Articles | Volume 22, issue 10
https://doi.org/10.5194/acp-22-6559-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-6559-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Energy and mass exchange at an urban site in mountainous terrain – the Alpine city of Innsbruck
Department of Atmospheric and Cryospheric Sciences, University of
Innsbruck, Innsbruck, Austria
Mathias Walter Rotach
Department of Atmospheric and Cryospheric Sciences, University of
Innsbruck, Innsbruck, Austria
Alexander Gohm
Department of Atmospheric and Cryospheric Sciences, University of
Innsbruck, Innsbruck, Austria
Martin Graus
Department of Atmospheric and Cryospheric Sciences, University of
Innsbruck, Innsbruck, Austria
Thomas Karl
Department of Atmospheric and Cryospheric Sciences, University of
Innsbruck, Innsbruck, Austria
Maren Haid
Department of Atmospheric and Cryospheric Sciences, University of
Innsbruck, Innsbruck, Austria
Lukas Umek
Department of Atmospheric and Cryospheric Sciences, University of
Innsbruck, Innsbruck, Austria
Thomas Muschinski
Department of Atmospheric and Cryospheric Sciences, University of
Innsbruck, Innsbruck, Austria
Related authors
Ting Sun, Hamidreza Omidvar, Zhenkun Li, Ning Zhang, Wenjuan Huang, Simone Kotthaus, Helen C. Ward, Zhiwen Luo, and Sue Grimmond
Geosci. Model Dev., 17, 91–116, https://doi.org/10.5194/gmd-17-91-2024, https://doi.org/10.5194/gmd-17-91-2024, 2024
Short summary
Short summary
For the first time, we coupled a state-of-the-art urban land surface model – Surface Urban Energy and Water Scheme (SUEWS) – with the widely-used Weather Research and Forecasting (WRF) model, creating an open-source tool that may benefit multiple applications. We tested our new system at two UK sites and demonstrated its potential by examining how human activities in various areas of Greater London influence local weather conditions.
Mathew Lipson, Sue Grimmond, Martin Best, Winston T. L. Chow, Andreas Christen, Nektarios Chrysoulakis, Andrew Coutts, Ben Crawford, Stevan Earl, Jonathan Evans, Krzysztof Fortuniak, Bert G. Heusinkveld, Je-Woo Hong, Jinkyu Hong, Leena Järvi, Sungsoo Jo, Yeon-Hee Kim, Simone Kotthaus, Keunmin Lee, Valéry Masson, Joseph P. McFadden, Oliver Michels, Wlodzimierz Pawlak, Matthias Roth, Hirofumi Sugawara, Nigel Tapper, Erik Velasco, and Helen Claire Ward
Earth Syst. Sci. Data, 14, 5157–5178, https://doi.org/10.5194/essd-14-5157-2022, https://doi.org/10.5194/essd-14-5157-2022, 2022
Short summary
Short summary
We describe a new openly accessible collection of atmospheric observations from 20 cities around the world, capturing 50 site years. The observations capture local meteorology (temperature, humidity, wind, etc.) and the energy fluxes between the land and atmosphere (e.g. radiation and sensible and latent heat fluxes). These observations can be used to improve our understanding of urban climate processes and to test the accuracy of urban climate models.
Christian Lamprecht, Martin Graus, Marcus Striednig, Michael Stichaner, Werner Jud, Andreas Held, and Thomas Karl
EGUsphere, https://doi.org/10.5194/egusphere-2024-2939, https://doi.org/10.5194/egusphere-2024-2939, 2024
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
Air pollution management requires accurate determination of emissions and emission ratios of air pollutants. In this paper, we explore a new way to resolve excess mixing ratios in turbulent plumes, which allows aggregation of unbiased ensemble averages of air pollutant ratios that can be compared with emission models. The approach is tested in an urban environment and used to resolve emission patterns of nitrogen oxides and carbon dioxide.
Johannes Mikkola, Alexander Gohm, Victoria A. Sinclair, and Federico Bianchi
EGUsphere, https://doi.org/10.5194/egusphere-2024-1900, https://doi.org/10.5194/egusphere-2024-1900, 2024
Short summary
Short summary
This study investigates the influence of valley floor inclination on diurnal winds and passive tracer transport within idealised mountain valleys using numerical simulations. The valley inclination strengthens the daytime up-valley winds but only up to a certain point. Beyond that critical angle, the winds weaken again. The inclined valleys transport the tracers higher up in the free troposphere which would for example lead to higher potential for long-range transport.
Arianna Peron, Martin Graus, Marcus Striednig, Christian Lamprecht, Georg Wohlfahrt, and Thomas Karl
Atmos. Chem. Phys., 24, 7063–7083, https://doi.org/10.5194/acp-24-7063-2024, https://doi.org/10.5194/acp-24-7063-2024, 2024
Short summary
Short summary
The anthropogenic fraction of non-methane volatile organic compound (NMVOC) emissions associated with biogenic sources (e.g., terpenes) is investigated based on eddy covariance observations. The anthropogenic fraction of terpene emissions is strongly dependent on season. When analyzing volatile chemical product (VCP) emissions in urban environments, we caution that observations from short-term campaigns might over-/underestimate their significance depending on local and seasonal circumstances.
Nevio Babić, Bianca Adler, Alexander Gohm, Manuela Lehner, and Norbert Kalthoff
Weather Clim. Dynam., 5, 609–631, https://doi.org/10.5194/wcd-5-609-2024, https://doi.org/10.5194/wcd-5-609-2024, 2024
Short summary
Short summary
Day-to-day weather over mountains remains a significant challenge in the domain of weather forecast. Using a combination of measurements from several instrument platforms, including Doppler lidars, aircraft, and radiosondes, we developed a method that relies primarily on turbulence characteristics of the lowest layers of the atmosphere. As a result, we identified new ways in which atmosphere behaves over mountains during daytime, which may serve to further improve forecasting capabilities.
Ting Sun, Hamidreza Omidvar, Zhenkun Li, Ning Zhang, Wenjuan Huang, Simone Kotthaus, Helen C. Ward, Zhiwen Luo, and Sue Grimmond
Geosci. Model Dev., 17, 91–116, https://doi.org/10.5194/gmd-17-91-2024, https://doi.org/10.5194/gmd-17-91-2024, 2024
Short summary
Short summary
For the first time, we coupled a state-of-the-art urban land surface model – Surface Urban Energy and Water Scheme (SUEWS) – with the widely-used Weather Research and Forecasting (WRF) model, creating an open-source tool that may benefit multiple applications. We tested our new system at two UK sites and demonstrated its potential by examining how human activities in various areas of Greater London influence local weather conditions.
Thomas Muschinski, Georg J. Mayr, Achim Zeileis, and Thorsten Simon
Nonlin. Processes Geophys., 30, 503–514, https://doi.org/10.5194/npg-30-503-2023, https://doi.org/10.5194/npg-30-503-2023, 2023
Short summary
Short summary
Statistical post-processing is necessary to generate probabilistic forecasts from physical numerical weather prediction models. To allow for more flexibility, there has been a shift in post-processing away from traditional parametric regression models towards modern machine learning methods. By fusing these two approaches, we developed model output statistics random forests, a new post-processing method that is highly flexible but at the same time also very robust and easy to interpret.
Matthias Göbel, Stefano Serafin, and Mathias W. Rotach
Weather Clim. Dynam., 4, 725–745, https://doi.org/10.5194/wcd-4-725-2023, https://doi.org/10.5194/wcd-4-725-2023, 2023
Short summary
Short summary
On summer days over mountains, upslope winds transport moist air towards mountain tops and beyond, making local rain showers more likely. We use idealized simulations to investigate how mountain steepness affects this mechanism. We find that steeper mountains lead to a delayed onset and lower intensity of the storms, because less moisture accumulates over the ridges and the thermal updraft zone at the top is narrower and thus more prone to the intrusion of dry air from the environment.
Hetal P. Dabhi, Mathias W. Rotach, and Michael Oberguggenberger
Hydrol. Earth Syst. Sci., 27, 2123–2147, https://doi.org/10.5194/hess-27-2123-2023, https://doi.org/10.5194/hess-27-2123-2023, 2023
Short summary
Short summary
Spatiotemporally consistent high-resolution precipitation data on climate are needed for climate change impact assessments, but obtaining these data is challenging for areas with complex topography. We present a model that generates synthetic gridded daily precipitation data at a 1 km spatial resolution using observed meteorological station data as input, thereby providing data where historical observations are unavailable. We evaluate this model for a mountainous region in the European Alps.
Thomas Muschinski, Moritz N. Lang, Georg J. Mayr, Jakob W. Messner, Achim Zeileis, and Thorsten Simon
Wind Energ. Sci., 7, 2393–2405, https://doi.org/10.5194/wes-7-2393-2022, https://doi.org/10.5194/wes-7-2393-2022, 2022
Short summary
Short summary
The power generated by offshore wind farms can vary greatly within a couple of hours, and failing to anticipate these ramp events can lead to costly imbalances in the electrical grid. A novel multivariate Gaussian regression model helps us to forecast not just the means and variances of the next day's hourly wind speeds, but also their corresponding correlations. This information is used to generate more realistic scenarios of power production and accurate estimates for ramp probabilities.
Mathew Lipson, Sue Grimmond, Martin Best, Winston T. L. Chow, Andreas Christen, Nektarios Chrysoulakis, Andrew Coutts, Ben Crawford, Stevan Earl, Jonathan Evans, Krzysztof Fortuniak, Bert G. Heusinkveld, Je-Woo Hong, Jinkyu Hong, Leena Järvi, Sungsoo Jo, Yeon-Hee Kim, Simone Kotthaus, Keunmin Lee, Valéry Masson, Joseph P. McFadden, Oliver Michels, Wlodzimierz Pawlak, Matthias Roth, Hirofumi Sugawara, Nigel Tapper, Erik Velasco, and Helen Claire Ward
Earth Syst. Sci. Data, 14, 5157–5178, https://doi.org/10.5194/essd-14-5157-2022, https://doi.org/10.5194/essd-14-5157-2022, 2022
Short summary
Short summary
We describe a new openly accessible collection of atmospheric observations from 20 cities around the world, capturing 50 site years. The observations capture local meteorology (temperature, humidity, wind, etc.) and the energy fluxes between the land and atmosphere (e.g. radiation and sensible and latent heat fluxes). These observations can be used to improve our understanding of urban climate processes and to test the accuracy of urban climate models.
Cornelius Immanuel Weiß, Alexander Gohm, Mathias Walter Rotach, and Thomas Torora Minda
Weather Clim. Dynam., 3, 1003–1019, https://doi.org/10.5194/wcd-3-1003-2022, https://doi.org/10.5194/wcd-3-1003-2022, 2022
Short summary
Short summary
Two gap flow events in the Great Rift Valley in Ethiopia were investigated based on observations, ERA5 reanalysis data, and simulations with the numerical weather prediction model WRF. The main focus was on strong winds in the area around Lake Abaya since the winds may generate waves on the lake which help to sustain the lake's ecology. That is important in terms of food supply for the local population. The gap winds exhibit a diurnal cycle and a seasonal dependence.
Sihang Wang, Bin Yuan, Caihong Wu, Chaomin Wang, Tiange Li, Xianjun He, Yibo Huangfu, Jipeng Qi, Xiao-Bing Li, Qing'e Sha, Manni Zhu, Shengrong Lou, Hongli Wang, Thomas Karl, Martin Graus, Zibing Yuan, and Min Shao
Atmos. Chem. Phys., 22, 9703–9720, https://doi.org/10.5194/acp-22-9703-2022, https://doi.org/10.5194/acp-22-9703-2022, 2022
Short summary
Short summary
Volatile organic compound (VOC) emissions from vehicles are measured using online mass spectrometers. Differences between gasoline and diesel vehicles are observed with higher emission factors of most oxygenated VOCs (OVOCs) and heavier aromatics from diesel vehicles. A higher aromatics / toluene ratio could provide good indicators to distinguish emissions from both vehicle types. We show that OVOCs account for significant contributions to VOC emissions from vehicles, especially diesel vehicles.
Lisa Kaser, Arianna Peron, Martin Graus, Marcus Striednig, Georg Wohlfahrt, Stanislav Juráň, and Thomas Karl
Atmos. Chem. Phys., 22, 5603–5618, https://doi.org/10.5194/acp-22-5603-2022, https://doi.org/10.5194/acp-22-5603-2022, 2022
Short summary
Short summary
Biogenic volatile organic compounds (e.g., terpenoids) play an essential role in atmospheric chemistry. Urban greening activities need to consider the ozone- and aerosol-forming potential of these compounds released from vegetation. NMVOC emissions in urban environments are complex, and the biogenic component remains poorly quantified. For summer conditions biogenic emissions dominate terpene emissions and heat waves can significantly modulate urban biogenic terpenoid emissions.
