Articles | Volume 22, issue 11
https://doi.org/10.5194/acp-22-7593-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-7593-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evaluation of modelled summertime convective storms using polarimetric radar observations
Institute of Geosciences, Meteorology Department, Bonn University, Bonn, Germany
Silke Trömel
Institute of Geosciences, Meteorology Department, Bonn University, Bonn, Germany
Laboratory for Clouds and Precipitation Exploration, Geoverbund ABC/J, Bonn, Germany
Raquel Evaristo
Institute of Geosciences, Meteorology Department, Bonn University, Bonn, Germany
Clemens Simmer
Institute of Geosciences, Meteorology Department, Bonn University, Bonn, Germany
Related authors
Prabhakar Shrestha, Jana Mendrok, and Dominik Brunner
Atmos. Chem. Phys., 22, 14095–14117, https://doi.org/10.5194/acp-22-14095-2022, https://doi.org/10.5194/acp-22-14095-2022, 2022
Short summary
Short summary
The study extends the Terrestrial Systems Modeling Platform with gas-phase chemistry aerosol dynamics and a radar forward operator to enable detailed studies of aerosol–cloud–precipitation interactions. This is demonstrated using a case study of a deep convective storm, which showed that the strong updraft in the convective core of the storm produced aerosol-tower-like features, which affected the size of the hydrometeors and the simulated polarimetric features (e.g., ZDR and KDP columns).
Prabhakar Shrestha, Jana Mendrok, Velibor Pejcic, Silke Trömel, Ulrich Blahak, and Jacob T. Carlin
Geosci. Model Dev., 15, 291–313, https://doi.org/10.5194/gmd-15-291-2022, https://doi.org/10.5194/gmd-15-291-2022, 2022
Short summary
Short summary
The article focuses on the exploitation of radar polarimetry for model evaluation of stratiform precipitation. The model exhibited a low bias in simulated polarimetric moments at lower levels above the melting layer where snow was found to dominate. This necessitates further research into the missing microphysical processes in these lower levels (e.g. fragmentation due to ice–ice collisions) and use of more reliable snow-scattering models in the forward operator to draw valid conclusions.
Silke Trömel, Clemens Simmer, Ulrich Blahak, Armin Blanke, Sabine Doktorowski, Florian Ewald, Michael Frech, Mathias Gergely, Martin Hagen, Tijana Janjic, Heike Kalesse-Los, Stefan Kneifel, Christoph Knote, Jana Mendrok, Manuel Moser, Gregor Köcher, Kai Mühlbauer, Alexander Myagkov, Velibor Pejcic, Patric Seifert, Prabhakar Shrestha, Audrey Teisseire, Leonie von Terzi, Eleni Tetoni, Teresa Vogl, Christiane Voigt, Yuefei Zeng, Tobias Zinner, and Johannes Quaas
Atmos. Chem. Phys., 21, 17291–17314, https://doi.org/10.5194/acp-21-17291-2021, https://doi.org/10.5194/acp-21-17291-2021, 2021
Short summary
Short summary
The article introduces the ACP readership to ongoing research in Germany on cloud- and precipitation-related process information inherent in polarimetric radar measurements, outlines pathways to inform atmospheric models with radar-based information, and points to remaining challenges towards an improved fusion of radar polarimetry and atmospheric modelling.
Velibor Pejcic, Kamil Mroz, Kai Mühlbauer, and Silke Trömel
EGUsphere, https://doi.org/10.5194/egusphere-2025-1414, https://doi.org/10.5194/egusphere-2025-1414, 2025
Short summary
Short summary
Estimating the proportions of individual hydrometeor types (hydrometeor partitioning ratios, HPRs) in a mixture of a resolved radar volume and their evaluation is challenging. This study has three objectives, (1) to evaluate HPR retrievals, (2) to exploit the combination of dual-frequency (DF) space-borne radar (SR) and dual-polarisation (DP) ground-based radar (GR) observations for estimating HPRs based on SR DF observations and (3) to further improve HPR estimates based on DP GR observations.
Armin Blanke, Mathias Gergely, and Silke Trömel
Atmos. Chem. Phys., 25, 4167–4184, https://doi.org/10.5194/acp-25-4167-2025, https://doi.org/10.5194/acp-25-4167-2025, 2025
Short summary
Short summary
The area-wide radar-based distinction between riming and aggregation is crucial for model microphysics and data assimilation. This study introduces a discrimination algorithm based on polarimetric radar networks only. Exploiting the unique opportunity to link fall velocities from Doppler spectra to polarimetric variables in an operational setting enables us to set up and evaluate a well-performing machine learning algorithm.
Lucas Reimann, Clemens Simmer, and Silke Trömel
Atmos. Chem. Phys., 23, 14219–14237, https://doi.org/10.5194/acp-23-14219-2023, https://doi.org/10.5194/acp-23-14219-2023, 2023
Short summary
Short summary
Polarimetric radar observations were assimilated for the first time in a convective-scale numerical weather prediction system in Germany and their impact on short-term precipitation forecasts was evaluated. The assimilation was performed using microphysical retrievals of liquid and ice water content and yielded slightly improved deterministic 9 h precipitation forecasts for three intense summer precipitation cases with respect to the assimilation of radar reflectivity alone.
