Articles | Volume 22, issue 13
Atmos. Chem. Phys., 22, 8597–8615, 2022
https://doi.org/10.5194/acp-22-8597-2022
Atmos. Chem. Phys., 22, 8597–8615, 2022
https://doi.org/10.5194/acp-22-8597-2022
Research article
05 Jul 2022
Research article | 05 Jul 2022

Dramatic changes in atmospheric pollution source contributions for a coastal megacity in northern China from 2011 to 2020

Baoshuang Liu et al.

Related authors

The underappreciated impact of emission source profiles on the simulation of PM2.5 components: New evidence from sensitivity analysis
Zhongwei Luo, Yan Han, Kun Hua, Yufen Zhang, Jianhui Wu, Xiaohui Bi, Qili Dai, Baoshuang Liu, Yang Chen, Xin Long, and Yinchang Feng
EGUsphere, https://doi.org/10.5194/egusphere-2022-895,https://doi.org/10.5194/egusphere-2022-895, 2022
Short summary
Effectiveness evaluation of temporary emission control action in 2016 in winter in Shijiazhuang, China
Baoshuang Liu, Yuan Cheng, Ming Zhou, Danni Liang, Qili Dai, Lu Wang, Wei Jin, Lingzhi Zhang, Yibin Ren, Jingbo Zhou, Chunling Dai, Jiao Xu, Jiao Wang, Yinchang Feng, and Yufen Zhang
Atmos. Chem. Phys., 18, 7019–7039, https://doi.org/10.5194/acp-18-7019-2018,https://doi.org/10.5194/acp-18-7019-2018, 2018

Related subject area

Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
African smoke particles act as cloud condensation nuclei in the wintertime tropical North Atlantic boundary layer over Barbados
Haley M. Royer, Mira L. Pöhlker, Ovid Krüger, Edmund Blades, Peter Sealy, Nurun Nahar Lata, Zezhen Cheng, Swarup China, Andrew P. Ault, Patricia K. Quinn, Paquita Zuidema, Christopher Pöhlker, Ulrich Pöschl, Meinrat Andreae, and Cassandra J. Gaston
Atmos. Chem. Phys., 23, 981–998, https://doi.org/10.5194/acp-23-981-2023,https://doi.org/10.5194/acp-23-981-2023, 2023
Short summary
Measurement report: Changes in light absorption and molecular composition of water-soluble humic-like substances during a winter haze bloom-decay process in Guangzhou, China
Chunlin Zou, Tao Cao, Meiju Li, Jianzhong Song, Bin Jiang, Wanglu Jia, Jun Li, Xiang Ding, Zhiqiang Yu, Gan Zhang, and Ping'an Peng
Atmos. Chem. Phys., 23, 963–979, https://doi.org/10.5194/acp-23-963-2023,https://doi.org/10.5194/acp-23-963-2023, 2023
Short summary
Varying chiral ratio of pinic acid enantiomers above the Amazon rainforest
Denis Leppla, Nora Zannoni, Leslie Kremper, Jonathan Williams, Christopher Pöhlker, Marta Sá, Maria Christina Solci, and Thorsten Hoffmann
Atmos. Chem. Phys., 23, 809–820, https://doi.org/10.5194/acp-23-809-2023,https://doi.org/10.5194/acp-23-809-2023, 2023
Short summary
Impact of aging on the sources, volatility, and viscosity of organic aerosols in Chinese outflows
Tingting Feng, Yingkun Wang, Weiwei Hu, Ming Zhu, Wei Song, Wei Chen, Yanyan Sang, Zheng Fang, Wei Deng, Hua Fang, Xu Yu, Cheng Wu, Bin Yuan, Shan Huang, Min Shao, Xiaofeng Huang, Lingyan He, Young Ro Lee, Lewis Gregory Huey, Francesco Canonaco, Andre S. H. Prevot, and Xinming Wang
Atmos. Chem. Phys., 23, 611–636, https://doi.org/10.5194/acp-23-611-2023,https://doi.org/10.5194/acp-23-611-2023, 2023
Short summary
Biogenic and anthropogenic sources of isoprene and monoterpenes and their secondary organic aerosol in Delhi, India
Daniel J. Bryant, Beth S. Nelson, Stefan J. Swift, Sri Hapsari Budisulistiorini, Will S. Drysdale, Adam R. Vaughan, Mike J. Newland, James R. Hopkins, James M. Cash, Ben Langford, Eiko Nemitz, W. Joe F. Acton, C. Nicholas Hewitt, Tuhin Mandal, Bhola R. Gurjar, Shivani, Ranu Gadi, James D. Lee, Andrew R. Rickard, and Jacqueline F. Hamilton
Atmos. Chem. Phys., 23, 61–83, https://doi.org/10.5194/acp-23-61-2023,https://doi.org/10.5194/acp-23-61-2023, 2023
Short summary

Cited articles

Alexander, B., Sherwen, T., Holmes, C. D., Fisher, J. A., Chen, Q., Evans, M. J., and Kasibhatla, P.: Global inorganic nitrate production mechanisms: comparison of a global model with nitrate isotope observations, Atmos. Chem. Phys., 20, 3859–3877, https://doi.org/10.5194/acp-20-3859-2020, 2020. 
Begum, B. A., Biswas, S. K., and Hopke, P. K.: Key issues in controlling air pollutants in Dhaka, Bangladesh, Atmos. Environ., 45, 7705–7713, https://doi.org/10.1016/j.atmosenv.2010.10.022, 2011. 
Beloconi, A., Probst-Hensch, N. M., and Vounatsou, P.: Spatio-temporal modelling of changes in air pollution exposure associated to the COVID-19 lockdown measures across Europe, Sci. Total Environ., 787, 147607, https://doi.org/10.1016/j.scitotenv.2021.147607, 2021. 
Bi, X., Dai, Q., Wu, J., Zhang, Q., Zhang, W., Luo, R., Cheng, Y., Zhang, J., Wang, L., Yu, Z., Zhang, Y., Tian, Y., and Feng, Y.: Characteristics of the main primary source profiles of particulate matter across China from 1987 to 2017, Atmos. Chem. Phys., 19, 3223–3243, https://doi.org/10.5194/acp-19-3223-2019, 2019. 
Bie, S. J., Yang, L. X., Zhang, Y., Huang, Q., Li, J. S., Zhao, T., Zhang, X. F., Wang, P. C., and Wang, W. X.: Source appointment of PM2.5 in Qingdao Port, East of China, Sci. Total Environ., 755, 142456, https://doi.org/10.1016/j.scitotenv.2020.142456, 2021. 
Download
Short summary
Understanding effectiveness of air pollution regulatory measures is critical for control policy. Machine learning and dispersion-normalized approaches were applied to decouple meteorologically deduced variations in Qingdao, China. Most pollutant concentrations decreased substantially after the Clean Air Action Plan. The largest emission reduction was from coal combustion and steel-related smelting. Qingdao is at risk of increased emissions from increased vehicular population and ozone pollution.
Altmetrics
Final-revised paper
Preprint