Manuel Saigger and Alexander Gohm
Weather Clim. Dynam., 3, 279–303, https://doi.org/10.5194/wcd-3-279-2022, https://doi.org/10.5194/wcd-3-279-2022, 2022
Short summary
Short summary
In this work a special form of a foehn wind in an Alpine valley with a large-scale northwesterly flow is investigated. The study clarifies the origin of the air mass and the mechanisms by which this air enters the valley. A trajectory analysis shows that the location where the main airstream passes the crest line is more suitable for a foehn classification than the local or large-scale wind direction. Mountain waves and a lee rotor were crucial for importing air into the valley.
Matthias Göbel, Stefano Serafin, and Mathias W. Rotach
Geosci. Model Dev., 15, 669–681, https://doi.org/10.5194/gmd-15-669-2022, https://doi.org/10.5194/gmd-15-669-2022, 2022
Short summary
Short summary
We present WRFlux, an open-source software that allows numerically consistent, time-averaged budget evaluation of prognostic variables for the numerical weather prediction model WRF as well as the transformation of the budget equations from the terrain-following grid of the model to the Cartesian coordinate system. We demonstrate the performance and a possible application of WRFlux and illustrate the detrimental effects of approximations that are inconsistent with the model numerics.
Lukas Fischer, Martin Breitenlechner, Eva Canaval, Wiebke Scholz, Marcus Striednig, Martin Graus, Thomas G. Karl, Tuukka Petäjä, Markku Kulmala, and Armin Hansel
Atmos. Meas. Tech., 14, 8019–8039, https://doi.org/10.5194/amt-14-8019-2021, https://doi.org/10.5194/amt-14-8019-2021, 2021
Short summary
Short summary
Ecosystems emit biogenic volatile organic compounds (BVOCs), which are then oxidized in the atmosphere, contributing to ozone and secondary aerosol formation. While flux measurements of BVOCs are state of the art, flux measurements of the less volatile oxidation products are difficult to achieve due to inlet losses. Here we present first flux measurements, utilizing a novel PTR3 instrument in combination with a specially designed wall-less inlet we put on top of the Hyytiälä tower in Finland.
Johannes Horak, Marlis Hofer, Ethan Gutmann, Alexander Gohm, and Mathias W. Rotach
Geosci. Model Dev., 14, 1657–1680, https://doi.org/10.5194/gmd-14-1657-2021, https://doi.org/10.5194/gmd-14-1657-2021, 2021
Short summary
Short summary
This process-based evaluation of the atmospheric model ICAR is conducted to derive recommendations to increase the likelihood of its results being correct for the right reasons. We conclude that a different diagnosis of the atmospheric background state is necessary, as well as a model top at an elevation of at least 10 km. Alternative boundary conditions at the top were not found to be effective in reducing this model top elevation. The results have wide implications for future ICAR studies.
Christian Lamprecht, Martin Graus, Marcus Striednig, Michael Stichaner, and Thomas Karl
Atmos. Chem. Phys., 21, 3091–3102, https://doi.org/10.5194/acp-21-3091-2021, https://doi.org/10.5194/acp-21-3091-2021, 2021
Short summary
Short summary
The first European SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) wave and associated lockdown provided a unique sensitivity experiment to study air pollution. We find significantly different emission trajectories between classical air pollution and climate gases (e.g., carbon dioxide). The analysis suggests that European policies, shifting residential, public, and commercial energy demand towards cleaner combustion, have helped to improve air quality more than expected.
Arianna Peron, Lisa Kaser, Anne Charlott Fitzky, Martin Graus, Heidi Halbwirth, Jürgen Greiner, Georg Wohlfahrt, Boris Rewald, Hans Sandén, and Thomas Karl
Biogeosciences, 18, 535–556, https://doi.org/10.5194/bg-18-535-2021, https://doi.org/10.5194/bg-18-535-2021, 2021
Short summary
Short summary
Drought events are expected to become more frequent with climate change. Along with these events atmospheric ozone is also expected to increase. Both can stress plants. Here we investigate to what extent these factors modulate the emission of volatile organic compounds (VOCs) from oak plants. We find an antagonistic effect between drought stress and ozone, impacting the emission of different BVOCs, which is indirectly controlled by stomatal opening, allowing plants to control their water budget.
Bettina Richter, Alec van Herwijnen, Mathias W. Rotach, and Jürg Schweizer
Nat. Hazards Earth Syst. Sci., 20, 2873–2888, https://doi.org/10.5194/nhess-20-2873-2020, https://doi.org/10.5194/nhess-20-2873-2020, 2020
Short summary
Short summary
We investigated the sensitivity of modeled snow instability to uncertainties in meteorological input, typically found in complex terrain. The formation of the weak layer was very robust due to the long dry period, indicated by a widespread avalanche problem. Once a weak layer has formed, precipitation mostly determined slab and weak layer properties and hence snow instability. When spatially assessing snow instability for avalanche forecasting, accurate precipitation patterns have to be known.
Marcus Striednig, Martin Graus, Tilmann D. Märk, and Thomas G. Karl
Atmos. Meas. Tech., 13, 1447–1465, https://doi.org/10.5194/amt-13-1447-2020, https://doi.org/10.5194/amt-13-1447-2020, 2020
Short summary
Short summary
The current work summarizes a long-term effort to provide an open-source code for the analysis of turbulent fluctuations of trace gases in the atmosphere by eddy covariance and disjunct eddy covariance, with a special focus on reactive gases that participate in atmospheric chemistry. The performance of the code is successfully evaluated based on measurements of minute fluxes of non-methane volatile organic compounds into the urban atmosphere.
Bettina Richter, Jürg Schweizer, Mathias W. Rotach, and Alec van Herwijnen
The Cryosphere, 13, 3353–3366, https://doi.org/10.5194/tc-13-3353-2019, https://doi.org/10.5194/tc-13-3353-2019, 2019
Short summary
Short summary
Information on snow stability is important for avalanche forecasting. To improve the stability estimation in the snow cover model SNOWPACK, we suggested an improved parameterization for the critical crack length. We compared 3 years of field data to SNOWPACK simulations. The match between observed and modeled critical crack lengths greatly improved, and critical weak layers appear more prominently in the modeled vertical profile of critical crack length.
Christian Mallaun, Andreas Giez, Georg J. Mayr, and Mathias W. Rotach
Atmos. Chem. Phys., 19, 9769–9786, https://doi.org/10.5194/acp-19-9769-2019, https://doi.org/10.5194/acp-19-9769-2019, 2019
Short summary
Short summary
This study presents airborne measurements in shallow convection over land to investigate the dynamic properties of clouds focusing on possible narrow downdraughts in the surrounding of the clouds. A characteristic narrow downdraught region (
subsiding shell) is found directly outside the cloud borders for the mean vertical wind distribution. The
subsiding shellresults from the distribution of the highly variable updraughts and downdraughts in the near vicinity of the cloud.
Johannes Horak, Marlis Hofer, Fabien Maussion, Ethan Gutmann, Alexander Gohm, and Mathias W. Rotach
Hydrol. Earth Syst. Sci., 23, 2715–2734, https://doi.org/10.5194/hess-23-2715-2019, https://doi.org/10.5194/hess-23-2715-2019, 2019
Short summary
Short summary
This study presents an in-depth evaluation of the Intermediate Complexity Atmospheric Research (ICAR) model for high-resolution precipitation fields in complex topography. ICAR is evaluated with data from weather stations located in the Southern Alps of New Zealand. While ICAR underestimates rainfall amounts, it clearly improves over a coarser global model and shows potential to generate precipitation fields for long-term impact studies focused on the local impact of a changing global climate.
Anna L. Hodshire, Brett B. Palm, M. Lizabeth Alexander, Qijing Bian, Pedro Campuzano-Jost, Eben S. Cross, Douglas A. Day, Suzane S. de Sá, Alex B. Guenther, Armin Hansel, James F. Hunter, Werner Jud, Thomas Karl, Saewung Kim, Jesse H. Kroll, Jeong-Hoo Park, Zhe Peng, Roger Seco, James N. Smith, Jose L. Jimenez, and Jeffrey R. Pierce
Atmos. Chem. Phys., 18, 12433–12460, https://doi.org/10.5194/acp-18-12433-2018, https://doi.org/10.5194/acp-18-12433-2018, 2018
Short summary
Short summary
We investigate the nucleation and growth processes that shape the aerosol size distribution inside oxidation flow reactors (OFRs) that sampled ambient air from Colorado and the Amazon rainforest. Results indicate that organics are important for both nucleation and growth, vapor uptake was limited to accumulation-mode particles, fragmentation reactions were important to limit particle growth at higher OH exposures, and an H2SO4-organics nucleation mechanism captured new particle formation well.
Chunxiang Ye, Xianliang Zhou, Dennis Pu, Jochen Stutz, James Festa, Max Spolaor, Catalina Tsai, Christopher Cantrell, Roy L. Mauldin III, Andrew Weinheimer, Rebecca S. Hornbrook, Eric C. Apel, Alex Guenther, Lisa Kaser, Bin Yuan, Thomas Karl, Julie Haggerty, Samuel Hall, Kirk Ullmann, James Smith, and John Ortega
Atmos. Chem. Phys., 18, 9107–9120, https://doi.org/10.5194/acp-18-9107-2018, https://doi.org/10.5194/acp-18-9107-2018, 2018
Short summary
Short summary
Substantial levels of HONO existed during the day throughout the troposphere over the southeastern US during NOMADSS 2013. Particulate nitrate photolysis appeared to be the major volume HONO source, while NOx was an important HONO precursor only in industrial and urban plumes. HONO was not a significant OH radical precursor in the rural troposphere away from the ground surface; however, its production from particulate nitrate photolysis was an important renoxification pathway.
Lukas Pichelstorfer, Dominik Stolzenburg, John Ortega, Thomas Karl, Harri Kokkola, Anton Laakso, Kari E. J. Lehtinen, James N. Smith, Peter H. McMurry, and Paul M. Winkler
Atmos. Chem. Phys., 18, 1307–1323, https://doi.org/10.5194/acp-18-1307-2018, https://doi.org/10.5194/acp-18-1307-2018, 2018
Short summary
Short summary
Quantification of new particle formation as a source of atmospheric aerosol is clearly of importance for climate and health aspects. In our new study we developed two analysis methods that allow retrieval of nanoparticle growth dynamics at much higher precision than it was possible so far. Our results clearly demonstrate that growth rates show much more variation than is currently known and suggest that the Kelvin effect governs growth in the sub-10 nm size range.
Brett B. Palm, Pedro Campuzano-Jost, Douglas A. Day, Amber M. Ortega, Juliane L. Fry, Steven S. Brown, Kyle J. Zarzana, William Dube, Nicholas L. Wagner, Danielle C. Draper, Lisa Kaser, Werner Jud, Thomas Karl, Armin Hansel, Cándido Gutiérrez-Montes, and Jose L. Jimenez
Atmos. Chem. Phys., 17, 5331–5354, https://doi.org/10.5194/acp-17-5331-2017, https://doi.org/10.5194/acp-17-5331-2017, 2017
Short summary
Short summary
Ambient forest air was oxidized by OH, O3, or NO3 inside an oxidation flow reactor, leading to formation of particulate matter from any gaseous precursors found in the air. Closure was achieved between the amount of particulate mass formed from O3 and NO3 oxidation and the amount predicted from speciated gaseous precursors, which was in contrast to previous results for OH oxidation (Palm et al., 2016). Elemental analysis of the particulate mass formed in the reactor is presented.
Brian M. Lerner, Jessica B. Gilman, Kenneth C. Aikin, Elliot L. Atlas, Paul D. Goldan, Martin Graus, Roger Hendershot, Gabriel A. Isaacman-VanWertz, Abigail Koss, William C. Kuster, Richard A. Lueb, Richard J. McLaughlin, Jeff Peischl, Donna Sueper, Thomas B. Ryerson, Travis W. Tokarek, Carsten Warneke, Bin Yuan, and Joost A. de Gouw
Atmos. Meas. Tech., 10, 291–313, https://doi.org/10.5194/amt-10-291-2017, https://doi.org/10.5194/amt-10-291-2017, 2017
Short summary
Short summary
Whole air sampling followed by analysis by gas chromatography is a common technique for characterization of trace volatile organic compounds in the atmosphere. We describe a new automated gas chromatograph–mass spectrograph which uses a Stirling cooler for sample preconcentration at −165 °C without the need for a cryogen such as liquid nitrogen. We also discuss potential sources of artifacts from our electropolished stainless steel sampling system and present results from two field campaigns.
Daniel Leukauf, Alexander Gohm, and Mathias W. Rotach
Atmos. Chem. Phys., 16, 13049–13066, https://doi.org/10.5194/acp-16-13049-2016, https://doi.org/10.5194/acp-16-13049-2016, 2016
Short summary
Short summary
Since populated valleys suffer often from poor air quality, it is of interest to better understand the various mechanisms relevant to remove pollutants from the valley atmosphere. One mechanism is the transport by along-slope flows, which are generated during fair-weather days. In this study we quantify the amount of tracer that is removed from a valley atmosphere and the amount that is re-circulated within the valleys. For this study we are using the numerical weather model WRF.