Armin Blanke, Andrew J. Heymsfield, Manuel Moser, and Silke Trömel
Atmos. Meas. Tech., 16, 2089–2106, https://doi.org/10.5194/amt-16-2089-2023, https://doi.org/10.5194/amt-16-2089-2023, 2023
Short summary
Short summary
We present an evaluation of current retrieval techniques in the ice phase applied to polarimetric radar measurements with collocated in situ observations of aircraft conducted over the Olympic Mountains, Washington State, during winter 2015. Radar estimates of ice properties agreed most with aircraft observations in regions with pronounced radar signatures, but uncertainties were identified that indicate issues of some retrievals, particularly in warmer temperature regimes.
Mohamed Saadi, Carina Furusho-Percot, Alexandre Belleflamme, Ju-Yu Chen, Silke Trömel, and Stefan Kollet
Nat. Hazards Earth Syst. Sci., 23, 159–177, https://doi.org/10.5194/nhess-23-159-2023, https://doi.org/10.5194/nhess-23-159-2023, 2023
Short summary
Short summary
On 14 July 2021, heavy rainfall fell over central Europe, causing considerable damage and human fatalities. We analyzed how accurate our estimates of rainfall and peak flow were for these flooding events in western Germany. We found that the rainfall estimates from radar measurements were improved by including polarimetric variables and their vertical gradients. Peak flow estimates were highly uncertain due to uncertainties in hydrological model parameters and rainfall measurements.
Prabhakar Shrestha, Jana Mendrok, and Dominik Brunner
Atmos. Chem. Phys., 22, 14095–14117, https://doi.org/10.5194/acp-22-14095-2022, https://doi.org/10.5194/acp-22-14095-2022, 2022
Short summary
Short summary
The study extends the Terrestrial Systems Modeling Platform with gas-phase chemistry aerosol dynamics and a radar forward operator to enable detailed studies of aerosol–cloud–precipitation interactions. This is demonstrated using a case study of a deep convective storm, which showed that the strong updraft in the convective core of the storm produced aerosol-tower-like features, which affected the size of the hydrometeors and the simulated polarimetric features (e.g., ZDR and KDP columns).
Prabhakar Shrestha, Jana Mendrok, Velibor Pejcic, Silke Trömel, Ulrich Blahak, and Jacob T. Carlin
Geosci. Model Dev., 15, 291–313, https://doi.org/10.5194/gmd-15-291-2022, https://doi.org/10.5194/gmd-15-291-2022, 2022
Short summary
Short summary
The article focuses on the exploitation of radar polarimetry for model evaluation of stratiform precipitation. The model exhibited a low bias in simulated polarimetric moments at lower levels above the melting layer where snow was found to dominate. This necessitates further research into the missing microphysical processes in these lower levels (e.g. fragmentation due to ice–ice collisions) and use of more reliable snow-scattering models in the forward operator to draw valid conclusions.
Shaoning Lv, Clemens Simmer, Yijian Zeng, Jun Wen, Yuanyuan Guo, and Zhongbo Su
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-369, https://doi.org/10.5194/tc-2021-369, 2022
Preprint withdrawn
Short summary
Short summary
The freeze-thaw of the ground is an interesting topic to climatology, hydrology, and other earth sciences. The global freeze-thaw distribution is available by passive microwave remote sensing technique. However, the remote sensing technique indirectly detects freeze-thaw states by measuring the brightness temperature difference between frozen and unfrozen soil. Thus, we present different interprets of the brightness signals to the FT-state by using its sub-daily character.
Silke Trömel, Clemens Simmer, Ulrich Blahak, Armin Blanke, Sabine Doktorowski, Florian Ewald, Michael Frech, Mathias Gergely, Martin Hagen, Tijana Janjic, Heike Kalesse-Los, Stefan Kneifel, Christoph Knote, Jana Mendrok, Manuel Moser, Gregor Köcher, Kai Mühlbauer, Alexander Myagkov, Velibor Pejcic, Patric Seifert, Prabhakar Shrestha, Audrey Teisseire, Leonie von Terzi, Eleni Tetoni, Teresa Vogl, Christiane Voigt, Yuefei Zeng, Tobias Zinner, and Johannes Quaas
Atmos. Chem. Phys., 21, 17291–17314, https://doi.org/10.5194/acp-21-17291-2021, https://doi.org/10.5194/acp-21-17291-2021, 2021
Short summary
Short summary
The article introduces the ACP readership to ongoing research in Germany on cloud- and precipitation-related process information inherent in polarimetric radar measurements, outlines pathways to inform atmospheric models with radar-based information, and points to remaining challenges towards an improved fusion of radar polarimetry and atmospheric modelling.
Bernd Schalge, Gabriele Baroni, Barbara Haese, Daniel Erdal, Gernot Geppert, Pablo Saavedra, Vincent Haefliger, Harry Vereecken, Sabine Attinger, Harald Kunstmann, Olaf A. Cirpka, Felix Ament, Stefan Kollet, Insa Neuweiler, Harrie-Jan Hendricks Franssen, and Clemens Simmer
Earth Syst. Sci. Data, 13, 4437–4464, https://doi.org/10.5194/essd-13-4437-2021, https://doi.org/10.5194/essd-13-4437-2021, 2021
Short summary
Short summary
In this study, a 9-year simulation of complete model output of a coupled atmosphere–land-surface–subsurface model on the catchment scale is discussed. We used the Neckar catchment in SW Germany as the basis of this simulation. Since the dataset includes the full model output, it is not only possible to investigate model behavior and interactions between the component models but also use it as a virtual truth for comparison of, for example, data assimilation experiments.
