., Liu, J., Ma, Q. X., and He, H.:
Significant concurrent decrease in PM2.5 and NO2 concentrations in China during COVID-19 epidemic, J. Environ. Sci., 99, 346–353, https://doi.org/10.1016/j.jes.2020.06.031, 2021.
Cohen, A. J., Brauer, M., Burnett, R., Anderson, H. R., Frostad, J., Estep, K., Balakrishnan, K., Brunekreef, B., Dandona, L., Dandona, R., Feigin, V., Freedman, G., Hubbell, B., Jobling, A., Kan, H., Knibbs, L., Liu, Y., Martin, R., Morawska, L., Pope, C. A., Shin, H., Straif, K., Shaddick, G., Thomas, M., van Dingenen, R., van Donkelaar, A., Vos, T., Murray, C. J. L., and Forouzanfar, M. H.:
Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015, Lancet, 389, 1907–1918, https://doi.org/10.1016/S0140-6736(17)30505-6, 2017.
Collivignarelli, M. C., De Rose, C., Abbà, A., Baldi, M., Bertanza, G., Pedrazzani, R., Sorlini, S., and Carnevale Miino, M.:
Analysis of lockdown for COVID-19 impact on NO2 in London, Milan and Paris: What lesson can be learnt?, Process Saf. Environ., 146, 952–960, https://doi.org/10.1016/j.psep.2020.12.029, 2021.
Cucciniello, R., Raia, L., and Vasca, E.:
Air quality evaluation during COVID-19 in Southern Italy: the case study of Avellino city, Environ. Res., 203, 111803, https://doi.org/10.1016/j.envres.2021.111803, 2022.
Dall'Osto, M., Booth, M. J., Smith, W., Fisher, R., and Harrison, R. M.:
A study of the size distributions and the chemical characterization of airborne particles in the vicinity of a large integrated steelworks, Aerosol Sci. Technol., 42, 981–991, https://doi.org/10.1080/02786820802339587, 2008.
Dai, Q. L., Liu, B. S., Bi, X. H., Wu, J. H., Liang, D. N., Zhang, Y. F., Feng, Y. C., and Hopke, P. K.:
Dispersion Normalized PMF Provides Insights into the Significant Changes in Source Contributions to PM2.5 after the COVID-19 Outbreak, Environ. Sci. Technol., 54, 9917–9927, https://doi.org/10.1021/acs.est.0c02776, 2020.
Dai, Q. L., Ding, J., Hou, L. L., Li, L. X., Cai, Z. Y., Liu, B. S., Song, C. B., Bi, X. H., Wu, J. H., Zhang, Y. F., Feng, Y. C., and Hopke, P. K.:
Haze episodes before and during the COVID-19 shutdown in Tianjin, China: Contribution of fireworks and residential burning, Environ. Pollut., 286, 117252, https://doi.org/10.1016/j.envpol.2021.117252, 2021.
Ding, J., Dai, Q. L., Li, Y. F., Han, S. Q., Zhang, Y. F., and Feng, Y. C.:
Impact of meteorological condition changes on air quality and particulate chemical composition during the COVID-19 lockdown, J. Environ. Sci., 109, 45–56, https://doi.org/10.1016/j.jes.2021.02.022, 2021.
Esmaeilirad, S., Lai, A., Abbaszade, G., Schnelle-Kreis, J., Zimmermann, R., Uzu, G., Daellenbach, K., Canonaco, F., Hassankhany, H., Arhami, M., Baltensperger, U., Prévôt, A. S. H., Schauer, J. J., Jaffrezo, J.-L., Hosseini, V., and El Haddad, I.:
Source apportionment of fine particulate matter in a Middle Eastern Metropolis, Tehran-Iran, using PMF with organic and inorganic markers, Sci. Total Environ., 705, 135330, https://doi.org/10.1016/j.scitotenv.2019.135330, 2020.
Fan, H., Zhao, C. F., and Yang, Y. K.:
A comprehensive analysis of the spatio-temporal variation of urban air pollution in China during 2014–2018, Atmos. Environ., 220, 117066, https://doi.org/10.1016/j.atmosenv.2019.117066, 2020.
Fu, X., Wang, T., Gao, J., Wang, P., Liu, Y. M., Wang, S. X., Zhao, B., and Xue, L. K.:
Persistent Heavy Winter Nitrate Pollution Driven by Increased Photochemical Oxidants in Northern China, Environ. Sci. Technol., 54, 3881–3889, https://doi.org/10.1021/acs.est.9b07248, 2020.