Pawel K. Misztal, Jeremy C. Avise, Thomas Karl, Klaus Scott, Haflidi H. Jonsson, Alex B. Guenther, and Allen H. Goldstein
Atmos. Chem. Phys., 16, 9611–9628, https://doi.org/10.5194/acp-16-9611-2016, https://doi.org/10.5194/acp-16-9611-2016, 2016
Short summary
Short summary
In this study, for the first time regional BVOC models are compared with direct regional measurements of fluxes from aircraft, allowing assessment of model accuracy at scales relevant to air quality modeling. We directly assess modeled isoprene emission inventories which are important for regional air quality simulations of ozone and secondary particle concentrations.
Carsten Warneke, Michael Trainer, Joost A. de Gouw, David D. Parrish, David W. Fahey, A. R. Ravishankara, Ann M. Middlebrook, Charles A. Brock, James M. Roberts, Steven S. Brown, Jonathan A. Neuman, Brian M. Lerner, Daniel Lack, Daniel Law, Gerhard Hübler, Iliana Pollack, Steven Sjostedt, Thomas B. Ryerson, Jessica B. Gilman, Jin Liao, John Holloway, Jeff Peischl, John B. Nowak, Kenneth C. Aikin, Kyung-Eun Min, Rebecca A. Washenfelder, Martin G. Graus, Mathew Richardson, Milos Z. Markovic, Nick L. Wagner, André Welti, Patrick R. Veres, Peter Edwards, Joshua P. Schwarz, Timothy Gordon, William P. Dube, Stuart A. McKeen, Jerome Brioude, Ravan Ahmadov, Aikaterini Bougiatioti, Jack J. Lin, Athanasios Nenes, Glenn M. Wolfe, Thomas F. Hanisco, Ben H. Lee, Felipe D. Lopez-Hilfiker, Joel A. Thornton, Frank N. Keutsch, Jennifer Kaiser, Jingqiu Mao, and Courtney D. Hatch
Atmos. Meas. Tech., 9, 3063–3093, https://doi.org/10.5194/amt-9-3063-2016, https://doi.org/10.5194/amt-9-3063-2016, 2016
Short summary
Short summary
In this paper we describe the experimental approach, the science goals and early results of the NOAA SENEX campaign, which was focused on studying the interactions between biogenic and anthropogenic emissions to form secondary pollutants.
During SENEX, the NOAA WP-3D aircraft conducted 20 research flights between 27 May and 10 July 2013 based out of Smyrna, TN. The SENEX flights included day- and nighttime flights in the Southeast as well as flights over areas with intense shale gas extraction.
Amber M. Ortega, Patrick L. Hayes, Zhe Peng, Brett B. Palm, Weiwei Hu, Douglas A. Day, Rui Li, Michael J. Cubison, William H. Brune, Martin Graus, Carsten Warneke, Jessica B. Gilman, William C. Kuster, Joost de Gouw, Cándido Gutiérrez-Montes, and Jose L. Jimenez
Atmos. Chem. Phys., 16, 7411–7433, https://doi.org/10.5194/acp-16-7411-2016, https://doi.org/10.5194/acp-16-7411-2016, 2016
Short summary
Short summary
An oxidation flow reactor (OFR) was deployed to study secondary organic aerosol (SOA) formation and aging of urban emissions at a wide range of OH exposures during the CalNex campaign in Pasadena, CA, in 2010. Results include linking SOA formation to short-lived reactive compounds, similar elemental composition of reactor-aged emissions to atmospheric aging, changes in OA mass due to condensation of oxidized gas-phase species and heterogeneous oxidation of particle-phase species.
Kathryn M. Emmerson, Ian E. Galbally, Alex B. Guenther, Clare Paton-Walsh, Elise-Andree Guerette, Martin E. Cope, Melita D. Keywood, Sarah J. Lawson, Suzie B. Molloy, Erin Dunne, Marcus Thatcher, Thomas Karl, and Simin D. Maleknia
Atmos. Chem. Phys., 16, 6997–7011, https://doi.org/10.5194/acp-16-6997-2016, https://doi.org/10.5194/acp-16-6997-2016, 2016
Short summary
Short summary
We have tested how a model using a global inventory of plant-based emissions compares with four sets of measurements made in southeast Australia. This region is known for its eucalypt species, which dominate the summertime global inventory. The Australian part of the inventory has been produced using measurements made on eucalypt saplings. The model could not match the measurements, and the inventory needs to be improved by taking measurements of a wider range of Australian plant types and ages.
Eliane G. Alves, Kolby Jardine, Julio Tota, Angela Jardine, Ana Maria Yãnez-Serrano, Thomas Karl, Julia Tavares, Bruce Nelson, Dasa Gu, Trissevgeni Stavrakou, Scot Martin, Paulo Artaxo, Antonio Manzi, and Alex Guenther
Atmos. Chem. Phys., 16, 3903–3925, https://doi.org/10.5194/acp-16-3903-2016, https://doi.org/10.5194/acp-16-3903-2016, 2016
Short summary
Short summary
For a long time, it was thought that tropical rainforests are evergreen forests and the processes involved in these ecosystems do not change all year long. However, some satellite retrievals have suggested that ecophysiological processes may present seasonal variations mainly due to variation in light and leaf phenology in Amazonia. These in situ measurements are the first showing of a seasonal trend of volatile organic compound emissions, correlating with light and leaf phenology in Amazonia.
Brett B. Palm, Pedro Campuzano-Jost, Amber M. Ortega, Douglas A. Day, Lisa Kaser, Werner Jud, Thomas Karl, Armin Hansel, James F. Hunter, Eben S. Cross, Jesse H. Kroll, Zhe Peng, William H. Brune, and Jose L. Jimenez
Atmos. Chem. Phys., 16, 2943–2970, https://doi.org/10.5194/acp-16-2943-2016, https://doi.org/10.5194/acp-16-2943-2016, 2016
Short summary
Short summary
Ambient pine forest air was oxidized by OH radicals in a PAM oxidation flow reactor during the BEACHON-RoMBAS campaign to study secondary organic aerosol formation. Approximately 4.4 times more secondary organic aerosol was formed in the reactor than could be explained by the volatile organic gases (VOCs) measured in ambient air. The organic aerosol formation can be explained by including an SOA yield from typically unmeasured semivolatile and intermediate-volatility organic gases (S/IVOCs).
G. M. Wolfe, J. Kaiser, T. F. Hanisco, F. N. Keutsch, J. A. de Gouw, J. B. Gilman, M. Graus, C. D. Hatch, J. Holloway, L. W. Horowitz, B. H. Lee, B. M. Lerner, F. Lopez-Hilifiker, J. Mao, M. R. Marvin, J. Peischl, I. B. Pollack, J. M. Roberts, T. B. Ryerson, J. A. Thornton, P. R. Veres, and C. Warneke
Atmos. Chem. Phys., 16, 2597–2610, https://doi.org/10.5194/acp-16-2597-2016, https://doi.org/10.5194/acp-16-2597-2016, 2016
Short summary
Short summary
This study uses airborne trace gas observations acquired over the southeast US to examine how both natural (isoprene) and anthropogenic (NOx) emissions influence the production of formaldehyde (HCHO). We find a 3-fold increase in HCHO yield between rural and polluted environments. State-of-the-science chemical mechanisms are generally able to reproduce this behavior. These results add confidence to global hydrocarbon emission inventories constrained by spaceborne HCHO observations.
A. W. H. Chan, N. M. Kreisberg, T. Hohaus, P. Campuzano-Jost, Y. Zhao, D. A. Day, L. Kaser, T. Karl, A. Hansel, A. P. Teng, C. R. Ruehl, D. T. Sueper, J. T. Jayne, D. R. Worsnop, J. L. Jimenez, S. V. Hering, and A. H. Goldstein
Atmos. Chem. Phys., 16, 1187–1205, https://doi.org/10.5194/acp-16-1187-2016, https://doi.org/10.5194/acp-16-1187-2016, 2016
Short summary
Short summary
Using a novel instrument, we have made measurements of organic compounds that can exist as a gas or particle in the rural atmosphere. Through hourly measurements, we have identified the sources and atmospheric processes of these compounds, which are important for modeling the climate and health impact of these emissions.
N. Kljun, P. Calanca, M. W. Rotach, and H. P. Schmid
Geosci. Model Dev., 8, 3695–3713, https://doi.org/10.5194/gmd-8-3695-2015, https://doi.org/10.5194/gmd-8-3695-2015, 2015
Short summary
Short summary
Flux footprint models describe the surface area of influence of a flux measurement. They are used for designing flux tower sites, and for interpretation of flux measurements. The two-dimensional footprint parameterisation (FFP) presented here is suitable for processing large data sets, and, unlike other fast footprint models, FFP is applicable to daytime or night-time measurements, fluxes from short masts over grassland to tall towers over mature forests, and even to airborne flux measurements.
M. N. Lang, A. Gohm, and J. S. Wagner
Atmos. Chem. Phys., 15, 11981–11998, https://doi.org/10.5194/acp-15-11981-2015, https://doi.org/10.5194/acp-15-11981-2015, 2015
W. W. Hu, P. Campuzano-Jost, B. B. Palm, D. A. Day, A. M. Ortega, P. L. Hayes, J. E. Krechmer, Q. Chen, M. Kuwata, Y. J. Liu, S. S. de Sá, K. McKinney, S. T. Martin, M. Hu, S. H. Budisulistiorini, M. Riva, J. D. Surratt, J. M. St. Clair, G. Isaacman-Van Wertz, L. D. Yee, A. H. Goldstein, S. Carbone, J. Brito, P. Artaxo, J. A. de Gouw, A. Koss, A. Wisthaler, T. Mikoviny, T. Karl, L. Kaser, W. Jud, A. Hansel, K. S. Docherty, M. L. Alexander, N. H. Robinson, H. Coe, J. D. Allan, M. R. Canagaratna, F. Paulot, and J. L. Jimenez
Atmos. Chem. Phys., 15, 11807–11833, https://doi.org/10.5194/acp-15-11807-2015, https://doi.org/10.5194/acp-15-11807-2015, 2015
Short summary
Short summary
This work summarized all the studies reporting isoprene epoxydiols-derived secondary organic aerosol (IEPOX-SOA) measured globally by aerosol mass spectrometer and compare them with modeled gas-phase IEPOX, with results suggestive of the importance of IEPOX-SOA for regional and global OA budgets. A real-time tracer of IEPOX-SOA is thoroughly evaluated for the first time by combing multiple field and chamber studies. A quick and easy empirical method on IEPOX-SOA estimation is also presented.
G. Massaro, I. Stiperski, B. Pospichal, and M. W. Rotach
Atmos. Meas. Tech., 8, 3355–3367, https://doi.org/10.5194/amt-8-3355-2015, https://doi.org/10.5194/amt-8-3355-2015, 2015
L. Zhou, R. Gierens, A. Sogachev, D. Mogensen, J. Ortega, J. N. Smith, P. C. Harley, A. J. Prenni, E. J. T. Levin, A. Turnipseed, A. Rusanen, S. Smolander, A. B. Guenther, M. Kulmala, T. Karl, and M. Boy
Atmos. Chem. Phys., 15, 8643–8656, https://doi.org/10.5194/acp-15-8643-2015, https://doi.org/10.5194/acp-15-8643-2015, 2015
G. Wohlfahrt, C. Amelynck, C. Ammann, A. Arneth, I. Bamberger, A. H. Goldstein, L. Gu, A. Guenther, A. Hansel, B. Heinesch, T. Holst, L. Hörtnagl, T. Karl, Q. Laffineur, A. Neftel, K. McKinney, J. W. Munger, S. G. Pallardy, G. W. Schade, R. Seco, and N. Schoon
Atmos. Chem. Phys., 15, 7413–7427, https://doi.org/10.5194/acp-15-7413-2015, https://doi.org/10.5194/acp-15-7413-2015, 2015
Short summary
Short summary
Methanol is the second most abundant volatile organic compound in the troposphere and plays a significant role in atmospheric chemistry. While there is consensus about the dominant role of plants as the major source and the reaction with OH as the major sink, global methanol budgets diverge considerably in terms of source/sink estimates. Here we present micrometeorological methanol flux data from eight sites in order to provide a first cross-site synthesis of the terrestrial methanol exchange.
J. S. Wagner, A. Gohm, and M. W. Rotach
Atmos. Chem. Phys., 15, 6589–6603, https://doi.org/10.5194/acp-15-6589-2015, https://doi.org/10.5194/acp-15-6589-2015, 2015
D. B. Millet, M. Baasandorj, D. K. Farmer, J. A. Thornton, K. Baumann, P. Brophy, S. Chaliyakunnel, J. A. de Gouw, M. Graus, L. Hu, A. Koss, B. H. Lee, F. D. Lopez-Hilfiker, J. A. Neuman, F. Paulot, J. Peischl, I. B. Pollack, T. B. Ryerson, C. Warneke, B. J. Williams, and J. Xu
Atmos. Chem. Phys., 15, 6283–6304, https://doi.org/10.5194/acp-15-6283-2015, https://doi.org/10.5194/acp-15-6283-2015, 2015
Short summary
Short summary
Formic acid (HCOOH) is an abundant atmospheric acid that affects precipitation chemistry and acidity. HCOOH measurements over the USA are 2-3× larger than can be explained by known sources and sinks, revealing a key gap in current understanding. Observations indicate a large biogenic source plus chemical production across a range of precursors. Model simulations cannot capture the HCOOH diurnal amplitude or nocturnal profile, implying a deposition bias and possibly even larger missing source.