Cited articles
Allabakash, S., Lim, S., Chandrasekar, V., Min, K., Choi, J., and Jang, B.:
X-band dual-polarization radar observations of snow growth processes of a
severe winter storm: Case of 12 December 2013 in South Korea, J.
Atmos. Ocean. Tech., 36, 1217–1235, 2019. a
Ashby, S. F. and Falgout, R. D.: A parallel multigrid preconditioned conjugate
gradient algorithm for groundwater flow simulations, Nucl. Sci.
Eng., 124, 145–159, 1996. a
Bauer, P., Thorpe, A., and Brunet, G.: The quiet revolution of numerical
weather prediction, Nature, 525, 47–55, 2015. a
Blahak, U.: Towards a better representation of high density ice particles in a
state-of-the-art two-moment bulk microphysical scheme, in: Proc. 15th Int.
Conf. Clouds and Precip., Cancun, Mexico, 20208, 2008. a
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster,
P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S. K., Sherwood, S., Stevens, B., and Zhang, X. Y.: Clouds and
aerosols, in: Climate change 2013: the physical science basis. Contribution
of Working Group I to the Fifth Assessment Report of the Intergovernmental
Panel on Climate Change, 571–657, Cambridge University Press, https://doi.org/10.1017/CBO9781107415324.016, 2013. a
Brandes, E. A., Zhang, G., and Vivekanandan, J.: Experiments in Rainfall
Estimation with a Polarimetric Radar in a Subtropical Environment, J.
Appl. Meteorol., 41, 674–685,
https://doi.org/10.1175/1520-0450(2002)041<0674:EIREWA>2.0.CO;2, 2002. a
Bringi, V., Kennedy, P., Huang, G.-J., Kleinkort, C., Thurai, M., and
Notaroš, B.: Dual-polarized radar and surface observations of a winter
graupel shower with negative Z dr column, J. Appl. Meteorol.
Clim., 56, 455–470, 2017. a
Brown, B. R., Bell, M. M., and Frambach, A. J.: Validation of simulated
hurricane drop size distributions using polarimetric radar, Geophys.
Res. Lett., 43, 910–917, 2016. a
Center, E. M.: The GFS atmospheric model, National Centers for Environmental
Prediction Office Note, 442, 14, 2003. a
Craig, A., Valcke, S., and Coquart, L.: Development and performance of a new version of the OASIS coupler, OASIS3-MCT_3.0, Geosci. Model Dev., 10, 3297–3308, https://doi.org/10.5194/gmd-10-3297-2017, 2017. a
Crisologo, I., Warren, R. A., Mühlbauer, K., and Heistermann, M.: Enhancing the consistency of spaceborne and ground-based radar comparisons by using beam blockage fraction as a quality filter, Atmos. Meas. Tech., 11, 5223–5236, https://doi.org/10.5194/amt-11-5223-2018, 2018. a
Das, S. K., Hazra, A., Deshpande, S. M., Krishna, U. M., and Kolte, Y. K.:
Investigation of Cloud Microphysical Features During the Passage of a
Tropical Mesoscale Convective System: Numerical Simulations and X-Band Radar
Observations, Pure Appl. Geophys., 178, 185–204, 2021. a
Dawson, D. T., Mansell, E. R., Jung, Y., Wicker, L. J., Kumjian, M. R., and
Xue, M.: Low-level Z DR signatures in supercell forward flanks: The role of
size sorting and melting of hail, J. Atmos. Sci., 71,
276–299, 2014. a
Diederich, M., Ryzhkov, A., Simmer, C., Zhang, P., and Trömel, S.: Use of
specific attenuation for rainfall measurement at X-band radar wavelengths,
Part II: Rainfall estimates and comparison with rain gauges, J.
Hydrometeorol., 16, 503–516, 2015b. a
Doms, G. and Schättler, U.: A description of the nonhydrostatic regional
model LM, Part I: Dynamics and Numerics, Tech. rep., Deutscher Wetterdienst, Offenbach, 140 pp., 2002. a
DWD (Deutscher Wetterdienst): Pamore – Abruf archivierter Daten der Vorhersagemodelle [data set], https://www.dwd.de/DE/leistungen/pamore/pamore.html, last access: 25 May 2022. a
ECMWF: IFS Documentation CY25R1 – Part VII: ECMWF Wave Model, no. 7 in IFS
Documentation, ECMWF, operational implementation 9
April 2002, ECMWF, https://doi.org/10.21957/qkv9amafn, 2003. a
Figueras i Ventura, J., Honoré, F., and Tabary, P.: X-band polarimetric
weather radar observations of a hailstorm, J. Atmos. Ocean.
Technol., 30, 2143–2151, 2013. a
Friedl, M. A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N.,
Sibley, A., and Huang, X.: MODIS Collection 5 global land cover: Algorithm
refinements and characterization of new datasets, Remote Sens.