Gao, J., Peng, X., Chen, G., Xu, J., Shi, G. L., Zhang, Y. C., and Feng, Y. C.:
Insights into the chemical characterization and sources of PM2.5 in Beijing at a 1-h time resolution, Sci. Total Environ., 542, 162–171, https://doi.org/10.1016/j.scitotenv.2015.10.082, 2016.
Gao, Y., Shan, H. Y., Zhang, S. Q., Sheng, L. F., Li, J. P., Zhang, J. X., Ma, M. C., Meng, H., Luo, K., Gao, H. W., and Yao, X. H.:
Characteristics and sources of PM2.5 with focus on two severe pollution events in a coastal city of Qingdao, China, Chemosphere, 247, 125861, https://doi.org/10.1016/j.chemosphere.2020.125861, 2020.
Grange, S. K. and Carslaw, D. C.:
Using meteorological normalization to detect interventions in air quality time series, Sci. Total Environ., 653, 578–588, https://doi.org/10.1016/j.scitotenv.2018.10.344, 2019.
Grange, S. K., Carslaw, D. C., Lewis, A. C., Boleti, E., and Hueglin, C.:
Random forest meteorological normalisation models for Swiss PM10 trend analysis, Atmos. Chem. Phys., 18, 6223–6239, https://doi.org/10.5194/acp-18-6223-2018, 2018.
Gong, S. L., Zhang, L., Liu, C., Lu, S. H., Pan, W. J., and Zhang, Y. H.:
Multi-scale analysis of the impacts of meteorology and emissions on PM2.5 and O3 trends at various regions in China from 2013 to 2020 2. Key weather elements and emissions, Sci. Total Environ., 824, 153847, https://doi.org/10.1016/j.scitotenv.2022.153847, 2022.
Gulia, S., Mittal, A., and Khare, M.:
Quantitative evaluation of source interventions for urban air quality improvement – A case study of Delhi city, Atmos. Pollut. Res., 9, 577–583, https://doi.org/10.1016/j.apr.2017.12.003, 2018.
He, G. J., Pan, Y. H., and Tanaka, T.:
The short-term impacts of COVID-19 lockdown on urban air pollution in China, Nat. Sustainability, 3, 1005–1011, https://doi.org/10.1038/s41893-020-0581-y, 2020.
Hong, Y. W., Xu, X. B., Liao, D., Zheng, R. H., Ji, X. T., Chen, Y. T., Xu, L. L., Li, M. R., Wang, H., Xiao, H., Choi, S. D., and Chen, J. S.:
Source apportionment of PM2.5 and sulfate formation during the COVID-19 lockdown in a coastal city of southeast China, Environ. Pollut., 286, 117577, https://doi.org/10.1016/j.envpol.2021.117577, 2021.
Hopke, P. K., Dai, Q. L., Li, L. X., and Feng, Y. C.:
Global review of recent source apportionments for airborne particulate matter, Sci. Total Environ., 740, 140091, https://doi.org/10.1016/j.scitotenv.2020.140091, 2020.
Hou, L. L., Dai, Q. L., Song, C. B., Liu, B., Guo, F. Z., Dai, T. J., Li, L. X., Liu, B. S., Bi, X. H., Zhang, Y. F., and Feng, Y. C.:
Revealing drivers of haze pollution by explainable machine learning, Environ. Sci. Tech. Let., 9, 112–119, https://doi.org/10.1021/acs.estlett.1c00865, 2022.
Huang, H. Y., Liu, B. S., Li, S., Choe, T.-H., Dai, Q. L., Gu, Y., Diao, L. L., Zhang, S. F., Bi, X. H., Luo, Z. W., Lu, M. M., Zhang, Y. F., and Feng, Y. C.:
An estimation method for regional transport contributions from emission sources based on a high-mountain site: a case study in Zhumadian, China, Atmos. Environ., 263, 118664, https://doi.org/10.1016/j.atmosenv.2021.118664, 2021.
Huang, J., Pan, X. C., Guo, X. B., and Li, G. X.:
2018. Health impact of China's Air Pollution Prevention and Control Action Plan: an analysis of national air quality monitoring and mortality data, Lancet Planetary Health, 2, e313–e323, https://doi.org/10.1016/S2542-5196(18)30141-4, 2018.
