Articles | Volume 22, issue 2
https://doi.org/10.5194/acp-22-823-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-823-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Box model trajectory studies of contrail formation using a particle-based cloud microphysics scheme
Andreas Bier
CORRESPONDING AUTHOR
Deutsches Zentrum für Luft- und Raumfahrt, Insitut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
Simon Unterstrasser
Deutsches Zentrum für Luft- und Raumfahrt, Insitut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
Xavier Vancassel
ONERA, The French Aerospace Lab, Palaiseau, France
Related authors
Andreas Bier, Simon Unterstrasser, Josef Zink, Dennis Hillenbrand, Tina Jurkat-Witschas, and Annemarie Lottermoser
Atmos. Chem. Phys., 24, 2319–2344, https://doi.org/10.5194/acp-24-2319-2024, https://doi.org/10.5194/acp-24-2319-2024, 2024
Short summary
Short summary
Using hydrogen as aviation fuel affects contrails' climate impact. We study contrail formation behind aircraft with H2 combustion. Due to the absence of soot emissions, contrail ice crystals are assumed to form only on ambient particles mixed into the plume. The ice crystal number, which strongly varies with temperature and aerosol number density, is decreased by more than 80 %–90 % compared to kerosene contrails. However H2 contrails can form at lower altitudes due to higher H2O emissions.
Annemarie Lottermoser and Simon Unterstrasser
Atmos. Chem. Phys., 25, 7903–7924, https://doi.org/10.5194/acp-25-7903-2025, https://doi.org/10.5194/acp-25-7903-2025, 2025
Short summary
Short summary
Contrail cirrus significantly contributes to aviation's overall climate impact. As hydrogen combustion and fuel cell use are emerging technologies for aircraft propulsion, we simulated individual contrails from hydrogen propulsion during the first 6 min after exhaust emission, termed the vortex phase. The ice crystal loss during that stage is crucial, as the number of ice crystals has a large impact on the further evolution of contrails into contrail cirrus and their radiative forcing.
Gregor Neumann, Andreas Marsing, Theresa Harlass, Daniel Sauer, Simon Braun, Magdalena Pühl, Christopher Heckl, Paul Stock, Elena De La Torre Castro, Valerian Hahn, Anke Roiger, Christiane Voigt, Simon Unterstraßer, Jean Cammas, Charles Renard, Roberta Vasenden, Arnold Vasenden, and Tina Jurkat-Witschas
EGUsphere, https://doi.org/10.5194/egusphere-2025-2026, https://doi.org/10.5194/egusphere-2025-2026, 2025
Short summary
Short summary
This study presents the first successful in-flight emission characterization of a turboprop engine using a fully autonomous airborne measurement platform, offering new insights into the atmospheric impacts of regional aviation. By equipping the high-altitude Grob G 520 Egrett with a suite of custom and modified commercial instruments, we demonstrate precise, high-resolution measurements of aerosol particles, trace gases, and contrail ice in the engine exhaust plume at cruise altitudes.
Andreas Bier, Simon Unterstrasser, Josef Zink, Dennis Hillenbrand, Tina Jurkat-Witschas, and Annemarie Lottermoser
Atmos. Chem. Phys., 24, 2319–2344, https://doi.org/10.5194/acp-24-2319-2024, https://doi.org/10.5194/acp-24-2319-2024, 2024
Short summary
Short summary
Using hydrogen as aviation fuel affects contrails' climate impact. We study contrail formation behind aircraft with H2 combustion. Due to the absence of soot emissions, contrail ice crystals are assumed to form only on ambient particles mixed into the plume. The ice crystal number, which strongly varies with temperature and aerosol number density, is decreased by more than 80 %–90 % compared to kerosene contrails. However H2 contrails can form at lower altitudes due to higher H2O emissions.
Michael A. Olesik, Jakub Banaśkiewicz, Piotr Bartman, Manuel Baumgartner, Simon Unterstrasser, and Sylwester Arabas
Geosci. Model Dev., 15, 3879–3899, https://doi.org/10.5194/gmd-15-3879-2022, https://doi.org/10.5194/gmd-15-3879-2022, 2022
Short summary
Short summary
In systems such as atmospheric clouds, droplets undergo growth through condensation of vapor. The broadness of the resultant size spectrum of droplets influences precipitation likelihood and the radiative properties of clouds. One of the inherent limitations of simulations of the problem is the so-called numerical diffusion causing overestimation of the spectrum width, hence the term numerical broadening. In the paper, we take a closer look at one of the algorithms used in this context: MPDATA.