Environ., 114, 168–182, 2010. a
Gasper, F., Goergen, K., Shrestha, P., Sulis, M., Rihani, J., Geimer, M., and Kollet, S.: Implementation and scaling of the fully coupled Terrestrial Systems Modeling Platform (TerrSysMP v1.0) in a massively parallel supercomputing environment – a case study on JUQUEEN (IBM Blue Gene/Q), Geosci. Model Dev., 7, 2531–2543, https://doi.org/10.5194/gmd-7-2531-2014, 2014 (data available at: https://www.terrsysmp.org/, last access: 25 May 2022). a, b, c
Heinze, R., Dipankar, A., Henken, C. C., Moseley, C., Sourde-val, O., Trömel, S., Xie, X.,
Adamidis, P., Ament, F., Baars, H., Barthlott, C., Behrendt, A., Blahak, U., Bley, S., Brdar, S.,
Brueck, M., Crewell, S., Deneke, H., Di Girolamo, P., Evaristo, R., Fischer, J., Frank, C.,
Friederichs, P., Göcke, T., Gorges, K., Hande, L., Hanke, M., Hansen, A., Hege, H.-C., Hoose,
C., Jahns, T., Kalthoff, N., Klocke, D., Kneifel, S., Knippertz, P., Kuhn, A., van Laar, T., Macke,
A., Maurer, V., Mayer, B., Meyer, C. I., Muppa, S. K., Neggers, R. A. J., Orlandi, E., Pantillon,
F., Pospichal, B., Röber, N., Scheck, L., Seifert, A., Seifert, P., Senf, F., Siligam, P., Simmer, C.,
Steinke, S., Stevens, B., Wapler, K., Weniger, M., Wulfmeyer, V., Zängl, G., Zhang, D., and
Quaas, J.:
Large-eddy simulations over Germany using ICON: A comprehensive evaluation,
Q. J. Roy. Meteorol. Soc., 143, 69–100, 2017. a, b
Homeyer, C. R. and Kumjian, M. R.: Microphysical characteristics of
overshooting convection from polarimetric radar observations, J.
Atmos. Sci., 72, 870–891, 2015. a
Hubbert, J. C., Wilson, J. W., Weckwerth, T. M., Ellis, S. M., Dixon, M., and
Loew, E.: S-Pol’s polarimetric data reveal detailed storm features (and
insect behavior), Bull. Am. Meteorol. Soc., 99,
2045–2060, 2018. a
Igel, A. L., Igel, M. R., and van den Heever, S. C.: Make it a double? Sobering
results from simulations using single-moment microphysics schemes, J. Atmos. Sci., 72, 910–925, 2015. a
Ilotoviz, E., Khain, A., Ryzhkov, A. V., and Snyder, J. C.: Relationship
between aerosols, hail microphysics, and Z DR columns, J.
Atmos. Sci., 75, 1755–1781, 2018. a
Johnson, M., Jung, Y., Dawson, D. T., and Xue, M.: Comparison of simulated
polarimetric signatures in idealized supercell storms using two-moment bulk
microphysics schemes in WRF, Mon. Weather Rev., 144, 971–996, 2016. a
Jones, J. E. and Woodward, C. S.: Newton–Krylov-multigrid solvers for
large-scale, highly heterogeneous, variably saturated flow problems, Adv. Water Resour., 24, 763–774, 2001. a
Jung, Y., Xue, M., and Zhang, G.: Simulations of polarimetric radar signatures
of a supercell storm using a two-moment bulk microphysics scheme, J.
Appl. Meteorol. Clim., 49, 146–163, 2010. a
Jung, Y., Xue, M., and Tong, M.: Ensemble Kalman filter analyses of the 29–30
May 2004 Oklahoma tornadic thunderstorm using one-and two-moment bulk
microphysics schemes, with verification against polarimetric radar data,
Mon. Weather Rev., 140, 1457–1475, 2012. a
Kaltenboeck, R. and Ryzhkov, A.: Comparison of polarimetric signatures of hail
at S and C bands for different hail sizes, Atmos. Res., 123,
323–336, 2013. a
Kärcher, B. and Lohmann, U.: A parameterization of cirrus cloud formation:
Homogeneous freezing of supercooled aerosols, J. Geophys.
Res.-Atmos., 107, D2, https://doi.org/10.1029/2001JD000470, 2002. a
Kärcher, B., Hendricks, J., and Lohmann, U.: Physically based parameterization
of cirrus cloud formation for use in global atmospheric models, J.
Geophys. Res.-Atmos., 111, D01205, https://doi.org/10.1029/2005JD006219, 2006. a
Khain, A., Ovtchinnikov, M., Pinsky, M., Pokrovsky, A., and Krugliak, H.: Notes
on the state-of-the-art numerical modeling of cloud microphysics, Atmos.
Res., 55, 159–224, 2000. a
Kim, D.-S., Maki, M., Shimizu, S., and Lee, D.-I.: X-band dual-polarization
radar observations of precipitation core development and structure in a
multi-cellular storm over Zoshigaya, Japan, 5 August 2008, J.