Huang, R. J., Zhang, Y. L., Bozzetti, C., Ho, K. F., Cao, J. J., Han, Y. M., Daellenbach, K. R., Slowik, J. G., Platt, S. M., Canonaco, F., Zotter, P., Wolf, R., Pieber, S. M., Bruns, E. A., Crippa, M., Ciarelli, G., Piazzalunga, A., Schwikowski, M., Abbaszade, G., Schnelle-Kreis, J., Zimmermann, R., An, Z. S., Szidat, S., Baltensperger, U., El Haddad, I., and Prevot, A. S. H.:
High secondary aerosol contribution to particulate pollution during haze events in China, Nature, 514, 218–222, https://doi.org/10.1038/nature13774, 2014.
Huang, X., Liu, Z., Liu, J., Hu, B., Wen, T., Tang, G., Zhang, J., Wu, F., Ji, D., Wang, L., and Wang, Y.:
Chemical characterization and source identification of PM2.5 at multiple sites in the Beijing–Tianjin–Hebei region, China, Atmos. Chem. Phys., 17, 12941–12962, https://doi.org/10.5194/acp-17-12941-2017, 2017.
Iyer, U. S. and Raj, P. E.:
Ventilation coefficient trends in the recent decades over four major Indian metropolitan cities, J. Earth Syst. Sci., 122, 537–549, https://doi.org/10.1007/s12040-013-0270-6, 2013.
Jain, S., Sharma, S. K., Mandal, T. K., and Saxena, M.:
Source apportionment of PM10 in Delhi, India using PCA/APCS, UNMIX and PMF, Particuology, 37, 107–118, https://doi.org/10.1016/j.partic.2017.05.009, 2018.
Jain, S., Sharma, S. K., Vijayan, N., and Mandal, T. K.:
Seasonal characteristics of aerosols (PM2.5 and PM10) and their source apportionment using PMF: A four year study over Delhi, India, Environ. Pollut., 262, 114337, https://doi.org/10.1016/j.envpol.2020.114337, 2020.
Jiang, X., Li, G. L., and Fu, W.:
Government environmental governance, structural adjustment and air quality: A quasi-natural experiment based on the Three-year Action Plan to Win the Blue Sky Defense War, J. Environ. Manage., 277, 111470, https://doi.org/10.1016/j.jenvman.2020.111470, 2021.
Joshi, P., Ghosh, S., Dey, S., Dixit, K., Choudhary, R. K., Salve, H. R., and Balakrishnan, K.:
Impact of acute exposure to ambient PM2.5 on non-trauma all-cause mortality in the megacity Delhi, Atmos. Environ., 259, 118548, https://doi.org/10.1016/j.atmosenv.2021.118548, 2021.
Kleinman, M. T., Kneip, T. J., and Eisenbud, M.:
Seasonal patterns of airborne particulate concentrations in New York City, Atmos. Environ. (1967), 10, 9–11, https://doi.org/10.1016/0004-6981(76)90252-3, 1976.
Kuo, S.-C., Hsieh, L.-Y., Tsai, C.-H., and Tsai, Y. I.:
Characterization of PM2.5 fugitive metal in the workplaces and the surrounding environment of a secondary aluminum smelter, Atmos. Environ., 41, 6884–6900, https://doi.org/10.1016/j.atmosenv.2007.04.038, 2007.
Le, T. H., Wang, Y., Liu, L., Yang, J. N., Yung, Y. L., Li, G. H., and Seinfeld, J. H.:
Unexpected air pollution with marked emission reductions during the COVID-19 outbreak in China, Science, 369, 702, https://doi.org/10.1126/science.abb7431, 2020.
Li, H., You, S. J., Zhang, H., Zheng, W. D., and Zou, L. J.:
Analysis of the impacts of heating emissions on the environment and human health in North China, J. Clean Prod., 207, 728–742, https://doi.org/10.1016/j.jclepro.2018.10.013, 2019.
Li, K., Jacob, D. J., Liao, H., Zhu, J., Shah, V., Shen, L., Bates, K. H., Zhang, Q., and Zhai, S. X.:
A two-pollutant strategy for improving ozone and particulate air quality in China, Nat. Geosci., 12, 906–910, https://doi.org/10.1038/s41561-019-0464-x, 2019.