A. R. Koss, J. de Gouw, C. Warneke, J. B. Gilman, B. M. Lerner, M. Graus, B. Yuan, P. Edwards, S. S. Brown, R. Wild, J. M. Roberts, T. S. Bates, and P. K. Quinn
Atmos. Chem. Phys., 15, 5727–5741, https://doi.org/10.5194/acp-15-5727-2015, https://doi.org/10.5194/acp-15-5727-2015, 2015
Short summary
Short summary
Extraction of natural gas and oil is associated with a range of possible atmospheric environmental issues. Here we present an analysis of gas-phase hydrocarbon measurements taken in an oil and natural gas extraction area in Utah during a period of high wintertime ozone. We are able to constrain important chemical parameters related to emission sources and rates, hydrocarbon photochemistry, and VOC composition.
Q. Chen, D. K. Farmer, L. V. Rizzo, T. Pauliquevis, M. Kuwata, T. G. Karl, A. Guenther, J. D. Allan, H. Coe, M. O. Andreae, U. Pöschl, J. L. Jimenez, P. Artaxo, and S. T. Martin
Atmos. Chem. Phys., 15, 3687–3701, https://doi.org/10.5194/acp-15-3687-2015, https://doi.org/10.5194/acp-15-3687-2015, 2015
Short summary
Short summary
Submicron particle mass concentration in the Amazon during the wet season of 2008 was dominated by organic material. The PMF analysis finds a comparable importance of gas-phase (gas-to-particle condensation) and particle-phase (reactive uptake of isoprene oxidation products, especially of epoxydiols to acidic haze, fog, or cloud droplets) production of secondary organic material during the study period, together accounting for >70% of the organic-particle mass concentration.
B. Yuan, P. R. Veres, C. Warneke, J. M. Roberts, J. B. Gilman, A. Koss, P. M. Edwards, M. Graus, W. C. Kuster, S.-M. Li, R. J. Wild, S. S. Brown, W. P. Dubé, B. M. Lerner, E. J. Williams, J. E. Johnson, P. K. Quinn, T. S. Bates, B. Lefer, P. L. Hayes, J. L. Jimenez, R. J. Weber, R. Zamora, B. Ervens, D. B. Millet, B. Rappenglück, and J. A. de Gouw
Atmos. Chem. Phys., 15, 1975–1993, https://doi.org/10.5194/acp-15-1975-2015, https://doi.org/10.5194/acp-15-1975-2015, 2015
Short summary
Short summary
In this work, secondary formation of formic acid at an urban site and a site in an oil and gas production region is studied. We investigated various gas phase formation pathways of formic acid, including those recently proposed, using a box model. The contributions from aerosol-related processes, fog events and air-snow exchange to formic acid are also quantified.
C. Warneke, P. Veres, S. M. Murphy, J. Soltis, R. A. Field, M. G. Graus, A. Koss, S.-M. Li, R. Li, B. Yuan, J. M. Roberts, and J. A. de Gouw
Atmos. Meas. Tech., 8, 411–420, https://doi.org/10.5194/amt-8-411-2015, https://doi.org/10.5194/amt-8-411-2015, 2015
P. K. Misztal, T. Karl, R. Weber, H. H. Jonsson, A. B. Guenther, and A. H. Goldstein
Atmos. Chem. Phys., 14, 10631–10647, https://doi.org/10.5194/acp-14-10631-2014, https://doi.org/10.5194/acp-14-10631-2014, 2014
J. Ortega, A. Turnipseed, A. B. Guenther, T. G. Karl, D. A. Day, D. Gochis, J. A. Huffman, A. J. Prenni, E. J. T. Levin, S. M. Kreidenweis, P. J. DeMott, Y. Tobo, E. G. Patton, A. Hodzic, Y. Y. Cui, P. C. Harley, R. S. Hornbrook, E. C. Apel, R. K. Monson, A. S. D. Eller, J. P. Greenberg, M. C. Barth, P. Campuzano-Jost, B. B. Palm, J. L. Jimenez, A. C. Aiken, M. K. Dubey, C. Geron, J. Offenberg, M. G. Ryan, P. J. Fornwalt, S. C. Pryor, F. N. Keutsch, J. P. DiGangi, A. W. H. Chan, A. H. Goldstein, G. M. Wolfe, S. Kim, L. Kaser, R. Schnitzhofer, A. Hansel, C. A. Cantrell, R. L. Mauldin, and J. N. Smith
Atmos. Chem. Phys., 14, 6345–6367, https://doi.org/10.5194/acp-14-6345-2014, https://doi.org/10.5194/acp-14-6345-2014, 2014
L. Kaser, T. Karl, A. Guenther, M. Graus, R. Schnitzhofer, A. Turnipseed, L. Fischer, P. Harley, M. Madronich, D. Gochis, F. N. Keutsch, and A. Hansel
Atmos. Chem. Phys., 13, 11935–11947, https://doi.org/10.5194/acp-13-11935-2013, https://doi.org/10.5194/acp-13-11935-2013, 2013
K. Zink, A. Pauling, M. W. Rotach, H. Vogel, P. Kaufmann, and B. Clot
Geosci. Model Dev., 6, 1961–1975, https://doi.org/10.5194/gmd-6-1961-2013, https://doi.org/10.5194/gmd-6-1961-2013, 2013
N. Unger, K. Harper, Y. Zheng, N. Y. Kiang, I. Aleinov, A. Arneth, G. Schurgers, C. Amelynck, A. Goldstein, A. Guenther, B. Heinesch, C. N. Hewitt, T. Karl, Q. Laffineur, B. Langford, K. A. McKinney, P. Misztal, M. Potosnak, J. Rinne, S. Pressley, N. Schoon, and D. Serça
Atmos. Chem. Phys., 13, 10243–10269, https://doi.org/10.5194/acp-13-10243-2013, https://doi.org/10.5194/acp-13-10243-2013, 2013
J. E. Mak, L. Su, A. Guenther, and T. Karl
Atmos. Meas. Tech., 6, 2703–2712, https://doi.org/10.5194/amt-6-2703-2013, https://doi.org/10.5194/amt-6-2703-2013, 2013
J. L. Fry, D. C. Draper, K. J. Zarzana, P. Campuzano-Jost, D. A. Day, J. L. Jimenez, S. S. Brown, R. C. Cohen, L. Kaser, A. Hansel, L. Cappellin, T. Karl, A. Hodzic Roux, A. Turnipseed, C. Cantrell, B. L. Lefer, and N. Grossberg
Atmos. Chem. Phys., 13, 8585–8605, https://doi.org/10.5194/acp-13-8585-2013, https://doi.org/10.5194/acp-13-8585-2013, 2013
L. Kaser, T. Karl, R. Schnitzhofer, M. Graus, I. S. Herdlinger-Blatt, J. P. DiGangi, B. Sive, A. Turnipseed, R. S. Hornbrook, W. Zheng, F. M. Flocke, A. Guenther, F. N. Keutsch, E. Apel, and A. Hansel
Atmos. Chem. Phys., 13, 2893–2906, https://doi.org/10.5194/acp-13-2893-2013, https://doi.org/10.5194/acp-13-2893-2013, 2013
T. Karl, A. Hansel, L. Cappellin, L. Kaser, I. Herdlinger-Blatt, and W. Jud
Atmos. Chem. Phys., 12, 11877–11884, https://doi.org/10.5194/acp-12-11877-2012, https://doi.org/10.5194/acp-12-11877-2012, 2012
Related subject area
Subject: Biosphere Interactions | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Dynamics of aerosol, humidity, and clouds in air masses travelling over Fennoscandian boreal forests
Residence times of air in a mature forest: observational evidence from a free-air CO2 enrichment experiment
Observations of aerosol–vapor pressure deficit–evaporative fraction coupling over India
Biogeochemical and biophysical responses to episodes of wildfire smoke from natural ecosystems in southwestern British Columbia, Canada
Traces of urban forest in temperature and CO2 signals in monsoon East Asia
Technical note: Uncertainties in eddy covariance CO2 fluxes in a semiarid sagebrush ecosystem caused by gap-filling approaches
Simulating the spatiotemporal variations in aboveground biomass in Inner Mongolian grasslands under environmental changes
Concentrations and biosphere–atmosphere fluxes of inorganic trace gases and associated ionic aerosol counterparts over the Amazon rainforest
Characterization of the radiative impact of aerosols on CO2 and energy fluxes in the Amazon deforestation arch using artificial neural networks
New particle formation events observed at the King Sejong Station, Antarctic Peninsula – Part 2: Link with the oceanic biological activities
Vertical observations of the atmospheric boundary layer structure over Beijing urban area during air pollution episodes
Characterisation of short-term extreme methane fluxes related to non-turbulent mixing above an Arctic permafrost ecosystem
Characterization of ozone deposition to a mixed oak–hornbeam forest – flux measurements at five levels above and inside the canopy and their interactions with nitric oxide
Direct effect of aerosols on solar radiation and gross primary production in boreal and hemiboreal forests
The monsoon effect on energy and carbon exchange processes over a highland lake in the southwest of China
Turbulent transport of energy across a forest and a semiarid shrubland
Study of the daily and seasonal atmospheric CH4 mixing ratio variability in a rural Spanish region using 222Rn tracer
Nighttime wind and scalar variability within and above an Amazonian canopy
Estimating regional-scale methane flux and budgets using CARVE aircraft measurements over Alaska
Canopy uptake dominates nighttime carbonyl sulfide fluxes in a boreal forest
Net ecosystem exchange and energy fluxes measured with the eddy covariance technique in a western Siberian bog
Biophysical effects on the interannual variation in carbon dioxide exchange of an alpine meadow on the Tibetan Plateau
Quantifying the contribution of land use change to surface temperature in the lower reaches of the Yangtze River
Overview of mercury dry deposition, litterfall, and throughfall studies
Scalar turbulent behavior in the roughness sublayer of an Amazonian forest
Surface–atmosphere exchange of ammonia over peatland using QCL-based eddy-covariance measurements and inferential modeling
Characterization of total ecosystem-scale biogenic VOC exchange at a Mediterranean oak–hornbeam forest
Are BVOC exchanges in agricultural ecosystems overestimated? Insights from fluxes measured in a maize field over a whole growing season
Step changes in persistent organic pollutants over the Arctic and their implications
Estimating surface fluxes using eddy covariance and numerical ogive optimization
Nitrous oxide emissions from a commercial cornfield (Zea mays) measured using the eddy covariance technique
Observations of the scale-dependent turbulence and evaluation of the flux–gradient relationship for sensible heat for a closed Douglas-fir canopy in very weak wind conditions
The effect of atmospheric aerosol particles and clouds on net ecosystem exchange in the Amazon
Acetaldehyde exchange above a managed temperate mountain grassland
Surface response to rain events throughout the West African monsoon
The role of vegetation in the CO2 flux from a tropical urban neighbourhood
Air-surface exchange measurements of gaseous elemental mercury over naturally enriched and background terrestrial landscapes in Australia
Four-year (2006–2009) eddy covariance measurements of CO2 flux over an urban area in Beijing
Momentum and scalar transport within a vegetation canopy following atmospheric stability and seasonal canopy changes: the CHATS experiment
Coupling processes and exchange of energy and reactive and non-reactive trace gases at a forest site – results of the EGER experiment
Abiotic and biotic control of methanol exchanges in a temperate mixed forest
Analysis of coherent structures and atmosphere-canopy coupling strength during the CABINEX field campaign
Methane flux, vertical gradient and mixing ratio measurements in a tropical forest
The effects of clouds and aerosols on net ecosystem CO2 exchange over semi-arid Loess Plateau of Northwest China
Size-dependent aerosol deposition velocities during BEARPEX'07
Day-time concentrations of biogenic volatile organic compounds in a boreal forest canopy and their relation to environmental and biological factors
Meri Räty, Larisa Sogacheva, Helmi-Marja Keskinen, Veli-Matti Kerminen, Tuomo Nieminen, Tuukka Petäjä, Ekaterina Ezhova, and Markku Kulmala
Atmos. Chem. Phys., 23, 3779–3798, https://doi.org/10.5194/acp-23-3779-2023, https://doi.org/10.5194/acp-23-3779-2023, 2023
Short summary
Short summary
We utilised back trajectories to identify the source region of air masses arriving in Hyytiälä, Finland, and their travel time over forests. Combined with atmospheric observations, they revealed how air mass transport over the Fennoscandian boreal forest during the growing season produced an accumulation of cloud condensation nuclei and humidity, promoting cloudiness and precipitation. By 55 h of transport, air masses appeared to reach a balanced state with the forest environment.