Meteorol. Soc. Jpn. Ser. II, 90, 701–719, 2012. a
Kollet, S. J. and Maxwell, R. M.: Integrated surface–groundwater flow
modeling: A free-surface overland flow boundary condition in a parallel
groundwater flow model, Adv. Water Resour., 29, 945–958, 2006. a
Kreklow, J., Tetzlaff, B., Burkhard, B., and Kuhnt, G.: Radar-Based
Precipitation Climatology in Germany—Developments, Uncertainties and
Potentials, Atmosphere, 11, 217, https://doi.org/10.3390/atmos11020217, 2020. a
Kuenen, J. J. P., Visschedijk, A. J. H., Jozwicka, M., and Denier van der Gon, H. A. C.: TNO-MACC_II emission inventory; a multi-year (2003–2009) consistent high-resolution European emission inventory for air quality modelling, Atmos. Chem. Phys., 14, 10963–10976, https://doi.org/10.5194/acp-14-10963-2014, 2014. a
Kulmala, M., Asmi, A., Lappalainen, H. K., Baltensperger, U., Brenguier, J.-L., Facchini, M. C., Hansson, H.-C., Hov, Ø., O'Dowd, C. D., Pöschl, U., Wiedensohler, A., Boers, R., Boucher, O., de Leeuw, G., Denier van der Gon, H. A. C., Feichter, J., Krejci, R., Laj, P., Lihavainen, H., Lohmann, U., McFiggans, G., Mentel, T., Pilinis, C., Riipinen, I., Schulz, M., Stohl, A., Swietlicki, E., Vignati, E., Alves, C., Amann, M., Ammann, M., Arabas, S., Artaxo, P., Baars, H., Beddows, D. C. S., Bergström, R., Beukes, J. P., Bilde, M., Burkhart, J. F., Canonaco, F., Clegg, S. L., Coe, H., Crumeyrolle, S., D'Anna, B., Decesari, S., Gilardoni, S., Fischer, M., Fjaeraa, A. M., Fountoukis, C., George, C., Gomes, L., Halloran, P., Hamburger, T., Harrison, R. M., Herrmann, H., Hoffmann, T., Hoose, C., Hu, M., Hyvärinen, A., Hõrrak, U., Iinuma, Y., Iversen, T., Josipovic, M., Kanakidou, M., Kiendler-Scharr, A., Kirkevåg, A., Kiss, G., Klimont, Z., Kolmonen, P., Komppula, M., Kristjánsson, J.-E., Laakso, L., Laaksonen, A., Labonnote, L., Lanz, V. A., Lehtinen, K. E. J., Rizzo, L. V., Makkonen, R., Manninen, H. E., McMeeking, G., Merikanto, J., Minikin, A., Mirme, S., Morgan, W. T., Nemitz, E., O'Donnell, D., Panwar, T. S., Pawlowska, H., Petzold, A., Pienaar, J. J., Pio, C., Plass-Duelmer, C., Prévôt, A. S. H., Pryor, S., Reddington, C. L., Roberts, G., Rosenfeld, D., Schwarz, J., Seland, Ø., Sellegri, K., Shen, X. J., Shiraiwa, M., Siebert, H., Sierau, B., Simpson, D., Sun, J. Y., Topping, D., Tunved, P., Vaattovaara, P., Vakkari, V., Veefkind, J. P., Visschedijk, A., Vuollekoski, H., Vuolo, R., Wehner, B., Wildt, J., Woodward, S., Worsnop, D. R., van Zadelhoff, G.-J., Zardini, A. A., Zhang, K., van Zyl, P. G., Kerminen, V.-M., S Carslaw, K., and Pandis, S. N.: General overview: European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) – integrating aerosol research from nano to global scales, Atmos. Chem. Phys., 11, 13061–13143, https://doi.org/10.5194/acp-11-13061-2011, 2011. a
Kumjian, M. R., Khain, A. P., Benmoshe, N., Ilotoviz, E., Ryzhkov, A. V., and
Phillips, V. T. J.: The Anatomy and Physics of ZDR Columns: Investigating a
Polarimetric Radar Signature with a Spectral Bin Microphysical Model, J. Appl. Meteorol. Clim., 53, 1820–1843,
https://doi.org/10.1175/JAMC-D-13-0354.1, 2014. a, b
Lang, S. E., Tao, W.-K., Zeng, X., and Li, Y.: Reducing the biases in simulated
radar reflectivities from a bulk microphysics scheme: Tropical convective
systems, J. Atmos. Sci., 68, 2306–2320, 2011. a
Louf, V., Protat, A., Warren, R. A., Collis, S. M., Wolff, D. B., Raunyiar, S.,
Jakob, C., and Petersen, W. A.: An integrated approach to weather radar
calibration and monitoring using ground clutter and satellite comparisons,
J. Atmos. Ocean. Technol., 36, 17–39, 2019. a
Maxwell, R. M.: A terrain-following grid transform and preconditioner for
parallel, large-scale, integrated hydrologic modeling, Adv. Water
Resour., 53, 109–117, 2013. a
Mellor, G. L. and Yamada, T.: Development of a turbulence closure model for
geophysical fluid problems, Rev. Geophys., 20, 851–875, 1982. a
Min, K.-H., Choo, S., Lee, D., and Lee, G.: Evaluation of WRF cloud
microphysics schemes using radar observations, Weather Forecast., 30,
1571–1589, 2015. a
Mishchenko, M. I., Hovenier, J. W., and Travis, L. D.: Light scattering by
nonspherical particles: theory, measurements, and applications, Tech. rep., Academic Press, San Diego, USA, ISBN: 9780124986602, 2000. a
Morrison, H., van Lier-Walqui, M., Fridlind, A. M., Grabowski, W. W., Harrington, J. Y.,
Hoose, C., Korolev, A., Kumjian, M. R., Milbrandt, J. A., Pawlowska, H., Posselt, D. J., Prat, O.