Li, K., Jacob, D. J., Shen, L., Lu, X., De Smedt, I., and Liao, H.:
Increases in surface ozone pollution in China from 2013 to 2019: anthropogenic and meteorological influences, Atmos. Chem. Phys., 20, 11423–11433, https://doi.org/10.5194/acp-20-11423-2020, 2020.
Li, L. Y., Yan, D. Y., Xu, S. H., Huang, M. L., Wang, X. X., and Xie, S. D.:
Characteristics and source distribution of air pollution in winter in Qingdao, eastern China, Environ. Pollut., 224, 44–53, https://doi.org/10.1016/j.envpol.2016.12.037, 2017.
Li, W. J., Shao, L. Y., Wang, W. H., Li, H., Wang, X. M., Li, Y. W., Li, W. J., Jones, T., and Zhang, D. Z.:
Air quality improvement in response to intensified control strategies in Beijing during 2013–2019, Sci. Total Environ., 744, 140776, https://doi.org/10.1016/j.scitotenv.2020.140776, 2020.
Li, Y., Miao, Y. C., Che, H. Z., and Liu, S. H.:
On the heavy aerosol pollution and its meteorological dependence in Shandong province, China, Atmos. Res., 256, 105572, https://doi.org/10.1016/j.atmosres.2021.105572, 2021a.
Li, Y., Xu, H. X., Tang, K. Y., Lau, A. K. H., Fung, J. C. H., and Zhang, X. G.:
An ensemble assessment of the effectiveness of vehicular emission control programs for air quality improvement in Hong Kong, Atmos. Environ., 262, 118571, https://doi.org/10.1016/j.atmosenv.2021.118571, 2021b.
Liang, X., Li, S., Zhang, S. Y., Huang, H., and Chen, S. X.:
PM2.5 data reliability, consistency, and air quality assessment in five Chinese cities, J. Geophys. Res.-Atmos., 121, 10220–10236, https://doi.org/10.1002/2016JD024877, 2016.
Liu, B. S., Song, N., Dai, Q. L., Mei, R. B., Sui, B. H., Bi, X. H., and Feng, Y. C.:
Chemical composition and source apportionment of ambient PM2.5 during the non-heating period in Taian, China, Atmos. Res., 170, 23–33, https://doi.org/10.1016/j.atmosres.2015.11.002, 2016.
Liu, B., Cheng, Y., Zhou, M., Liang, D., Dai, Q., Wang, L., Jin, W., Zhang, L., Ren, Y., Zhou, J., Dai, C., Xu, J., Wang, J., Feng, Y., and Zhang, Y.:
Effectiveness evaluation of temporary emission control action in 2016 in winter in Shijiazhuang, China, Atmos. Chem. Phys., 18, 7019–7039, https://doi.org/10.5194/acp-18-7019-2018, 2018.
Liu, B. S., Wu, J. H., Wang, J., Shi, L. Y., Meng, H., Dai, Q. L., Wang, J., Song, C. B., Zhang, Y. F., Feng, Y. C., and Hopke, P. K.:
Chemical characteristics and sources of ambient PM2.5 in a harbor area: Quantification of health risks to workers from source-specific selected toxic elements, Environ. Pollut., 268, 115926, https://doi.org/10.1016/j.envpol.2020.115926, 2021.
Liu, C., Xu, R., Zhang, T. H., Zhang, H. D., Zhang, B. H., Cong, C. H., and Wu, J. Y.:
Analysis of Ozone Pollution Characteristics and Its Sources During the Shanghai Cooperation Organization Summit in Qingdao, Meteor. Environ. Sci., 43, 51–58, https://doi.org/10.16765/j.cnki.1673-7148.2020.03.007, 2020a (in Chinese).
Liu, C., Zhang, H. D., Zhang, T. H., Xu, R., Zhang, B. H., Lu, M. Y., and Li, G. H.:
The causes of ozone concentration growth in the night during the “Shanghai Cooperation Organization Summit” in Qingdao, China Environ. Sci., 40, 3332–3341, https://doi.org/10.19674/j.cnki.issn1000-6923.2020.0372, 2020b (in Chinese).
Liu, F., Beirle, S., Zhang, Q., van der A, R. J., Zheng, B., Tong, D., and He, K.:
NOx emission trends over Chinese cities estimated from OMI observations during 2005 to 2015, Atmos. Chem. Phys., 17, 9261–9275, https://doi.org/10.5194/acp-17-9261-2017, 2017.