Edward J. Bannister, Mike Jesson, Nicholas J. Harper, Kris M. Hart, Giulio Curioni, Xiaoming Cai, and A. Rob MacKenzie
Atmos. Chem. Phys., 23, 2145–2165, https://doi.org/10.5194/acp-23-2145-2023, https://doi.org/10.5194/acp-23-2145-2023, 2023
Short summary
Short summary
In forests, the residence time of air influences canopy chemistry and atmospheric exchange. However, there have been few field observations. We use long-term open-air CO2 enrichment measurements to show median daytime residence times are twice as long when the trees are in leaf versus when they are not. Residence times increase with increasing atmospheric stability and scale inversely with turbulence. Robust parametrisations for large-scale models are available using common distributions.
Chandan Sarangi, TC Chakraborty, Sachchidanand Tripathi, Mithun Krishnan, Ross Morrison, Jonathan Evans, and Lina M. Mercado
Atmos. Chem. Phys., 22, 3615–3629, https://doi.org/10.5194/acp-22-3615-2022, https://doi.org/10.5194/acp-22-3615-2022, 2022
Short summary
Short summary
Transpiration fluxes by vegetation are reduced under heat stress to conserve water. However, in situ observations over northern India show that the strength of the inverse association between transpiration and atmospheric vapor pressure deficit is weakening in the presence of heavy aerosol loading. This finding not only implicates the significant role of aerosols in modifying the evaporative fraction (EF) but also warrants an in-depth analysis of the aerosol–plant–temperature–EF continuum.
Sung-Ching Lee, Sara H. Knox, Ian McKendry, and T. Andrew Black
Atmos. Chem. Phys., 22, 2333–2349, https://doi.org/10.5194/acp-22-2333-2022, https://doi.org/10.5194/acp-22-2333-2022, 2022
Short summary
Short summary
Wildfire smoke alters land–atmosphere exchange. Here, measurements in a forest and a wetland during four smoke episodes over four summers showed that impacts on radiation and heat budget were the greatest when smoke arrived in late summer. Both sites sequestered more CO2 under smoky days, partly due to diffuse light, but emitted CO2 when smoke was dense. This kind of field study is important for validating predictions of smoke–productivity feedbacks and has climate change implications.
Keunmin Lee, Je-Woo Hong, Jeongwon Kim, Sungsoo Jo, and Jinkyu Hong
Atmos. Chem. Phys., 21, 17833–17853, https://doi.org/10.5194/acp-21-17833-2021, https://doi.org/10.5194/acp-21-17833-2021, 2021
Short summary
Short summary
This study examine two benefits of urban forest, thermal mitigation and carbon uptake. Our analysis indicates that the urban forest reduces both the warming trend and urban heat island intensity. Urban forest is a net CO2 source despite larger photosynthetic carbon uptake because of strong contribution of ecosystem respiration, which can be attributed to the substantial amount of soil organic carbon by intensive historical soil use and warm temperature in a city.
Jingyu Yao, Zhongming Gao, Jianping Huang, Heping Liu, and Guoyin Wang
Atmos. Chem. Phys., 21, 15589–15603, https://doi.org/10.5194/acp-21-15589-2021, https://doi.org/10.5194/acp-21-15589-2021, 2021
Short summary
Short summary
Gap-filling usually accounts for a large source of uncertainties in the annual CO2 fluxes, though gap-filling CO2 fluxes is challenging at dryland sites due to small fluxes. Using data collected from a semiarid site, four machine learning methods are evaluated with different lengths of artificial gaps. The artificial neural network and random forest methods outperform the other methods. With these methods, uncertainties in the annual CO2 flux at this site are estimated to be within 16 g C m−2.
Guocheng Wang, Zhongkui Luo, Yao Huang, Wenjuan Sun, Yurong Wei, Liujun Xiao, Xi Deng, Jinhuan Zhu, Tingting Li, and Wen Zhang
Atmos. Chem. Phys., 21, 3059–3071, https://doi.org/10.5194/acp-21-3059-2021, https://doi.org/10.5194/acp-21-3059-2021, 2021
Short summary
Short summary
We simulate the spatiotemporal dynamics of aboveground biomass (AGB) in Inner Mongolian grasslands using a machine-learning-based approach. Under climate change, on average, compared with the historical AGB (average of 1981–2019), the AGB at the end of this century (average of 2080–2100) would decrease by 14 % under RCP4.5 and 28 % under RCP8.5. The decrease in AGB might be mitigated or even reversed by positive carbon dioxide enrichment effects on plant growth.
Robbie Ramsay, Chiara F. Di Marco, Matthias Sörgel, Mathew R. Heal, Samara Carbone, Paulo Artaxo, Alessandro C. de Araùjo, Marta Sá, Christopher Pöhlker, Jost Lavric, Meinrat O. Andreae, and Eiko Nemitz
Atmos. Chem. Phys., 20, 15551–15584, https://doi.org/10.5194/acp-20-15551-2020, https://doi.org/10.5194/acp-20-15551-2020, 2020
Short summary
Short summary
The Amazon rainforest is a unique
laboratoryto study the processes which govern the exchange of gases and aerosols to and from the atmosphere. This study investigated these processes by measuring the atmospheric concentrations of trace gases and particles at the Amazon Tall Tower Observatory. We found that the long-range transport of pollutants can affect the atmospheric composition above the Amazon rainforest and that the gases ammonia and nitrous acid can be emitted from the rainforest.
Renato Kerches Braghiere, Marcia Akemi Yamasoe, Nilton Manuel Évora do Rosário, Humberto Ribeiro da Rocha, José de Souza Nogueira, and Alessandro Carioca de Araújo
Atmos. Chem. Phys., 20, 3439–3458, https://doi.org/10.5194/acp-20-3439-2020, https://doi.org/10.5194/acp-20-3439-2020, 2020
Short summary
Short summary
We evaluate how the interaction of smoke with sun light impacts the exchange of energy and mass between vegetation and the atmosphere using a machine learning technique. We found an effect of the smoke on CO2, energy, and water fluxes, linking the effects of smoke with temperature, humidity, and winds. CO2 exchange increased by up to 55 % in the presence of smoke. A decrease of 12 % was observed for a site with simpler vegetation. Energy fluxes were negatively impacted for all study sites.
Eunho Jang, Ki-Tae Park, Young Jun Yoon, Tae-Wook Kim, Sang-Bum Hong, Silvia Becagli, Rita Traversi, Jaeseok Kim, and Yeontae Gim
Atmos. Chem. Phys., 19, 7595–7608, https://doi.org/10.5194/acp-19-7595-2019, https://doi.org/10.5194/acp-19-7595-2019, 2019
Short summary
Short summary
We reported long-term observations (from 2009 to 2016) of the nanoparticles measured at the Antarctic Peninsula (62.2° S, 58.8° W), and satellite-derived estimates of the biological characteristics were analyzed to identify the link between new particle formation and marine biota. The key finding from this research is that the formation of nanoparticles was strongly associated not only with the biomass of phytoplankton but, more importantly, also its taxonomic composition in the Antarctic Ocean.
Linlin Wang, Junkai Liu, Zhiqiu Gao, Yubin Li, Meng Huang, Sihui Fan, Xiaoye Zhang, Yuanjian Yang, Shiguang Miao, Han Zou, Yele Sun, Yong Chen, and Ting Yang
Atmos. Chem. Phys., 19, 6949–6967, https://doi.org/10.5194/acp-19-6949-2019, https://doi.org/10.5194/acp-19-6949-2019, 2019
Short summary
Short summary
Urban boundary layer (UBL) affects the physical and chemical processes of the pollutants, and UBL structure can also be altered by pollutants. This paper presents the interactions between air pollution and the UBL structure by using the field data mainly collected from a 325 m meteorology tower, as well as from a Doppler wind lidar, during a severe heavy pollution event that occurred during 1–4 December 2016 in Beijing.
Carsten Schaller, Fanny Kittler, Thomas Foken, and Mathias Göckede
Atmos. Chem. Phys., 19, 4041–4059, https://doi.org/10.5194/acp-19-4041-2019, https://doi.org/10.5194/acp-19-4041-2019, 2019
Short summary
Short summary
Methane emissions from biogenic sources, e.g. Arctic permafrost ecosystems, are associated with uncertainties due to the high variability of fluxes in both space and time. Besides the traditional eddy covariance method, we evaluated a method based on wavelet analysis, which does not require a stationary time series, to calculate fluxes. The occurrence of extreme methane flux events was strongly correlated with the soil temperature. They were triggered by atmospheric non-turbulent mixing.
Angelo Finco, Mhairi Coyle, Eiko Nemitz, Riccardo Marzuoli, Maria Chiesa, Benjamin Loubet, Silvano Fares, Eugenio Diaz-Pines, Rainer Gasche, and Giacomo Gerosa
Atmos. Chem. Phys., 18, 17945–17961, https://doi.org/10.5194/acp-18-17945-2018, https://doi.org/10.5194/acp-18-17945-2018, 2018
Short summary
Short summary
A 1-month field campaign of ozone (O3) flux measurements along a five-level vertical profile of a mature broadleaf forest highlighted that the biosphere–atmosphere exchange of this pollutant is modulated by complex diel dynamics occurring within and below the canopy. The canopy removed nearly 80 % of the O3 deposited to the forest; only a minor part was removed by the soil and the understorey (2 %), while the remaining 18.2 % was removed by chemical reactions with NO mostly emitted from soil.
Ekaterina Ezhova, Ilona Ylivinkka, Joel Kuusk, Kaupo Komsaare, Marko Vana, Alisa Krasnova, Steffen Noe, Mikhail Arshinov, Boris Belan, Sung-Bin Park, Jošt Valentin Lavrič, Martin Heimann, Tuukka Petäjä, Timo Vesala, Ivan Mammarella, Pasi Kolari, Jaana Bäck, Üllar Rannik, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 18, 17863–17881, https://doi.org/10.5194/acp-18-17863-2018, https://doi.org/10.5194/acp-18-17863-2018, 2018
Short summary
Short summary
Understanding the connections between aerosols, solar radiation and photosynthesis in terrestrial ecosystems is important for estimates of the CO2 balance in the atmosphere. Atmospheric aerosols and clouds influence solar radiation. In this study, we quantify the aerosol effect on solar radiation in boreal forests and study forest ecosystems response to this change in the radiation conditions. The analysis is based on atmospheric observations from several remote stations in Eurasian forests.
Qun Du, Huizhi Liu, Lujun Xu, Yang Liu, and Lei Wang
Atmos. Chem. Phys., 18, 15087–15104, https://doi.org/10.5194/acp-18-15087-2018, https://doi.org/10.5194/acp-18-15087-2018, 2018
Short summary
Short summary
Erhai Lake is a subtropical highland shallow lake on the southeast margin of the Tibetan Plateau, which is influenced by both South Asian and East Asian summer monsoons. The substantial difference in atmospheric properties during monsoon and non-monsoon periods has a large effect in regulating turbulent heat and carbon dioxide exchange processes over Erhai Lake. Large difference are found for the factors controlling sensible heat and carbon dioxide flux during monsoon and non-monsoon periods.
Tirtha Banerjee, Peter Brugger, Frederik De Roo, Konstantin Kröniger, Dan Yakir, Eyal Rotenberg, and Matthias Mauder
Atmos. Chem. Phys., 18, 10025–10038, https://doi.org/10.5194/acp-18-10025-2018, https://doi.org/10.5194/acp-18-10025-2018, 2018
Short summary
Short summary
We studied the nature of turbulent transport over a well-defined surface heterogeneity (approximate scale 7 km) comprising a shrubland and a forest in the Yatir semiarid area in Israel. Using eddy covariance and Doppler lidar measurements, we studied the variations in the turbulent kinetic energy budget and turbulent fluxes, focusing especially on transport terms. We also confirmed the role of large-scale secondary circulations that transport energy between the shrubland and the forest.
Claudia Grossi, Felix R. Vogel, Roger Curcoll, Alba Àgueda, Arturo Vargas, Xavier Rodó, and Josep-Anton Morguí
Atmos. Chem. Phys., 18, 5847–5860, https://doi.org/10.5194/acp-18-5847-2018, https://doi.org/10.5194/acp-18-5847-2018, 2018
Short summary
Short summary
To gain a full picture of the Spanish (and European) GHG balance, understanding of CH4 emissions in different regions is a critical challenge, as is the improvement of bottom-up inventories for all European regions. This study uses, among other elements, GHG, meteorological and 222Rn tracer data from a Spanish region to understand the main causes of temporal variability of GHG mixing ratios. The study can offer new insights into regional emissions by identifying the impacts of changing sources.