Simon Unterstrasser, Fabian Hoffmann, and Marion Lerch
Geosci. Model Dev., 13, 5119–5145, https://doi.org/10.5194/gmd-13-5119-2020, https://doi.org/10.5194/gmd-13-5119-2020, 2020
Short summary
Short summary
Particle-based cloud models use simulation particles for the representation of cloud particles like droplets or ice crystals. The collision and merging of cloud particles (i.e. collisional growth a.k.a. collection in the case of cloud droplets and aggregation in the case of ice crystals) was found to be a numerically challenging process in such models. The study presents verification exercises in a 1D column model, where sedimentation and collisional growth are the only active processes.
Cited articles
Agarwal, A., Speth, R., Fritz, T., Jacob, S., Rindlisbacher, T., Iovinelli, R., Owen, B., Miake-Lye, R., Sabnis, J., and Barrett, S.:
SCOPE11 method for estimating aircraft black carbon mass and particle number emissions,
Environ. Sci. Technol.,
53, 1364–1373, https://doi.org/10.1021/acs.est.8b04060, 2019. a
Anderson, E. B., Cofer, R. W., Bagwell, D. R., Barrick, J. W., Hudgins, C. H., and Brunke, K. E.:
Airborne observations of aircraft aerosol emissions 1,Total nonvolatile particle emission indices,
Geophys. Res. Lett.,
25, 1689–1692, 1998. a
Barrett, J. C. and Clement, C. F.:
Growth rates for liquid drops,
J. Aerosol Sci.,
19, 223–242, https://doi.org/10.1016/0021-8502(88)90225-X, 1988. a
Bier, A. and Burkhardt, U.:
Variability in Contrail Ice Nucleation and Its Dependence on Soot Number Emissions,
J. Geophys. Res.,
124, 3384–3400, https://doi.org/10.1029/2018JD029155, 2019. a, b, c, d
Bier, A., Burkhardt, U., and Bock, L.:
Synoptic Control of Contrail Cirrus Life Cycles and Their Modification Due to Reduced Soot Number Emissions,
J. Geophys. Res., 122, 11584–11603, https://doi.org/10.1002/2017JD027011, 2017JD027011, 2017. a
Bock, L. and Burkhardt, U.:
Reassessing properties and radiative forcing of contrail cirrus using a climate model,
J. Geophys. Res.,
121, 9717–9736, https://doi.org/10.1002/2016JD025112, 2016. a
Bock, L. and Burkhardt, U.: Contrail cirrus radiative forcing for future air traffic, Atmos. Chem. Phys., 19, 8163–8174, https://doi.org/10.5194/acp-19-8163-2019, 2019. a
Bockhorn, H.:
Soot formation in Combustion – Mechanisms and Models,
Springer Verlag, Berlin, 1994. a
Bond, T. C., Doherty, J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., Flanner, M. G., Ghan, S., Kärcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M., Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K., Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U., Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and Zender, C. S.:
Bounding the role of black carbon in the climate system – A scientific assessment,
J. Geophys. Res.,
118, 5380–5552, https://doi.org/10.1002/jgrd.50171, 2013. a
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S., Sherwood, S., Stevens, B., and Zhang, X.:
Clouds and Aerosols, chap. 7,
Cambridge University Press, Cambridge, UK and New York, NY, USA, https://doi.org/10.1017/CBO9781107415324.016, pp. 571–658, 2013. a
Burkhardt, U., Bock, L., and Bier, A.:
Mitigating the contrail cirrus climate impact by reducing aircraft soot number emissions,
npj Climate and Atmospheric Science,
1, 37, https://doi.org/10.1038/s41612-018-0046-4, 2018. a, b
Busen, R. and Schumann, U.:
Visible contrail formation from fuels with different sulfur contents,
