Articles | Volume 22, issue 2
Atmos. Chem. Phys., 22, 823–845, 2022
https://doi.org/10.5194/acp-22-823-2022
Atmos. Chem. Phys., 22, 823–845, 2022
https://doi.org/10.5194/acp-22-823-2022
Research article
18 Jan 2022
Research article | 18 Jan 2022

Box model trajectory studies of contrail formation using a particle-based cloud microphysics scheme

Andreas Bier et al.

Related authors

On numerical broadening of particle-size spectra: a condensational growth study using PyMPDATA 1.0
Michael A. Olesik, Jakub Banaśkiewicz, Piotr Bartman, Manuel Baumgartner, Simon Unterstrasser, and Sylwester Arabas
Geosci. Model Dev., 15, 3879–3899, https://doi.org/10.5194/gmd-15-3879-2022,https://doi.org/10.5194/gmd-15-3879-2022, 2022
Short summary
Collisional growth in a particle-based cloud microphysical model: insights from column model simulations using LCM1D (v1.0)
Simon Unterstrasser, Fabian Hoffmann, and Marion Lerch
Geosci. Model Dev., 13, 5119–5145, https://doi.org/10.5194/gmd-13-5119-2020,https://doi.org/10.5194/gmd-13-5119-2020, 2020
Short summary
Contrails and their impact on shortwave radiation and photovoltaic power production – a regional model study
Simon Gruber, Simon Unterstrasser, Jan Bechtold, Heike Vogel, Martin Jung, Henry Pak, and Bernhard Vogel
Atmos. Chem. Phys., 18, 6393–6411, https://doi.org/10.5194/acp-18-6393-2018,https://doi.org/10.5194/acp-18-6393-2018, 2018
Short summary
Collection/aggregation algorithms in Lagrangian cloud microphysical models: rigorous evaluation in box model simulations
Simon Unterstrasser, Fabian Hoffmann, and Marion Lerch
Geosci. Model Dev., 10, 1521–1548, https://doi.org/10.5194/gmd-10-1521-2017,https://doi.org/10.5194/gmd-10-1521-2017, 2017
Short summary
Properties of young contrails – a parametrisation based on large-eddy simulations
Simon Unterstrasser
Atmos. Chem. Phys., 16, 2059–2082, https://doi.org/10.5194/acp-16-2059-2016,https://doi.org/10.5194/acp-16-2059-2016, 2016
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Influences of an entrainment–mixing parameterization on numerical simulations of cumulus and stratocumulus clouds
Xiaoqi Xu, Chunsong Lu, Yangang Liu, Shi Luo, Xin Zhou, Satoshi Endo, Lei Zhu, and Yuan Wang
Atmos. Chem. Phys., 22, 5459–5475, https://doi.org/10.5194/acp-22-5459-2022,https://doi.org/10.5194/acp-22-5459-2022, 2022
Short summary
Investigation of ice cloud modeling capabilities for the irregularly shaped Voronoi ice scattering models in climate simulations
Ming Li, Husi Letu, Yiran Peng, Hiroshi Ishimoto, Yanluan Lin, Takashi Y. Nakajima, Anthony J. Baran, Zengyuan Guo, Yonghui Lei, and Jiancheng Shi
Atmos. Chem. Phys., 22, 4809–4825, https://doi.org/10.5194/acp-22-4809-2022,https://doi.org/10.5194/acp-22-4809-2022, 2022
Short summary
Assessing the potential for simplification in global climate model cloud microphysics
Ulrike Proske, Sylvaine Ferrachat, David Neubauer, Martin Staab, and Ulrike Lohmann
Atmos. Chem. Phys., 22, 4737–4762, https://doi.org/10.5194/acp-22-4737-2022,https://doi.org/10.5194/acp-22-4737-2022, 2022
Short summary
Technical note: Parameterising cloud base updraft velocity of marine stratocumuli
Jaakko Ahola, Tomi Raatikainen, Muzaffer Ege Alper, Jukka-Pekka Keskinen, Harri Kokkola, Antti Kukkurainen, Antti Lipponen, Jia Liu, Kalle Nordling, Antti-Ilari Partanen, Sami Romakkaniemi, Petri Räisänen, Juha Tonttila, and Hannele Korhonen
Atmos. Chem. Phys., 22, 4523–4537, https://doi.org/10.5194/acp-22-4523-2022,https://doi.org/10.5194/acp-22-4523-2022, 2022
Short summary
Radiative and microphysical responses of clouds to an anomalous increase in fire particles over the Maritime Continent in 2015
Azusa Takeishi and Chien Wang
Atmos. Chem. Phys., 22, 4129–4147, https://doi.org/10.5194/acp-22-4129-2022,https://doi.org/10.5194/acp-22-4129-2022, 2022
Short summary

Cited articles

Agarwal, A., Speth, R., Fritz, T., Jacob, S., Rindlisbacher, T., Iovinelli, R., Owen, B., Miake-Lye, R., Sabnis, J., and Barrett, S.: SCOPE11 method for estimating aircraft black carbon mass and particle number emissions, Environ. Sci. Technol., 53, 1364–1373, https://doi.org/10.1021/acs.est.8b04060, 2019. a
Anderson, E. B., Cofer, R. W., Bagwell, D. R., Barrick, J. W., Hudgins, C. H., and Brunke, K. E.: Airborne observations of aircraft aerosol emissions 1,Total nonvolatile particle emission indices, Geophys. Res. Lett., 25, 1689–1692, 1998. a
Barrett, J. C. and Clement, C. F.: Growth rates for liquid drops, J. Aerosol Sci., 19, 223–242, https://doi.org/10.1016/0021-8502(88)90225-X, 1988. a
Bier, A. and Burkhardt, U.: Variability in Contrail Ice Nucleation and Its Dependence on Soot Number Emissions, J. Geophys. Res., 124, 3384–3400, https://doi.org/10.1029/2018JD029155, 2019. a, b, c, d
Bier, A., Burkhardt, U., and Bock, L.: Synoptic Control of Contrail Cirrus Life Cycles and Their Modification Due to Reduced Soot Number Emissions, J. Geophys. Res., 122, 11584–11603, https://doi.org/10.1002/2017JD027011, 2017JD027011, 2017. a
Download
Short summary
We investigate contrail formation in an aircraft plume with a particle-based multi-trajectory 0D model. Due to the high plume heterogeneity, contrail ice crystals form first near the plume edge and then in the plume centre. The number of ice crystals varies strongly with ambient conditions and soot properties near the contrail formation threshold. Our results imply that the multi-trajectory approach does not necessarily lead to improved scientific results compared to a single mean trajectory.
Altmetrics
Final-revised paper
Preprint