Liu, M., Huang, Y., Ma, Z., Jin, Z., Liu, X., Wang, H., Liu, Y., Wang, J., Jantunen, M., Bi, J. and Kinney, P. L.:
Spatial and temporal trends in the mortality burden of air pollution in China: 2004–2012, Environ. Int., 98, 75–81, https://doi.org/10.1016/j.envint.2016.10.003, 2017.
Liu, W. J., Xu, Y. S., Liu, W. X., Liu, Q. Y., Yu, S. Y., Liu, Y., Wang, X., and Tao, S.:
Oxidative potential of ambient PM2.5 in the coastal cities of the Bohai Sea, northern China: Seasonal variation and source apportionment, Environ. Pollut., 236, 514–528, https://doi.org/10.1016/j.envpol.2018.01.116, 2018.
Lyu, X. P., Zeng, L. W., Guo, H., Simpson, I. J., Ling, Z. H., Wang, Y., Murray, F., Louie, P. K. K., Saunders, S. M., Lam, S. H. M., and Blake, D. R.:
Evaluation of the effectiveness of air pollution control measures in Hong Kong, Environ. Pollut., 220, 87–94, https://doi.org/10.1016/j.envpol.2016.09.025, 2017.
Ma, X. W., Li, C. D., Dong, X. Y., and Liao, H.:
Empirical analysis on the effectiveness of air quality control measures during mega events: Evidence from Beijing, China, J. Clean Prod., 271, 122536, https://doi.org/10.1016/j.jclepro.2020.122536, 2020.
Ma, X., Huang, J., Zhao, T., Liu, C., Zhao, K., Xing, J., and Xiao, W.:
Rapid increase in summer surface ozone over the North China Plain during 2013–2019: a side effect of particulate matter reduction control?, Atmos. Chem. Phys., 21, 1–16, https://doi.org/10.5194/acp-21-1-2021, 2021.
Masiol, M., Squizzato, S., Rich, D. Q., and Hopke, P. K.:
Long-term trends (2005–2016) of source apportioned PM2.5 across New York State, Atmos. Environ., 201, 110–120, https://doi.org/10.1016/j.atmosenv.2018.12.038, 2019.
Meng, Z. Y., Ding, G. A., Xu, X. B., Xu, X. D., Yu, H. Q., and Wang, S. F.:
Vertical distributions of SO2 and NO2 in the lower atmosphere in Beijing urban areas, China, Sci. Total Environ., 390, 456–465, https://doi.org/10.1016/j.scitotenv.2007.10.012, 2008.
Munir, S., Chen, H. B., and Ropkins, K.:
Quantifying temporal trends in ground level ozone concentration in the UK, Sci. Total Environ., 458–460, 217–227, https://doi.org/10.1016/j.scitotenv.2013.04.045, 2013.
Nøjgaard, J. K., Nguyen, Q. T., Glasius, M., and Sørensen, L. L.:
Nucleation and Aitken mode atmospheric particles in relation to O3 and NOx at semirural background in Denmark, Atmos. Environ., 49, 275–283, https://doi.org/10.1016/j.atmosenv.2011.11.040, 2012.
Nirel, R. and Dayan, U.:
On the Ratio of Sulfur Dioxide to Nitrogen Oxides as an Indicator of Air Pollution Sources, J. Appl. Meteorol., 40, 1209–1222, https://doi.org/10.1175/1520-0450(2001)040<1209:OTROSD>2.0.CO;2, 2001.
Paatero, P. and Tapper, U.:
Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values, Environmetrics, 5, 111–126, https://doi.org/10.1002/env.3170050203, 1994.
Police, S., Sahu, S. K., and Pandit, G. G.:
Chemical characterization of atmospheric particulate matter and their source apportionment at an emerging industrial coastal city, Visakhapatnam, India, Atmos. Pollut. Res., 7, 725–733, https://doi.org/10.1016/j.apr.2016.03.007, 2016.
Pugliese, S. C., Murphy, J. G., Geddes, J. A., and Wang, J. M.:
The impacts of precursor reduction and meteorology on ground-level ozone in the Greater Toronto Area, Atmos. Chem. Phys., 14, 8197–8207, https://doi.org/10.5194/acp-14-8197-2014, 2014.