P., Reimel, K. J., Shima, S.-I., van Diedenhoven, B., and Xue, L.: Confronting the challenge of modeling cloud and
precipitation microphysics, J. Adv. Model. Earth Syst.,
12, e2019MS001689, https://doi.org/10.1029/2019MS001689 2020. a
Mühlbauer, K., Shrestha, P., and Evaristo R.: Polarimetric radar observation processing tool, GitHub [code], https://github.com/meteo-ubonn/miubrt, last access: 25 May 2022. a
Myneni, R., Knyazikhin, Y., and Park, T.: MCD15A2H MODIS/Terra+Aqua Leaf Area
Index/FPAR 8-day L4 Global 500 m SIN Grid V006 [Data set], NASA EOSDIS Land
Processes DAAC, https://doi.org/10.5067/MODIS/MCD15A2H.006 (last access: 9 March 2019), 2015. a
Oleson, K. W., Niu, G. Y., Yang, Z. L., Lawrence, D. M., Thornton, P. E., Lawrence, P. J., Stöckli, R., Dickinson, R. E., Bonan, G. B., Levis, S., Dai, A., and Qian, T.: Improvements to
the Community Land Model and their impact on the hydrological cycle, J. Geophys. Res.-Biogeo., 113, G01021, https://doi.org/10.1029/2007JG000563, 2008. a
Oue, M., Tatarevic, A., Kollias, P., Wang, D., Yu, K., and Vogelmann, A. M.: The Cloud-resolving model Radar SIMulator (CR-SIM) Version 3.3: description and applications of a virtual observatory, Geosci. Model Dev., 13, 1975–1998, https://doi.org/10.5194/gmd-13-1975-2020, 2020. a
Peralta, C., Ben Bouallègue, Z., Theis, S., Gebhardt, C., and Buchhold, M.:
Accounting for initial condition uncertainties in COSMO-DE-EPS, J.
Geophys. Res.-Atmos., 117, D07108, https://doi.org/10.1029/2011JD016581, 2012. a
Protat, A., Bouniol, D., O'Connor, E. J., Baltink, H. K., Verlinde, J., and
Widener, K.: CloudSat as a Global Radar Calibrator, J. Atmos.
Ocean. Technol., 28, 445–452, https://doi.org/10.1175/2010JTECHA1443.1, 2011. a
Putnam, B. J., Xue, M., Jung, Y., Zhang, G., and Kong, F.: Simulation of
polarimetric radar variables from 2013 CAPS spring experiment storm-scale
ensemble forecasts and evaluation of microphysics schemes, Mon. Weather
Rev., 145, 49–73, 2017. a
Rahman, M., Sulis, M., and Kollet, S.: The subsurface–land surface–atmosphere
connection under convective conditions, Adv. Water Resour., 83,
240–249, 2015. a
Ramsauer, T., Weiß, T., and Marzahn, P.: Comparison of the GPM IMERG final
precipitation product to RADOLAN weather radar data over the topographically
and climatically diverse Germany, Remote Sens., 10, 2029, https://doi.org/10.3390/rs10122029, 2018. a
Raschendorfer, M.: The new turbulence parameterization of LM, COSMO Newsletter,
1, 89–97, 2001. a
Ritter, B. and Geleyn, J.-F.: A comprehensive radiation scheme for numerical
weather prediction models with potential applications in climate simulations,
Mon. Weather Rev,, 120, 303–325, 1992. a
Ryzhkov, A., Pinsky, M., Pokrovsky, A., and Khain, A.: Polarimetric Radar
Observation Operator for a Cloud Model with Spectral Microphysics, J. Appl. Meteorol. Clim., 50, 873–894,
https://doi.org/10.1175/2010JAMC2363.1, 2011. a, b
Ryzhkov, A. V., Snyder, J., Carlin, J. T., Khain, A., and Pinsky, M.: What
polarimetric weather radars offer to cloud modelers: forward radar operators
and microphysical/thermodynamic retrievals, Atmosphere, 11, 362, https://doi.org/10.3390/atmos11040362, 2020. a
Schuur, T., Ryzhkov, A., Heinselman, P., Zrnic, D., Burgess, D., and
Scharfenberg, K.: Observations and classification of echoes with the
polarimetric WSR-88D radar, Report of the National Severe Storms Laboratory,
Norman, OK, 46, 73069, 2003. a
Schwaller, M. R. and Morris, K. R.: A ground validation network for the Global
Precipitation Measurement mission, J. Atmos. Ocean.