Geophys. Res. Lett.,
22, 1357–1360, 1995. a
Distaso, E., Amirante, R., Calò, G., De Palma, P., and Tamburrano, P.:
Evolution of Soot Particle Number, Mass and Size Distribution along the Exhaust Line of a Heavy-Duty Engine Fueled with Compressed Natural Gas,
Energies,
13, 3993, https://doi.org/10.3390/en13153993, 2020. a
Grimonprez, S., Faccinetto, A., Batut, S., Wu, J., Desgroux, P., and Petitprez, D.:
Cloud condensation nuclei from the activation with ozone of soot particles sampled from a kerosene diffusion flame,
Aerosol Sci. Technol.,
52, 814–827, https://doi.org/10.1080/02786826.2018.1472367, 2018. a
Hacker, P. T.:
Experimental Values of the Surface Tension of Supercooled Water, Tech. rep., Technical Note 2510, National Advisory Committee for Aeronautics, Cleaveland, Ohio,
available at: https://ntrs.nasa.gov/api/citations/19810068863/downloads/19810068863.pdf (last access: 17 January 2022). 1951. a
Hagen, D. E., Trueblood, M. B., and Whitefield, P. D.:
A field sampling of jet exhaust aerosols,
Particul. Sci. Technol.,
10, 53–63, https://doi.org/10.1080/02726359208906598, 1992. a
Jacobson, M.:
Fundamentals of atmospheric modeling,
Cambridge Univ. Press, UK, 1999. a
Kärcher, B.:
Physicochemistry of aircraft-generated liquid aerosols, soot, and ice particles. 1. Model description,
J. Geophys. Res.,
103, 17111–17128, 1998. a
Kärcher, B.:
Aviation-produced aerosols and contrails,
Surv. Geophys.,
20, 113–167, 1999. a
Kärcher, B.: Simulating gas-aerosol-cirrus interactions: Process-oriented microphysical model and applications, Atmos. Chem. Phys., 3, 1645–1664, https://doi.org/10.5194/acp-3-1645-2003, 2003. a
Khou, J., Ghedhaïfi, W., Vancassel, X., Montreuil, E., and Garnier, F.:
CFD simulation of contrail formation in the near field of a commercial aircraft: Effect of fuel sulfur content,
Meteorol. Z.,
26, 585–596, https://doi.org/10.1127/metz/2016/0761, 2017. a, b
Khou, J.-C., Ghedhaïfi, W., Vancassel, X., and Garnier, F.:
Spatial Simulation of Contrail Formation in Near-Field of Commercial Aircraft,
J. Aircraft,
52, 1927–1938, https://doi.org/10.2514/1.C033101, 2015. a, b
Kleine, J., Voigt, C., Sauer, D., Schlager, H., Scheibe, M., Jurkat-Witschas, Kaufmann, S., Kärcher, B., and Anderson, B. E.:
In situ observations of ice particle losses in a young persistent contrail,
Geophys. Res. Lett.,
45, 13553–13561, https://doi.org/10.1029/2018GL079390, 2018. a, b, c
Kulmala, M.:
Condensational Growth and Evaporation in the Transition Regime,
Aerosol Sci. Technol.,
19, 381–388, https://doi.org/10.1080/02786829308959645, 1993. a
Laaksonen, A., Vesala, T., Kulmala, M., Winkler, P. M., and Wagner, P. E.: Commentary on cloud modelling and the mass accommodation coefficient of water, Atmos. Chem. Phys., 5, 461–464, https://doi.org/10.5194/acp-5-461-2005, 2005. a
Lee, D. S., Fahey, D. W., Skowron, A., Allen, M. R., Burkhardt, U., Chen, Q., Doherty, S. J., Freeman, S., Forster, P. M., Fuglestvedt, J., Gettelman, A., De Leon, R. R., Lim, L. L., Lund, M. T., Millar, R. J., Owen, B., Penner, J. E, Pitari, G., Prather, M. J., Sausen, R., and Wilcox, L. J.:
The contribution of global aviation to anthropogenic climate forcing for 2010 to 2018,
Atmos. Environ.,
244, 117834, https://doi.org/10.1016/j.atmosenv.2020.117834, 2021. a
Mason, B.:
The physics of clouds,
Clarendon Press, Oxford, 1971. a