Qi, L., Zhang, Y. F., Ma, Y. H., Chen, M. D., Ge, X. L., Ma, Y., Zheng, J., Wang, Z., and Li, S. Z.:
Source identification of trace elements in the atmosphere during the second Asian Youth Games in Nanjing, China: Influence of control measures on air quality, Atmos. Pollut. Res., 7, 547–556, https://doi.org/10.1016/j.apr.2016.01.003, 2016.
Querol, X., Viana, M., Alastuey, A., Amato, F., Moreno, T., Castillo, S., Pey, J., de la Rosa, J., Sánchez de la Campa, A., Artíñano, B., Salvador, P., García Dos Santos, S., Fernández-Patier, R., Moreno-Grau, S., Negral, L., Minguillón, M. C., Monfort, E., Gil, J. I., Inza, A., Ortega, L. A., Santamaría, J. M., and Zabalza, J.:
Source origin of trace elements in PM from regional background, urban and industrial sites of Spain, Atmos. Environ., 41, 7219–7231, https://doi.org/10.1016/j.atmosenv.2007.05.022, 2007.
Ryou, H. G., Heo, J., and Kim, S. Y.:
Source apportionment of PM10 and PM2.5 air pollution, and possible impacts of study characteristics in South Korea, Environ. Pollut., 240, 963–972, https://doi.org/10.1016/j.envpol.2018.03.066, 2018.
Sen, P. K.:
Estimates of the Regression Coefficient Based on Kendall's Tau AU – Sen, Pranab Kumar, J. Am. Stat. Assoc., 63, 1379–1389, https://doi.org/10.1080/01621459.1968.10480934, 1968.
Schleicher, N., Norra, S., Chen, Y., Chai, F., and Wang, S.:
Efficiency of mitigation measures to reduce particulate air pollution—A case study during the Olympic Summer Games 2008 in Beijing, China, Sci. Total Environ., 427–428, 146–158, https://doi.org/10.1016/j.scitotenv.2012.04.004, 2012.
Shi, Z. B., Song, C. B., Liu, B. W., Lu, G. D., Xu, J. S., Vu, T. V., Elliott, R. J. R., Li, W. J., Bloss, W. J., and Harrison, R. M.:
Abrupt but smaller than expected changes in surface air quality attributable to COVID-19 lockdowns, Sci Adv., 7, eabd6696, https://doi.org/10.1126/sciadv.abd6696, 2021.
Song, L. L., Dai, Q. L., Feng, Y. C., and Hopke, P. K.:
Estimating uncertainties of source contributions to PM2.5 using moving window evolving dispersion normalized PMF, Environ. Pollut., 286, 117576, https://doi.org/10.1016/j.envpol.2021.117576, 2021.
Tian, Y. Z., Wang, J., Peng, X., Shi, G. L., and Feng, Y. C.:
Estimation of the direct and indirect impacts of fireworks on the physicochemical characteristics of atmospheric PM10 and PM2.5, Atmos. Chem. Phys., 14, 9469–9479, https://doi.org/10.5194/acp-14-9469-2014, 2014.
Tsai, D. H., Wang, J. L., Chuang, K. J., and Chan, C. C.:
Traffic-related air pollution and cardiovascular mortality in central Taiwan, Sci. Total Environ., 408, 1818–1823, https://doi.org/10.1016/j.scitotenv.2010.01.044, 2010.
Viana, M., Kuhlbusch, T. A. J., Querol, X., Alastuey, A., Harrison, R. M., Hopke, P. K., Winiwarter, W., Vallius, M., Szidat, S., Prévôt, A. S. H., Hueglin, C., Bloemen, H., Wåhlin, P., Vecchi, R., Miranda, A. I., Kasper-Giebl, A., Maenhaut, W., and Hitzenberger, R.:
Source apportionment of particulate matter in Europe: A review of methods and results, J. Aerosol Sci., 39, 827–849, https://doi.org/10.1016/j.jaerosci.2008.05.007, 2008.
Vodonos, A. and Schwartz, J.:
Estimation of excess mortality due to long-term exposure to PM2.5 in continental United States using a high-spatiotemporal resolution model, Environ. Res., 196, 110904, https://doi.org/10.1016/j.envres.2021.110904, 2021.
Vu, T. V., Shi, Z., Cheng, J., Zhang, Q., He, K., Wang, S., and Harrison, R. M.:
Assessing the impact of clean air action on air quality trends in Beijing using a machine learning technique, Atmos. Chem. Phys., 19, 11303–11314, https://doi.org/10.5194/acp-19-11303-2019, 2019.