Technol., 28, 301–319, 2011. a
Segal, Y. and Khain, A.: Dependence of droplet concentration on aerosol
conditions in different cloud types: Application to droplet concentration
parameterization of aerosol conditions, J. Geophys. Res.-Atmos., 111, D15204, https://doi.org/10.1029/2005JD006561, 2006. a, b
Seifert, A., Köhler, C., and Beheng, K. D.: Aerosol-cloud-precipitation effects over Germany as simulated by a convective-scale numerical weather prediction model, Atmos. Chem. Phys., 12, 709–725, https://doi.org/10.5194/acp-12-709-2012, 2012. a
Shrestha, P.: Characterization of Pre-Monsoon Aerosol and
Aerosol-Cloud-Rainfall Interactions in Central Nepal, Ph.D. thesis, Duke
University, https://hdl.handle.net/10161/3836 (last access: 1 June 2022), 2011. a
Shrestha, P.: Clouds and Vegetation Modulate Shallow Groundwater Table Depth,
J. Hydrometeorol., 22, 753–763, https://doi.org/10.1175/JHM-D-20-0171.1,
2021a. a, b
Shrestha, P.: High resolution hydrological simulations over Bonn Radar Domain, CRC/TR32 Database (TR32DB) [data set], https://doi.org/10.5880/TR32DB.40, 2021. a, b
Shrestha, P. and Simmer, C.: Modeled land atmosphere coupling response to soil
moisture changes with different generations of land surface models, Water,
12, 46, https://doi.org/10.3390/w12010046, 2020. a
Shrestha, P., Dimri, A. P., Schomburg, A., and Simmer, C.: Improved
understanding of an extreme rainfall event at the Himalayan foothills–a case
study using COSMO, Tellus A, 67,
26031, https://doi.org/10.3402/tellusa.v67.26031, 2015. a
Shrestha, P., Mendrok, J., Pejcic, V., Trömel, S., Blahak, U., and Carlin, J. T.: Evaluation of the COSMO model (v5.1) in polarimetric radar space – impact of uncertainties in model microphysics, retrievals and forward operators, Geosci. Model Dev., 15, 291–313, https://doi.org/10.5194/gmd-15-291-2022, 2022. a, b, c, d, e
Simmer, C., Thiele-Eich, I., Masbou, M., Amelung, W., Crewell, S., Diekkrueger, B.,
Ewert, F., Hendricks Franssen, H.-J., Huisman, A. J., Kemna, A., Klitzsch, S., Kollet, N.,
Langensiepen, M., Loehnert, U., Rahman, M., Rascher, U., Schneider, K., Schween, J., Shao, Y.,
Shrestha, P., Stiebler, M., Sulis, M., Vanderborght, J., Vereecken, H., van der Kruk, J., Zerenner,
T., and Waldhoff, G.: Monitoring and modeling the terrestrial system from pores to
catchments: the transregional collaborative research center on patterns in
the soil–vegetation–atmosphere system, Bull. Am.
Meteorol. Soc., 96, 1765–1787, 2015. a
Snyder, J. C., Bluestein, H. B., Venkatesh, V., and Frasier, S. J.:
Observations of polarimetric signatures in supercells by an X-band mobile
Doppler radar, Mon. Weather Rev., 141, 3–29, 2013. a
Snyder, J. C., Ryzhkov, A. V., Kumjian, M. R., Khain, A. P., and Picca, J.: A
ZDR Column Detection Algorithm to Examine Convective Storm Updrafts, Weather
Forecast., 30, 1819–1844, https://doi.org/10.1175/WAF-D-15-0068.1, 2015. a
Snyder, J. C., Bluestein, H. B., II, D. T. D., and Jung, Y.: Simulations of
Polarimetric, X-Band Radar Signatures in Supercells. Part II: ZDR Columns and
Rings and KDP Columns, J. Appl. Meteorol. Clim., 56,
2001 – 2026, https://doi.org/10.1175/JAMC-D-16-0139.1, 2017b. a
Staniforth, A., White, A., Wood, N., Thuburn, J., Zerroukat, M., Cordero, E.,
Davies, T., and Diamantakis, M.: Joy of UM 6.3 model formulation, Unified
Model Documentation Paper, 15, 2006. a
Steppeler, J., Doms, G., Schättler, U., Bitzer, H., Gassmann, A., Damrath,
U., and Gregoric, G.: Meso-gamma scale forecasts using the nonhydrostatic
model LM, Meteorol. Atmos. Phys., 82, 75–96, 2003. a
Sulis, M., Langensiepen, M., Shrestha, P., Schickling, A., Simmer, C., and
Kollet, S. J.: Evaluating the influence of plant-specific physiological
parameterizations on the partitioning of land surface energy fluxes, J. Hydrometeorol., 16, 517–533, 2015. a
Suzuki, S.-I., Maesaka, T., Iwanami, K., Shimizu, S., and Kieda, K.: X-band
dual-polarization radar observations of the supercell storm that generated an
F3 tornado on 6 May 2012 in Ibaraki Prefecture, Japan, J.
Meteorol. Soc. Jpn. Ser. II, 96A, 25–33, https://doi.org/10.2151/jmsj.2017-019, 2018. a, b, c
Tao, W.-K., Shi, J. J., Chen, S. S., Lang, S., Lin, P.-L., Hong, S.-Y.,
Peters-Lidard, C., and Hou, A.: The impact of microphysical schemes on
hurricane intensity and track, Asia-Pa. J. Atmos. Sci.,
47, 1–16, 2011. a
Tao, W.-K., Wu, D., Lang, S., Chern, J.-D., Peters-Lidard, C., Fridlind, A.,
and Matsui, T.: High-resolution NU-WRF simulations of a deep
convective-precipitation system during MC3E: Further improvements and
comparisons between Goddard microphysics schemes and observations, J.