Pablo E. S. Oliveira, Otávio C. Acevedo, Matthias Sörgel, Anywhere Tsokankunku, Stefan Wolff, Alessandro C. Araújo, Rodrigo A. F. Souza, Marta O. Sá, Antônio O. Manzi, and Meinrat O. Andreae
Atmos. Chem. Phys., 18, 3083–3099, https://doi.org/10.5194/acp-18-3083-2018, https://doi.org/10.5194/acp-18-3083-2018, 2018
Short summary
Short summary
Carbon dioxide and latent heat fluxes within the canopy are dominated by low-frequency (nonturbulent) processes. There is a striking contrast between fully turbulent and intermittent nights, such that turbulent processes dominate the total nighttime exchange during the former, while nonturbulent processes are more relevant in the latter. In very stable nights, during which intermittent exchange prevails, the stable boundary layer may be shallower than the highest observational level at 80 m.
Sean Hartery, Róisín Commane, Jakob Lindaas, Colm Sweeney, John Henderson, Marikate Mountain, Nicholas Steiner, Kyle McDonald, Steven J. Dinardo, Charles E. Miller, Steven C. Wofsy, and Rachel Y.-W. Chang
Atmos. Chem. Phys., 18, 185–202, https://doi.org/10.5194/acp-18-185-2018, https://doi.org/10.5194/acp-18-185-2018, 2018
Short summary
Short summary
Methane is the second most important greenhouse gas but its emissions from northern regions are still poorly constrained. This study uses aircraft measurements of methane from Alaska to estimate surface emissions. We found that methane emission rates depend on the soil temperature at depths where its production was taking place, and that total emissions were similar between tundra and boreal regions. These results provide a simple way to predict methane emissions in this region.
Linda M. J. Kooijmans, Kadmiel Maseyk, Ulli Seibt, Wu Sun, Timo Vesala, Ivan Mammarella, Pasi Kolari, Juho Aalto, Alessandro Franchin, Roberta Vecchi, Gianluigi Valli, and Huilin Chen
Atmos. Chem. Phys., 17, 11453–11465, https://doi.org/10.5194/acp-17-11453-2017, https://doi.org/10.5194/acp-17-11453-2017, 2017
Short summary
Short summary
Carbon cycle studies rely on the accuracy of models to estimate the amount of CO2 being taken up by vegetation. The gas carbonyl sulfide (COS) can serve as a tool to estimate the vegetative CO2 uptake by scaling the ecosystem uptake of COS to that of CO2. Here we investigate the nighttime fluxes of COS. The relationships found in this study will aid in implementing nighttime COS uptake in models, which is key to obtain accurate estimates of vegetative CO2 uptake with the use of COS.
Pavel Alekseychik, Ivan Mammarella, Dmitry Karpov, Sigrid Dengel, Irina Terentieva, Alexander Sabrekov, Mikhail Glagolev, and Elena Lapshina
Atmos. Chem. Phys., 17, 9333–9345, https://doi.org/10.5194/acp-17-9333-2017, https://doi.org/10.5194/acp-17-9333-2017, 2017
Short summary
Short summary
West Siberian peatlands occupy a large fraction of land area in the region, and yet little is known about their interaction with the atmosphere. We took the first measurements of CO2 and energy surface balances over a typical bog of West Siberian middle taiga, in the vicinity of the Mukhrino field station (Khanty–Mansiysk). The May–August study in a wet year (2015) revealed a relatively large photosynthetic sink of CO2 that was close to the high end of estimates at bog sites elsewhere.
Lei Wang, Huizhi Liu, Jihua Sun, and Yaping Shao
Atmos. Chem. Phys., 17, 5119–5129, https://doi.org/10.5194/acp-17-5119-2017, https://doi.org/10.5194/acp-17-5119-2017, 2017
Short summary
Short summary
This study found that the seasonal variation in CO2 exchange over an alpine meadow on the Tibetan Plateau was primarily affected by the seasonal pattern of air temperature, especially in spring and autumn. The annual net ecosystem exchange decreased with mean annual temperature, and then increased when the gross primary production became saturated. This study contributes to the response of the alpine meadow ecosystem to global warming.
Xueqian Wang, Weidong Guo, Bo Qiu, Ye Liu, Jianning Sun, and Aijun Ding
Atmos. Chem. Phys., 17, 4989–4996, https://doi.org/10.5194/acp-17-4989-2017, https://doi.org/10.5194/acp-17-4989-2017, 2017
Short summary
Short summary
Land use or cover change is a fundamental anthropogenic forcing for climate change. Based on field observations, we quantified the contributions of different factors to surface temperature change and deepened the understanding of its mechanisms. We found evaporative cooling plays the most important role in the temperature change, while radiative forcing, which is traditionally emphasized, is not significant. This study provided firsthand evidence to verify the model results in IPCC AR5.
L. Paige Wright, Leiming Zhang, and Frank J. Marsik
Atmos. Chem. Phys., 16, 13399–13416, https://doi.org/10.5194/acp-16-13399-2016, https://doi.org/10.5194/acp-16-13399-2016, 2016
Short summary
Short summary
The current knowledge concerning mercury dry deposition is reviewed, including dry deposition algorithms used in chemical transport models and at monitoring sites, measurement methods and studies for quantifying dry deposition of oxidized mercury, and measurement studies of litterfall and throughfall mercury. Over all the regions, dry deposition, estimated as the sum of litterfall and throughfall minus open-field wet deposition, is more dominant than wet deposition for Hg deposition.
Einara Zahn, Nelson L. Dias, Alessandro Araújo, Leonardo D. A. Sá, Matthias Sörgel, Ivonne Trebs, Stefan Wolff, and Antônio Manzi
Atmos. Chem. Phys., 16, 11349–11366, https://doi.org/10.5194/acp-16-11349-2016, https://doi.org/10.5194/acp-16-11349-2016, 2016
Short summary
Short summary
Preliminary data from the ATTO project were analyzed to characterize the exchange of heat, water vapor, and CO2 between the Amazon forest and the atmosphere. The forest roughness makes estimation of their fluxes difficult, and even measurements at 42 m above the canopy show a lot of scatter. Still, measurements made around noon showed much better conformity with standard theories for the exchange of these quantities, opening the possibility of good flux estimates when the sun is high.
Undine Zöll, Christian Brümmer, Frederik Schrader, Christof Ammann, Andreas Ibrom, Christophe R. Flechard, David D. Nelson, Mark Zahniser, and Werner L. Kutsch
Atmos. Chem. Phys., 16, 11283–11299, https://doi.org/10.5194/acp-16-11283-2016, https://doi.org/10.5194/acp-16-11283-2016, 2016
Short summary
Short summary
Accurate quantification of atmospheric ammonia concentration and exchange fluxes with the land surface has been a major metrological challenge. We demonstrate the applicability of a novel laser device to identify concentration and flux patterns over a peatland ecosystem influenced by nearby agricultural practices. Results help to strengthen air quality monitoring networks, lead to better understanding of ecosystem functionality and improve parameterizations in air chemistry and transport models.
Simon Schallhart, Pekka Rantala, Eiko Nemitz, Ditte Taipale, Ralf Tillmann, Thomas F. Mentel, Benjamin Loubet, Giacomo Gerosa, Angelo Finco, Janne Rinne, and Taina M. Ruuskanen
Atmos. Chem. Phys., 16, 7171–7194, https://doi.org/10.5194/acp-16-7171-2016, https://doi.org/10.5194/acp-16-7171-2016, 2016
Short summary
Short summary
We present ecosystem exchange fluxes from a mixed oak–hornbeam forest in the Po Valley, Italy. Detectable fluxes were observed for 29 compounds, dominated by isoprene, which comprised over 60 % of the upward flux. Methanol seemed to be deposited to dew, as the deposition happened in the early morning. We estimated that up to 30 % of the upward flux of methyl vinyl ketone and methacrolein originated from atmospheric oxidation of isoprene.
Aurélie Bachy, Marc Aubinet, Niels Schoon, Crist Amelynck, Bernard Bodson, Christine Moureaux, and Bernard Heinesch
Atmos. Chem. Phys., 16, 5343–5356, https://doi.org/10.5194/acp-16-5343-2016, https://doi.org/10.5194/acp-16-5343-2016, 2016
Short summary
Short summary
This research focuses on Biogenic Volatile Organic Compounds (BVOC) exchanges between a maize field and the atmosphere. Indeed, few BVOC studies have already investigated agricultural ecosystems. We found that the maize field emitted mainly methanol, that both soil and plants contributed to the net exchange, that exchanges were lower than in other studies and than considered by models. Our work tends thus to lower the impact of maize on terrestrial BVOC exchanges.
Y. Zhao, T. Huang, L. Wang, H. Gao, and J. Ma
Atmos. Chem. Phys., 15, 3479–3495, https://doi.org/10.5194/acp-15-3479-2015, https://doi.org/10.5194/acp-15-3479-2015, 2015
Short summary
Short summary
After several decades of declining persistent organic pollutants in the arctic environment due to their global use restriction, some of these toxic chemicals increased in the mid-2000s and undertook statistically significant step changes which coincided with arctic sea ice melting. Results provide statistical evidence for the releasing of toxic chemicals from their reservoirs in the Arctic due to the rapid change in the arctic environment.
J. Sievers, T. Papakyriakou, S. E. Larsen, M. M. Jammet, S. Rysgaard, M. K. Sejr, and L. L. Sørensen
Atmos. Chem. Phys., 15, 2081–2103, https://doi.org/10.5194/acp-15-2081-2015, https://doi.org/10.5194/acp-15-2081-2015, 2015
H. Huang, J. Wang, D. Hui, D. R. Miller, S. Bhattarai, S. Dennis, D. Smart, T. Sammis, and K. C. Reddy
Atmos. Chem. Phys., 14, 12839–12854, https://doi.org/10.5194/acp-14-12839-2014, https://doi.org/10.5194/acp-14-12839-2014, 2014
Short summary
Short summary
An EC system was assembled with a sonic anemometer and a new fast-response N2O analyzer and applied in a cornfield during a growing season. This N2O EC system provided reliable N2O flux measurements. The average flux was about 63% higher during the daytime than during the nighttime. Seasonal fluxes were highly dependent on soil moisture rather than soil temperature.
D. Vickers and C. K. Thomas
Atmos. Chem. Phys., 14, 9665–9676, https://doi.org/10.5194/acp-14-9665-2014, https://doi.org/10.5194/acp-14-9665-2014, 2014
G. G. Cirino, R. A. F. Souza, D. K. Adams, and P. Artaxo
Atmos. Chem. Phys., 14, 6523–6543, https://doi.org/10.5194/acp-14-6523-2014, https://doi.org/10.5194/acp-14-6523-2014, 2014
L. Hörtnagl, I. Bamberger, M. Graus, T. M. Ruuskanen, R. Schnitzhofer, M. Walser, A. Unterberger, A. Hansel, and G. Wohlfahrt
Atmos. Chem. Phys., 14, 5369–5391, https://doi.org/10.5194/acp-14-5369-2014, https://doi.org/10.5194/acp-14-5369-2014, 2014
F. Lohou, L. Kergoat, F. Guichard, A. Boone, B. Cappelaere, J.-M. Cohard, J. Demarty, S. Galle, M. Grippa, C. Peugeot, D. Ramier, C. M. Taylor, and F. Timouk
Atmos. Chem. Phys., 14, 3883–3898, https://doi.org/10.5194/acp-14-3883-2014, https://doi.org/10.5194/acp-14-3883-2014, 2014
E. Velasco, M. Roth, S. H. Tan, M. Quak, S. D. A. Nabarro, and L. Norford
Atmos. Chem. Phys., 13, 10185–10202, https://doi.org/10.5194/acp-13-10185-2013, https://doi.org/10.5194/acp-13-10185-2013, 2013
G. C. Edwards and D. A. Howard
Atmos. Chem. Phys., 13, 5325–5336, https://doi.org/10.5194/acp-13-5325-2013, https://doi.org/10.5194/acp-13-5325-2013, 2013
H. Z. Liu, J. W. Feng, L. Järvi, and T. Vesala
Atmos. Chem. Phys., 12, 7881–7892, https://doi.org/10.5194/acp-12-7881-2012, https://doi.org/10.5194/acp-12-7881-2012, 2012
S. Dupont and E. G. Patton
Atmos. Chem. Phys., 12, 5913–5935, https://doi.org/10.5194/acp-12-5913-2012, https://doi.org/10.5194/acp-12-5913-2012, 2012
T. Foken, F. X. Meixner, E. Falge, C. Zetzsch, A. Serafimovich, A. Bargsten, T. Behrendt, T. Biermann, C. Breuninger, S. Dix, T. Gerken, M. Hunner, L. Lehmann-Pape, K. Hens, G. Jocher, J. Kesselmeier, J. Lüers, J.-C. Mayer, A. Moravek, D. Plake, M. Riederer, F. Rütz, M. Scheibe, L. Siebicke, M. Sörgel, K. Staudt, I. Trebs, A. Tsokankunku, M. Welling, V. Wolff, and Z. Zhu
Atmos. Chem. Phys., 12, 1923–1950, https://doi.org/10.5194/acp-12-1923-2012, https://doi.org/10.5194/acp-12-1923-2012, 2012
Q. Laffineur, M. Aubinet, N. Schoon, C. Amelynck, J.-F. Müller, J. Dewulf, H. Van Langenhove, K. Steppe, and B. Heinesch
Atmos. Chem. Phys., 12, 577–590, https://doi.org/10.5194/acp-12-577-2012, https://doi.org/10.5194/acp-12-577-2012, 2012
A. L. Steiner, S. N. Pressley, A. Botros, E. Jones, S. H. Chung, and S. L. Edburg
Atmos. Chem. Phys., 11, 11921–11936, https://doi.org/10.5194/acp-11-11921-2011, https://doi.org/10.5194/acp-11-11921-2011, 2011
C. A. S. Querino, C. J. P. P. Smeets, I. Vigano, R. Holzinger, V. Moura, L. V. Gatti, A. Martinewski, A. O. Manzi, A. C. de Araújo, and T. Röckmann
Atmos. Chem. Phys., 11, 7943–7953, https://doi.org/10.5194/acp-11-7943-2011, https://doi.org/10.5194/acp-11-7943-2011, 2011
X. Jing, J. Huang, G. Wang, K. Higuchi, J. Bi, Y. Sun, H. Yu, and T. Wang
Atmos. Chem. Phys., 10, 8205–8218, https://doi.org/10.5194/acp-10-8205-2010, https://doi.org/10.5194/acp-10-8205-2010, 2010
R. J. Vong, I. J. Vong, D. Vickers, and D. S. Covert
Atmos. Chem. Phys., 10, 5749–5758, https://doi.org/10.5194/acp-10-5749-2010, https://doi.org/10.5194/acp-10-5749-2010, 2010
H. K. Lappalainen, S. Sevanto, J. Bäck, T. M. Ruuskanen, P. Kolari, R. Taipale, J. Rinne, M. Kulmala, and P. Hari
Atmos. Chem. Phys., 9, 5447–5459, https://doi.org/10.5194/acp-9-5447-2009, https://doi.org/10.5194/acp-9-5447-2009, 2009
Cited articles
Adler, B., Kalthoff, N., and Kiseleva, O.: Detection of structures in the horizontal
wind field over complex terrain using coplanar Doppler lidar scans,
Meteorol. Z., 29, 467–481, https://doi.org/10.1127/metz/2020/1031,
2020.