Wang, H. L., Miao, Q., Shen, L. J., Yang, Q., Wu, Y. Z., and Wei, H.:
Air pollutant variations in Suzhou during the 2019 novel coronavirus (COVID-19) lockdown of 2020: High time-resolution measurements of aerosol chemical compositions and source apportionment, Environ. Pollut., 271, 116298, https://doi.org/10.1016/j.envpol.2020.116298, 2021.
Wang, S. X., Xing, J., Zhao, B., Jang, C., and Hao, J. M.:
Effectiveness of national air pollution control policies on the air quality in metropolitan areas of China, J. Environ. Sci., 26, 13–22, https://doi.org/10.1016/S1001-0742(13)60381-2, 2014.
Wang, Y., Xue, Y. F., Tian, H. Z., Gao, J., Chen, Y., Zhu, C. Y., Liu, H. J., Wang, K., Hua, S. B., Liu, S. H., and Shao, P. Y.:
Effectiveness of temporary control measures for lowering PM2.5 pollution in Beijing and the implications, Atmos. Environ., 157, 75–83, https://doi.org/10.1016/j.atmosenv.2017.03.017, 2017.
Wang, Y. Q., Zhang, X. Y., and Draxler, R.:
TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data, Environ. Model. Softw., 24, 938–939, https://doi.org/10.1016/j.envsoft.2009.01.004, 2009.
Wang, Y. Y., Liu, B. S., Zhang, Y. F., Dai, Q. L., Song, C. B., Duan, L. Q., Guo, L. L., Zhao, J., Xue, Z. G., Bi, X. H., and Feng, Y. C.:
Potential health risks of inhaled toxic elements and risk sources during different COVID-19 lockdown stages in Linfen, China, Environ. Pollut., 284, 117454, https://doi.org/10.1016/j.envpol.2021.117454, 2021.
Xu, H., Xiao, Z. M., Chen, K., Tang, M., Zheng, N. Y., Li, P., Yang, N., Yang, W., and Deng, X. W.:
Spatial and temporal distribution, chemical characteristics, and sources of ambient particulate matter in the Beijing–Tianjin–Hebei region, Sci. Total Environ., 658, 280–293, https://doi.org/10.1016/j.scitotenv.2018.12.164, 2019.
Xu, L. L., Jiao, L., Hong, Z. Y., Zhang, Y. R., Du, W. J., Wu, X., Chen, Y. T., Deng, J. J., Hong, Y. W., and Chen, J. S.:
Source identification of PM2.5 at a port and an adjacent urban site in a coastal city of China: Impact of ship emissions and port activities, Sci. Total Environ., 634, 1205–1213, https://doi.org/10.1016/j.scitotenv.2018.04.087, 2018.
Xu, M., Qin, Z. F., Zhang, S. H., and Xie, Y.:
Health and economic benefits of clean air policies in China: A case study for Beijing–Tianjin–Hebei region, Environ. Pollut., 285, 117525, https://doi.org/10.1016/j.envpol.2021.117525, 2021.
Xu, W., Liu, X. J., Liu, L., Dore, A. J., Tang, A., Lu, L., Wu, Q. H., Zhang, Y. Y., Hao, T. X., Pan, Y. P., Chen, J. M., and Zhang, F. S.:
Impact of emission controls on air quality in Beijing during APEC 2014: Implications from water-soluble ions and carbonaceous aerosol in PM2.5 and their precursors, Atmos. Environ., 210, 241–252, https://doi.org/10.1016/j.atmosenv.2019.04.050, 2019.
Yin, H., Liu, C., Hu, Q. H., Liu, T., Wang, S., Gao, M., Xu, S. Q., Zhang, C. X., and Su, W. J.:
Opposite impact of emission reduction during the COVID-19 lockdown period on the surface concentrations of PM2.5 and O3 in Wuhan, China, Environ. Pollut., 289, 117899, https://doi.org/10.1016/j.envpol.2021.117899, 2021.
Yang, S., Duan, F., Ma, Y., Li, H., Ma, T., Zhu, L., Huang, T., Kimoto, T., and He, K.:
Mixed and intensive haze pollution during the transition period between autumn and winter in Beijing, China, Sci. Total Environ., 711, 134745, https://doi.org/10.1016/j.scitotenv.2019.134745, 2020.