Moore, R. H., Thornhill, K. L., Weinzierl, B., Sauer, D., D'Ascoli, E., Kim, J., Lichtenstern, M., Scheibe, M., Beaton, B., Beyersdorf, A. J., Barrick, J., Bulzan, D., Corr, C. A., Crosbie, E., Jurkat, T., Martin, R., Riddick, D., Shook, M., Slover, G., Voigt, C., White, R., Winstead, E., Yasky, R., Ziemba, L. D., Brown, A., Schlager, H., and Anderson, B. E.:
Biofuel blending reduces particle emissions from aircraft engines at cruise conditions,
Nature,
543, 411–415, https://doi.org/10.1038/nature21420, 2017. a
Paoli, R., Nybelen, L., Picot, J., and Cariolle, D.:
Effects of jet/vortex interaction on contrail formation in supersaturated conditions,
Phys. Fluids,
25, 1–28, https://doi.org/10.1063/1.4807063, 2013. a
Petters, M. D. and Kreidenweis, S. M.: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity, Atmos. Chem. Phys., 7, 1961–1971, https://doi.org/10.5194/acp-7-1961-2007, 2007. a, b, c, d
Petzold, A., Döpelheuer, A., Brock, C. A., and Schröder, F.:
In situ observations and model calculations of black carbon emission by aircraft at cruise altitude,
J. Geophys. Res.,
104, 22171–22181, https://doi.org/10.1029/1999JD900460, 1999. a, b, c
Petzold, A., Gysel, M., Vancassel, X., Hitzenberger, R., Puxbaum, H., Vrochticky, S., Weingartner, E., Baltensperger, U., and Mirabel, P.: On the effects of organic matter and sulphur-containing compounds on the CCN activation of combustion particles, Atmos. Chem. Phys., 5, 3187–3203, https://doi.org/10.5194/acp-5-3187-2005, 2005. a
Popovicheva, O. B., Persiantseva, N. M., Lukhovitskaya, E. E., Shonija, N. K., Zubareva, N. A., Demirdjian, B., Ferry, D., and Suzanne, J.:
Aircraft engine soot as contrail nuclei,
Geophys. Res. Lett.,
31, L11104, https://doi.org/10.1029/2003GL018888, 2017. a
Riechers, B., Wittbracht, F., Hütten, A., and Koop, T.:
The homogeneous ice nucleation rate of water droplets produced in a microfluidic device and the role of temperature uncertainty,
Phys. Chem. Chem. Phys.,
15, 5873–5887, https://doi.org/10.1039/c3cp42437e, 2013. a
Rojo, C., Vancassel, X., Mirabel, P., Ponche, J., L., and Garnier, F.:
Impact of alternative jet fuels on aircraft-induced aerosols,
Fuel,
144, 335–341, https://doi.org/10.1016/j.fuel.2014.12.021, 2015. a
Schröder, F., Kärcher, B., Duroure, C., Ström, J., Petzold, A., Gayet, J., Strauss, B., Wendling, P., and Borrmann, S.:
On the transition of contrails into cirrus clouds,
J. Atmos. Sci.,
57, 464–480, https://doi.org/10.1175/1520-0469(2000)057<0464:OTTOCI>2.0.CO;2, 2000. a
Schumann, U., Schlager, H., Arnold, F., Baumann, R., Haschberger, P., and Klemm, O.:
Dilution of aircraft exhaust plumes at cruise altitudes,
Atmos. Environ.,
32, 3097–3103, 1998. a
Schumann, U., Arnold, F., Busen, R., Curtius, J., Kärcher, B., Kiendler, A., Petzold, A., Schlager, H., Schröder, F., and Wohlfrom, K.:
Influence of fuel sulfur on the composition of aircraft exhaust plumes: The experiments SULFUR 1-7,
J. Geophys. Res.,
107, AAC 2-1–AAC 2-27, https://doi.org/10.1029/2001JD000813, 2002. a, b
Schumann, U., Jeßberger, P., and Voigt, C.:
Contrail ice particles in aircraft wakes and their climatic importance,
Geophys. Res. Lett.,
40, 2867–2872, https://doi.org/10.1002/grl.50539, 2013. a
Smolarkiewicz, P. K. and Grell, G. A.:
A class of monotone interpolation schemes,
J. Comput. Phys.,
101, 431–440, https://doi.org/10.1016/0021-9991(92)90018-T, 1992. a
Sölch, I. and Kärcher, B.:
A large-eddy model for cirrus clouds with explicit aerosol and ice microphysics and Lagrangian ice particle tracking,