Allwine, K. J., Shinn, J. H., Streit, G. E., Clawson, K. L., and Brown, M.: Overview of URBAN
2000: A Multiscale Field Study of Dispersion through an Urban Environment,
Bull. Am. Meteorol. Soc., 83, 521–536 https://doi.org/10.1175/1520-0477(2002)083<0521:OOUAMF>2.3.CO;2, 2002.
Anandakumar, K.: A study on the partition of net radiation into heat fluxes on
a dry asphalt surface, Atmos. Environ., 33, 3911–3918, 1999.
Ao, X., Grimmond, C. S. B., Chang, Y., Liu, D., Tang, Y., Hu, P., Wang, Y., Zou, J., and Tan, J:
Heat, water and carbon exchanges in the tall megacity of Shanghai:
challenges and results, Int. J. Climatol., 36, 4608–4624,
https://doi.org/10.1002/joc.4657, 2016.
Asaeda, T. and Ca, V.: The subsurface transport of heat and moisture and its effect
on the environment: A numerical model, Bound.-Lay. Meteorol., 65, 159–179,
https://doi.org/10.1007/BF00708822, 1993.
Babić, N., Adler, B., Gohm, A., Kalthoff, N., Haid, M., Lehner, M., Ladstätter,
P., and Rotach, M. W.: Cross-valley vortices in the Inn valley, Austria: Structure,
evolution and governing force imbalances, Q. J. Roy. Meteorol. Soc., 147, 3835–3861, https://doi.org/10.1002/qj.4159, 2021.
Balogun, A., Adegoke, J., Vezhapparambu, S., Mauder, M., McFadden, J., and Gallo, K.:
Surface energy balance measurements above an exurban residential
neighbourhood of Kansas City, Missouri, Bound.-Lay. Meteorol., 133, 299–321,
https://doi.org/10.1007/s10546-009-9421-3, 2009.
Bergeron, O. and Strachan, I. B.: Wintertime radiation and energy budget along an
urbanization gradient in Montreal, Can. Int. J. Climatol., 32, 137–152, https://doi.org/10.1002/joc.2246, 2010.
Bergeron, O. and Strachan, I. B.: CO2 sources and sinks in urban and suburban
areas of a northern mid-latitude city, Atmos. Environ., 45, 1564–1573,
https://doi.org/10.1016/j.atmosenv.2010.12.043, 2011.
Björkegren, A. and Grimmond, C. S. B.: Net carbon dioxide emissions from central
London, Urban Clim., 23, 131–158, https://doi.org/10.1016/j.uclim.2016.10.002, 2017.
Christen, A. and Vogt, R.: Energy and radiation balance of a central European city,
Int. J. Climatol., 24, 1395–1421, https://doi.org/10.1002/joc.1074, 2004.
Christen, A., Rotach, M. W., and Vogt, R.: The Budget of Turbulent Kinetic Energy in the
Urban Roughness Sublayer, Bound.-Lay. Meteorol., 131, 193–222, https://doi.org/10.1007/s10546-009-9359-5, 2009.
Christen, A., Coops, N., Crawford, B., Kellett, R., Liss, K., Olchovski, I., Tooke, T.,
Van Der Laan, M., and Voogt, J.: Validation of modeled carbon-dioxide emissions from
an urban neighborhood with direct eddy-covariance measurements, Atmos.
Environ., 45, 6057–6069, https://doi.org/10.1016/j.atmosenv.2011.07.040, 2011.
City Population: Population of Innsbruck by quarter, https://www.citypopulation.de/php/austria-innsbruck.php (last access: 20 March 2019), 2018.
Coutts, A. M., Beringer, J., and Tapper, N. J.: Characteristics influencing the
variability of urban CO2 fluxes in Melbourne, Australia, Atmos.
Environ., 41, 51–62, https://doi.org/10.1016/j.atmosenv.2006.08.030, 2007a.
Coutts, A. M., Beringer, J., and Tapper, N. J.: Impact of increasing urban density on
local climate: Spatial and temporal variations in the surface energy balance
in Melbourne, Australia, J. Appl. Meteorol. Climatol., 46,
477–493, https://doi.org/10.1175/jam2462.1, 2007b.
Crawford, B., Grimmond, C. S. B., and Christen, A.: Five years of carbon dioxide fluxes
measurements in a highly vegetated suburban area, Atmos. Environ.,
45, 896–905, https://doi.org/10.1016/j.atmosenv.2010.11.017,
2011.
Crawford, B., Krayenhoff, E. S., and Cordy, P.: The urban energy balance of a
lightweight low-rise neighborhood in Andacollo, Chile, Theor.
Appl. Climatol., 131, 55–68, https://doi.org/10.1007/s00704-016-1922-7, 2016.
Deventer, M. J., von der Heyden, L., Lamprecht, C., Graus, M., Karl, T., and Held, A.: Aerosol
particles during the Innsbruck Air Quality Study (INNAQS): Fluxes of
nucleation to accumulation mode particles in relation to selective urban
tracers, Atmos. Environ., 190, 376–388, https://doi.org/10.1016/j.atmosenv.2018.04.043, 2018.
Doll, D., Ching, J. K. S., and Kaneshiro, J.: Parameterization of subsurface heating for
soil and concrete using net radiation data, Bound.-Lay. Meteorol., 32, 351–372,
https://doi.org/10.1007/BF00122000, 1985.
Doran, J. C., Fast, J. D., and Horel, J.: The VTMX 2000 campaign, Bull. Am. Meteorol.
Soc., 83, 537–551, https://doi.org/10.1175/1520-0477(2002)083<0537:TVC>2.3.CO;2, 2002.
Dou, J., Grimmond, S., Cheng, Z., Miao, S., Feng, D., and Liao, M.: Summertime surface
energy balance fluxes at two Beijing sites, Int. J. Climatol., 39, 2793–2810, https://doi.org/10.1002/joc.5989,
2019.
Dreiseitl, E., Feichter, H., Pichler, H., Steinacker, R., and Vergeiner, I.: Windregimes
an der Gabelung zweier Alpentäler, Arch. Meteorol.,
Geophys. Bioklimatol. Ser. B, 28, 257–275, https://doi.org/10.1007/BF02245357, 1980.
Fernando, H. J. S.: Fluid Dynamics of Urban Atmospheres in Complex Terrain, Annu.
Rev. Fluid Mech., 42, 365–389, https://doi.org/10.1146/annurev-fluid-121108-145459, 2010.
Foken, T. and Wichura, B.: Tools for quality assessment of surface-based flux
measurements, Agr. Forest Meteorol., 78, 83–105, https://doi.org/10.1016/0168-1923(95)02248-1, 1996.
Fortuniak, K., Pawlak, W., and Siedlecki, M.: Integral Turbulence Statistics Over a
Central European City Centre, Bound.-Lay. Meteorol., 146, 257–276, https://doi.org/10.1007/s10546-012-9762-1, 2013.
Fratini, G., Ibrom, A., Arriga, N., Burba, G., and Papale, D.: Relative humidity effects
on water vapour fluxes measured with closed-path eddy-covariance systems
with short sampling lines, Agr. Forest Meteorol., 165, 53–63, https://doi.org/10.1016/j.agrformet.2012.05.018, 2012.
Frey, C. M., Parlow, E., Vogt, R., Harhash, M., and Abdel Wahab, M. M.: Flux measurements in
Cairo, Part 1: in situ measurements and their applicability for comparison
with satellite data, Int. J. Climatol., 31, 218–231,
https://doi.org/10.1002/joc.2140, 2011.
Fuchs, M. and Hadas, A.: The heat flux density in a non-homogeneous bare loessial
soil, Bound.-Lay. Meteorol., 3, 191–200, https://doi.org/10.1007/BF02033918, 1972.
Ghaemi, S. and Brauner, G.: User behavior and patterns of electricity use for
energy saving, Internationale Energiewirtschaftstagung an der TU Wien, IEWT, https://publik.tuwien.ac.at/files/PubDat_180870.pdf (last access: 29 March 2019),
2009.
Gioli, B., Toscano, P., Lugato, E., Matese, A., Miglietta, F., Zaldei, A., and Vaccari, F.:
Methane and carbon dioxide fluxes and source partitioning in urban areas:
The case study of Florence, Italy, Environ. Pollut., 164, 125–131,
https://doi.org/10.1016/j.envpol.2012.01.019, 2012.
Giovannini, L., Zardi, D., de Franceschi, M., and Chen, F.: Numerical simulations of
boundary-layer processes and urban-induced alterations in an Alpine valley,
Int. J. Climatol., 34, 1111–1131, https://doi.org/10.1002/joc.3750, 2014.
Giovannini, L., Laiti, L., Serafin, S., and Zardi, D.: The thermally driven diurnal wind
system of the Adige Valley in the Italian Alps, Q. J. Roy. Meteorol. Soc., 143,
2389–2402, https://doi.org/10.1002/qj.3092, 2017.
Gohm, A., Harnisch, F., Vergeiner, J., Obleitner, F., Schnitzhofer, R., Hansel, A., Fix, A., Neininger, B., Emeis, S., and Schäfer, K.: Air Pollution Transport in an Alpine Valley: Results From
Airborne and Ground-Based Observations, Bound.-Lay. Meteorol., 131, 441–463,
https://doi.org/10.1007/s10546-009-9371-9, 2009.
Gohm, A., Haid, M., Umek, L., Ward, H. C., and Rotach, M. W.: PIANO (Penetration and
Interruption of Alpine Foehn) – Doppler wind lidar data set, Zenodo [data set],
https://doi.org/10.5281/zenodo.4674773, 2021a.
Gohm, A., Umek, L., Haid, M., Ward, H. C., and Rotach, M. W.: PIANO (Penetration and
Interruption of Alpine Foehn) – MOMAA weather station data set, Zenodo [data set],
https://doi.org/10.5281/zenodo.4745957, 2021b.
Goldbach, A. and Kuttler, W.: Quantification of turbulent heat fluxes for
adaptation strategies within urban planning, Int. J. Climatol., 33, 143–159, https://doi.org/10.1002/joc.3437, 2013.
Grimmond, C. S. B. and Oke, T. R.: Comparison of Heat Fluxes from Summertime Observations
in the Suburbs of Four North American Cities, J. Appl. Meteorol., 34, 873–889,
https://doi.org/10.1175/1520-0450(1995)034<0873:COHFFS>2.0.CO;2, 1995.
Grimmond, C. S. B. and Oke, T. R.: Aerodynamic properties of urban areas derived from
analysis of surface form, J. Appl. Meteorol., 38, 1262–1292, https://doi.org/10.1175/1520-0450(1999)038<1262:APOUAD>2.0.CO;2, 1999.