Yu, M. F., Zhu, Y., Lin, C. J., Wang, S. X., Xing, J., Jang, C., Huang, J. Z., Huang, J. Y., Jin, J. B., and Yu, L.:
Effects of air pollution control measures on air quality improvement in Guangzhou, China, J. Environ. Manage., 244, 127–137, https://doi.org/10.1016/j.jenvman.2019.05.046, 2019.
Zhai, S., Jacob, D. J., Wang, X., Shen, L., Li, K., Zhang, Y., Gui, K., Zhao, T., and Liao, H.:
Fine particulate matter (PM2.5) trends in China, 2013–2018: separating contributions from anthropogenic emissions and meteorology, Atmos. Chem. Phys., 19, 11031–11041, https://doi.org/10.5194/acp-19-11031-2019, 2019.
Zhang, D. Z., Shi, G. Y., Iwasaka, Y., Hu, M., and Zang, J. Y.:
Anthropogenic Calcium Particles Observed in Beijing and Qingdao, China, Water Air Soil Poll.:
Focus, 5, 261–276, https://doi.org/10.1007/s11267-005-0743-y, 2005.
Zhang, Q., He, K. B., and Huo, H.:
Cleaning China's air, Nature, 484, 161–162, https://doi.org/10.1038/484161a, 2012.
Zhang, Q., Zheng, Y. X., Tong, D., Shao, M., Wang, S. X., Zhang, Y. H., Xu, X. D., Wang, J. N., He, H., Liu, W. Q., Ding, Y. H., Lei, Y., Li, J. H., Wang, Z. F., Zhang, X. Y., Wang, Y. S., Cheng, J., Liu, Y., Shi, Q. R., Yan, L., Geng, G. N., Hong, C. P., Li, M., Liu, F., Zheng, B., Cao, J. J., Ding, A. J., Gao, J., Fu, Q. Y., Huo, J. T., Liu, B. X., Liu, Z. R., Yang, F. M., He, K. B., and Hao, J. M.:
Drivers of improved PM2.5 air quality in China from 2013 to 2017, P. Natl. Acad. Sci USA, 116, 24463–24469, https://doi.org/10.1073/pnas.1907956116, 2019.
Zhang, Y., Yang, L. X., Bie, S. J., Zhao, T., Huang, Q., Li, J. S., Wang, P. C., Wang, Y. M., and Wang, W. X.:
Chemical compositions and the impact of sea salt in atmospheric PM1 and PM2.5 in the coastal area, Atmos. Res., 250, 105323, https://doi.org/10.1016/j.atmosres.2020.105323, 2021.
Zhao, C. K., Sun, Y., Zhong, Y. P., Xu, S. H., Liang, Y., Liu, S., He, X. D., Zhu, J. H., Shibamoto, T., and He, M.:
Spatio-temporal analysis of urban air pollutants throughout China during 2014–2019, Air Qual. Atmos. Hlth., 14, 1619–1632, https://doi.org/10.1007/s11869-021-01043-5, 2021.
Zhao, S., Tian, H. Z., Luo, L. N., Liu, H. J., Wu, B. B., Liu, S. H., Bai, X. X., Liu, W., Liu, X. Y., Wu, Y. M., Lin, S. M., Guo, Z. H., Lv, Y. Q., and Xue, Y. F.:
Temporal variation characteristics and source apportionment of metal elements in PM2.5 in urban Beijing during 2018–2019, Environ. Pollut., 268, 115856, https://doi.org/10.1016/j.envpol.2020.115856, 2021.
Zong, Z., Wang, X. P., Tian, C. G., Chen, Y. J., Fu, S. F., Qu, L., Ji, L., Li, J., and Zhang, G.:
PMF and PSCF based source apportionment of PM2.5 at a regional background site in North China, Atmos. Res., 203, 207–215, https://doi.org/10.1016/j.atmosres.2017.12.013, 2018.
Short summary
Understanding effectiveness of air pollution regulatory measures is critical for control policy. Machine learning and dispersion-normalized approaches were applied to decouple meteorologically deduced variations in Qingdao, China. Most pollutant concentrations decreased substantially after the Clean Air Action Plan. The largest emission reduction was from coal combustion and steel-related smelting. Qingdao is at risk of increased emissions from increased vehicular population and ozone pollution.
Understanding effectiveness of air pollution regulatory measures is critical for control policy....
Altmetrics
Final-revised paper
Preprint