Geophys. Res.-Atmos., 121, 1278–1305, 2016. a
Testud, J., Le Bouar, E., Obligis, E., and Ali-Mehenni, M.: The rain profiling
algorithm applied to polarimetric weather radar, J. Atmos.
Ocean. Technol., 17, 332–356, 2000. a
Tiedtke, M.: A comprehensive mass flux scheme for cumulus parameterization in
large-scale models, Mon. Weather Rev., 117, 1779–1800, 1989. a
Trömel, S., Kumjian, M. R., Ryzhkov, A. V., Simmer, C., and Diederich, M.:
Backscatter differential phase – Estimation and variability, J.
Appl. Meteorol. Clim., 52, 2529–2548, 2013. a
Trömel, S., Ryzhkov, A. V., Hickman, B., Mühlbauer, K., and Simmer, C.:
Polarimetric Radar Variables in the Layers of Melting and Dendritic Growth at
X Band – Implications for a Nowcasting Strategy in Stratiform Rain, J. Appl. Meteorol. Clim., 58, 2497–2522, 2019. a
Trömel, S., Simmer, C., Blahak, U., Blanke, A., Doktorowski, S., Ewald, F., Frech, M., Gergely, M., Hagen, M., Janjic, T., Kalesse-Los, H., Kneifel, S., Knote, C., Mendrok, J., Moser, M., Köcher, G., Mühlbauer, K., Myagkov, A., Pejcic, V., Seifert, P., Shrestha, P., Teisseire, A., von Terzi, L., Tetoni, E., Vogl, T., Voigt, C., Zeng, Y., Zinner, T., and Quaas, J.: Overview: Fusion of radar polarimetry and numerical atmospheric modelling towards an improved understanding of cloud and precipitation processes, Atmos. Chem. Phys., 21, 17291–17314, https://doi.org/10.5194/acp-21-17291-2021, 2021. a, b, c, d, e, f
Uebel, M., Herbst, M., and Bott, A.: Mesoscale simulations of atmospheric CO2
variations using a high-resolution model system with process-based CO2
fluxes, Q. J. Roy. Meteorol. Soc., 143,
1860–1876, 2017. a
van Lier-Walqui, M., Fridlind, A. M., Ackerman, A. S., Collis, S., Helmus, J.,
MacGorman, D. R., North, K., Kollias, P., and Posselt, D. J.: On polarimetric
radar signatures of deep convection for model evaluation: Columns of specific
differential phase observed during MC3E, Mon. Weather Rev., 144,
737–758, 2016. a
Warren, R. A., Protat, A., Siems, S. T., Ramsay, H. A., Louf, V., Manton,
M. J., and Kane, T. A.: Calibrating Ground-Based Radars against TRMM and GPM,
J. Atmos. Ocean. Technol., 35, 323–346,
https://doi.org/10.1175/JTECH-D-17-0128.1, 2018. a
Wicker, L. J. and Skamarock, W. C.: Time-splitting methods for elastic models
using forward time schemes, Mon. Weather Rev., 130, 2088–2097, 2002. a
Williams, E. R., Hood, K. T., Cho, J. Y. N., Smalley, D. J., Sandifer, J. B., Zrnic, D.,
Melnikov, V. M., Burgess, D. W., Forsyth, D., Webster, T. M., and Erickson, D.: End-to-end
calibration of NEXRAD differential reflectivity with metal spheres, in: Proc.
36th Conf. Radar Meteorol, Breckenridge, CO, 19 September 2013, Amer. Meteor. Soc., 15, 316, https://ams.confex.com/ams/36Radar/webprogram/Paper228796.html, (last access: 31 May 2022), 2013. a
Wolfensberger, D. and Berne, A.: From model to radar variables: a new forward
polarimetric radar operator for COSMO, Atmos. Meas. Tech.,
11, 3883–3916, https://doi.org/10.5194/amt-11-3883-2018, 2018. a
Xie, X., Evaristo, R., Troemel, S., Saavedra, P., Simmer, C., and Ryzhkov, A.:
Radar Observation of Evaporation and Implications for Quantitative
Precipitation and Cooling Rate Estimation, J. Atmos.
Ocean. Technol., 33, 1779–1792, https://doi.org/10.1175/JTECH-D-15-0244.1, 2016.
a, b
Xie, X., Shrestha, P., Mendrok, J., Carlin, J., Trömel, S., and Blahak, U.:
Bonn Polarimetric Radar forward Operator (B-PRO), CRC/TR32 Database (TR32DB) [code], https://doi.org/10.5880/TR32DB.41, 2021. a, b
Zeng, Y., Blahak, U., and Jerger, D.: An efficient modular volume-scanning
radar forward operator for NWP models: description and coupling to the COSMO
model, Q. J. Roy. Meteorol. Soc., 142,
3234–3256, 2016. a
Short summary
The study makes use of ensemble numerical simulations with forward operator to evaluate the simulated cloud and precipitation processes with radar observations. While comparing model data with radar has its own challenges due to errors in the forward operator and processed radar measurements, the model was generally found to underestimate the high reflectivity, width/magnitude (value) of ZDR columns and high precipitation.
The study makes use of ensemble numerical simulations with forward operator to evaluate the...
Altmetrics
Final-revised paper
Preprint