Q. J. Roy. Meteor. Soc.,
136, 2074–2093, https://doi.org/10.1002/qj.689, 2010. a, b, c
Sölch, I. and Kärcher, B.:
Process-oriented large-eddy simulations of a midlatitude cirrus cloud system based on observations,
Q. J. Roy. Meteor. Soc.,
137, 374–393, 2011. a
Unterstrasser, S.:
Large eddy simulation study of contrail microphysics and geometry during the vortex phase and consequences on contrail-to-cirrus transition,
J. Geophys. Res.,
119, 7537–7555, https://doi.org/10.1002/2013JD021418, 2014. a, b
Unterstrasser, S. and Gierens, K.:
Numerical simulations of contrail-to-cirrus transition – Part 2: Impact of initial ice crystal number, radiation, stratification, secondary nucleation and layer depth, Atmos. Chem. Phys., 10, 2037–2051, https://doi.org/10.5194/acp-10-2037-2010, 2010. a
Unterstrasser, S. and Görsch, N.:
Aircraft-type dependency of contrail evolution,
J. Geophys. Res.,
119, 14015–14027, https://doi.org/10.1002/2014JD022642, 2014JD022642, 2014. a
Unterstrasser, S. and Sölch, I.: Optimisation of the simulation particle number in a Lagrangian ice microphysical model, Geosci. Model Dev., 7, 695–709, https://doi.org/10.5194/gmd-7-695-2014, 2014. a
Unterstrasser, S., Gierens, K., Sölch, I., and Lainer, M.:
Numerical simulations of homogeneously nucleated natural cirrus and contrail-cirrus. Part 1: How different are they?,
Meteorol. Z.,
26, 621–642, https://doi.org/10.1127/metz/2016/0777, 2017a.
a, b
Unterstrasser, S., Gierens, K., Sölch, I., and Wirth, M.:
Numerical simulations of homogeneously nucleated natural cirrus and contrail-cirrus. Part 2: Interaction on local scale,
Meteorol. Z.,
26, 643–661, https://doi.org/10.1127/metz/2016/0780, 2017b. a, b
Wang, Y., Liu, H., Li, T., Jiang, H., He, P., Liu, D., Zhang, J., Xiong, Q., and Liu, L.:
Characterization of the Morphology and Nanostructure of the Soot Particles Produced within Transient Diesel Reacting Jet Flame by Using Thermophoretic
Sampling Technique,
Energ. Fuel.,
33, 9124–9137, https://doi.org/10.1021/acs.energyfuels.9b00810, 2019. a
White, F. M.:
Viscous Fluid Flow, 3 Edn.,
McGraw-Hill Book Company, USA, available at: https://www.lehmanns.de/shop/technik/7179805-9780072402315-viscous-fluid-flow (last access; 17 January 2022), 2005. a
Williams, M. M. R. and Loyalka, S. K.:
Aerosol science: theory and practice: with special applications to the nuclear industry,
Pergamon Press, Oxford and New York, 1991. a
Wong, H.-W. and Miake-Lye, R. C.: Parametric studies of contrail ice particle formation in jet regime using microphysical parcel modeling, Atmos. Chem. Phys., 10, 3261–3272, https://doi.org/10.5194/acp-10-3261-2010, 2010. a
Yu, F. and Turco, R. P.:
The role of ions in the formation and evolution of particles in aircraft plumes,
Geophys. Res. Lett.,
24, 1927–1930, 1997. a
Short summary
We investigate contrail formation in an aircraft plume with a particle-based multi-trajectory 0D model. Due to the high plume heterogeneity, contrail ice crystals form first near the plume edge and then in the plume centre. The number of ice crystals varies strongly with ambient conditions and soot properties near the contrail formation threshold. Our results imply that the multi-trajectory approach does not necessarily lead to improved scientific results compared to a single mean trajectory.
We investigate contrail formation in an aircraft plume with a particle-based multi-trajectory 0D...
Altmetrics
Final-revised paper
Preprint