Grimmond, C. S. B. and Oke, T. R.: Turbulent heat fluxes in urban areas: Observations and
a local-scale urban meteorological parameterization scheme (LUMPS), J. Appl.
Meteorol., 41, 792–810, https://doi.org/10.1175/1520-0450(2002)041<0792:THFIUA>2.0.CO;2, 2002.
Grimmond, C. S. B., Cleugh, H. A., and Oke, T. R.: An objective urban heat storage model and
its comparison with other schemes, Atmos. Environ. Pt. B., 25, 311–326, 1991.
Grimmond, C. S. B., Salmond, J. A., Oke, T. R., Offerle, B., and Lemonsu, A.: Flux and turbulence
measurements at a densely built-up site in Marseille: Heat, mass (water and
carbon dioxide), and momentum, J. Geophys. Res.-Atmos., 109, D24101,
D2410110.1029/2004jd004936, 2004.
Haid, M., Gohm, A., Umek, L., Ward, H. C., Muschinski, T., Lehner, L., and Rotach, M. W.:
Foehn–cold pool interactions in the Inn Valley during PIANO IOP2, Q. J. Roy.
Meteorol. Soc., 146, 1232–1263, https://doi.org/10.1002/qj.3735,
2020.
Haid, M., Gohm, A., Umek, L., Ward, H. C., and Rotach, M. W.: Cold-air pool processes in the
Inn Valley during foehn: A comparison of four cases during PIANO, Bound.-Lay. Meteorol., 182, 335–362, https://doi.org/10.1007/s10546-021-00663-9,
2021.
Hamilton, I. G., Davies, M., Steadman, P., Stone, A., Ridley, I., and Evans, S.: The
significance of the anthropogenic heat emissions of London's buildings: A
comparison against captured shortwave solar radiation, Build.
Environ., 44, 807–817, https://doi.org/10.1016/j.buildenv.2008.05.024, 2009.
Hammerle, A., Haslwanter, A., Tappeiner, U., Cernusca, A., and Wohlfahrt, G.: Leaf area
controls on energy partitioning of a temperate mountain grassland,
Biogeosciences, 5, 421–431 https://doi.org/10.5194/bg-5-421-2008, 2008.
Hayashi, M., Hirota, T., Iwata, Y., and Takayabu, I.: Snowmelt Energy Balance and Its
Relation to Foehn Events in Tokachi, Japan, J. Meteorol.
Soc. Jpn. Ser. II, 83, 783–798, https://doi.org/10.2151/jmsj.83.783, 2005.
Helfter, C., Famulari, D., Phillips, G. J., Barlow, J. F., Wood, C. R., Grimmond, C. S. B., and Nemitz,
E.: Controls of carbon dioxide concentrations and fluxes above central
London, Atmos. Chem. Phys., 11, 1913–1928, https://doi.org/10.5194/acp-11-1913-2011, 2011.
Henao, J. J., Rendón, A. M., and Salazar, J. F.: Trade-off between urban heat island
mitigation and air quality in urban valleys, Urban Clim., 31, 100542,
https://doi.org/10.1016/j.uclim.2019.100542, 2020.
Hiller, R., Zeeman, M. J., and Eugster, W.: Eddy-covariance flux measurements in the
complex terrain of an Alpine valley in Switzerland, Bound.-Lay. Meteorol.,
127, 449–467, https://doi.org/10.1007/s10546-008-9267-0, 2008.
Hirano, T., Sugawara, H., Murayama, S., and Kondo, H.: Diurnal variation of CO2 flux in
an urban area of Tokyo, Sola, 11, 100–103, https://doi.org/10.2151/sola.2015-024, 2015.
Hirsch, A. L., Evans, J. P., Thomas, C., Conroy, B., Hart, M. A., Lipson, M., and Ertler, W.:
Resolving the influence of local flows on urban heat amplification during
heatwaves, Environ. Res. Lett., 16, 064066, https://doi.org/10.1088/1748-9326/ac0377, 2021.
Ichinose, T., Shimodozono, K., and Hanaki, K.: Impact of anthropogenic heat on urban
climate in Tokyo, Atmos. Environ., 33, 3897–3909, https://doi.org/10.1016/S1352-2310(99)00132-6, 1999.
IPCC: 2006 IPCC guidelines for national greenhouse gas inventories, Institute for Global Environmental Strategies (IGES), ISBN 4-88788-032-4, 2006
Järvi, L., Nordbo, A., Junninen, H., Riikonen, A., Moilanen, J., Nikinmaa, E.,
and Vesala, T.: Seasonal and annual variation of carbon dioxide surface fluxes in
Helsinki, Finland, in 2006–2010, Atmos. Chem. Phys., 12,
8475–8489, https://doi.org/10.5194/acp-12-8475-2012, 2012.
Järvi, L., Grimmond, C. S. B., Taka, M., Nordbo, A., Setälä, H., and Strachan, I. B.:
Development of the Surface Urban Energy and Water Balance Scheme (SUEWS) for
cold climate cities, Geosci. Model Dev., 7, 1691–1711, https://doi.org/10.5194/gmd-7-1691-2014, 2014.
Järvi, L., Rannik, Ü., Kokkonen, T. V., Kurppa, M., Karppinen, A., Kouznetsov,
R. D., Rantala, P., Vesala, T., and Wood, C. R.: Uncertainty of eddy covariance flux
measurements over an urban area based on two towers, Atmos. Meas. Tech., 11,
5421–5438, https://doi.org/10.5194/amt-11-5421-2018, 2018.
Järvi, L., Havu, M., Ward, H. C., Bellucco, V., McFadden, J. P., Toivonen, T., Heikinheimo, V. , Kolari, P., Riikonen, A., and Grimmond, C. S. B.: Spatial modelling of local-scale biogenic and
anthropogenic carbon dioxide emissions in Helsinki, J. Geophys.
Res.-Atmos., 124, 8363–8384, https://doi.org/10.1029/2018JD029576, 2019.
Jáuregui, E. and Luyando, E.: Global radiation attenuation by air pollution and
its effects on the thermal climate in Mexico City, Int. J. Climatol., 19, 683–694, https://doi.org/10.1002/(SICI)1097-0088(199905)19:6<683::AID-JOC389>3.0.CO;2-8, 1999.
Johnson, G. T. and Watson, I. D.: The Determination of View-Factors in Urban Canyons,
J. Appl. Meteorol. Climatol., 23, 329–335, https://doi.org/10.1175/1520-0450(1984)023<0329:tdovfi>2.0.co;2, 1984.
Karl, T., Graus, M., Striednig, M., Lamprecht, C., Hammerle, A., Wohlfahrt, G., Held, A., von der Heyden, L., Deventer, M. J., Krismer, A., Haun, C., Feichter, R., and Lee, J.: Urban eddy covariance measurements reveal significant missing
NOx emissions in Central Europe, Sci. Rep., 7, 2536, https://doi.org/10.1038/s41598-017-02699-9, 2017.
Karl, T., Striednig, M., Graus, M., Hammerle, A., and Wohlfahrt, G.: Urban flux
measurements reveal a large pool of oxygenated volatile organic compound
emissions, P. Natl. Acad. Sci. USA, 115, 1186–1191,
https://doi.org/10.1073/pnas.1714715115, 2018.
Karl, T., Gohm, A., Rotach, M. W., Ward, H. C., Graus, M., Cede, A., Wohlfahrt, G., Hammerle, A., Haid, M., Tiefengraber, M., Lamprecht, C., Vergeiner, J., Kreuter, A., Wagner, J., and Staudinger, M.: Studying urban climate and air quality in the Alps – The
Innsbruck Atmospheric Observatory, Bull. Am. Meteorol. Soc., 101, E488–E507, https://doi.org/10.1175/BAMS-D-19-0270.1, 2020.
Karsisto, P., Fortelius, C., Demuzere, M., Grimmond, C. S. B., Oleson, K. W., Kouznetsov, R.,
Masson, V., and Järvi, L.: Seasonal surface urban energy balance and wintertime
stability simulated using three land-surface models in the high-latitude
city Helsinki, Q. J. Roy. Meteorol. Soc., 142, 401–417, https://doi.org/10.1002/qj.2659, 2015.
Kaser, L., Peron, A., Graus, M., Striednig, M., Wohlfahrt, G., Juráň, S., and Karl, T.: Interannual variability of terpenoid emissions in an alpine city, Atmos. Chem. Phys., 22, 5603–5618, https://doi.org/10.5194/acp-22-5603-2022, 2022.
Kleingeld, E., van Hove, B., Elbers, J., and Jacobs, C.: Carbon dioxide fluxes in the
city centre of Arnhem, A middle-sized Dutch city, Urban Clim., 24, 994–1010,
https://doi.org/10.1016/j.uclim.2017.12.003, 2018.
Kljun, N., Calanca, P., Rotach, M. W., and Schmid, H. P.: A simple two-dimensional
parameterisation for Flux Footprint Prediction (FFP), Geosci. Model Dev., 8,
3695–3713, https://doi.org/10.5194/gmd-8-3695-2015, 2015.
Kordowski, K. and Kuttler, W.: Carbon dioxide fluxes over an urban park area,
Atmos. Environ., 44, 2722–2730, https://doi.org/10.1016/j.atmosenv.2010.04.039, 2010.
Kosugi, Y., Takanashi, S., Ohkubo, S., Matsuo, N., Tani, M., Mitani, T., Tsutsumi, D., and Nik,
A. R.: CO2 exchange of a tropical rainforest at Pasoh in Peninsular Malaysia,
Agr. Forest Meteorol., 148, 439–452, https://doi.org/10.1016/j.agrformet.2007.10.007, 2008.
Kotthaus, S. and Grimmond, C. S. B.: Energy exchange in a dense urban environment –
Part I: temporal variability of long-term observations in central London,
Urban Clim., 10, 261–280, https://doi.org/10.1016/j.uclim.2013.10.002, 2014a.
Kotthaus, S. and Grimmond, C. S. B.: Energy exchange in a dense urban environment –
Part II: impact of spatial heterogeneity of the surface, Urban Clim., 10,
281–307, https://doi.org/10.1016/j.uclim.2013.10.001, 2014b.
Lamprecht, C., Graus, M., Striednig, M., Stichaner, M., and Karl, T.: Decoupling of urban
CO2 and air pollutant emission reductions during the European SARS-CoV-2
lockdown, Atmos. Chem. Phys., 21, 3091–3102, https://doi.org/10.5194/acp-21-3091-2021, 2021.
Land Tirol: Verkehrsinformation, https://verkehrsinformation.tirol.gv.at/web/html/vde.html#, last access: 22 February 2022.
Largeron, Y. and Staquet, C.: The Atmospheric Boundary Layer during Wintertime
Persistent Inversions in the Grenoble Valleys, Front. Earth Sci., 4, 70,
https://doi.org/10.3389/feart.2016.00070, 2016.
Lee, K., Hong, J. W., Kim, J., Jo, S., and Hong, J.: Traces of urban forest in temperature
and CO2 signals in monsoon East Asia, Atmos. Chem. Phys., 21, 17833–17853,
https://doi.org/10.5194/acp-21-17833-2021, 2021.
Lehner, M. and Rotach, M. W.: Current Challenges in Understanding and Predicting
Transport and Exchange in the Atmosphere over Mountainous Terrain,
Atmosphere, 9, 276, https://doi.org/10.3390/atmos9070276, 2018.
Lehner, M., Rotach, M. W., and Obleitner, F.: A Method to Identify Synoptically
Undisturbed, Clear-Sky Conditions for Valley-Wind Analysis, Bound.-Lay.
Meteorol., 173, 435–450, https://doi.org/10.1007/s10546-019-00471-2, 2019.
Lehner, M., Rotach, M. W., Sfyri, E., and Obleitner, F.: Spatial and temporal variations
in near-surface energy fluxes in an Alpine valley under synoptically
undisturbed and clear-sky conditions, Q. J. Roy. Meteorol. Soc., 147, 2173–2196,
https://doi.org/10.1002/qj.4016, 2021.
Leukauf, D., Gohm, A., and Rotach, M. W.: Toward Generalizing the Impact of Surface
Heating, Stratification, and Terrain Geometry on the Daytime Heat Export
from an Idealized Valley, J. Appl. Meteorol. Climatol., 56,
2711–2727, https://doi.org/10.1175/jamc-d-16-0378.1, 2017.
Li, Y.-L., Tenhunen, J., Owen, K., Schmitt, M., Bahn, M., Droesler, M., Otieno, D., Schmidt, M., Gruenwald, T., Hussain, M. Z., Mirzae, H., and Bernhofer, C.: Patterns in CO2 gas exchange capacity of grassland ecosystems
in the Alps, Agr. Forest Meteorol., 148, 51–68, https://doi.org/10.1016/j.agrformet.2007.09.002, 2008.
Liu, H., Feng, J., Järvi, L., and Vesala, T.: Four-year (2006–2009) eddy covariance
measurements of CO2 flux over an urban area in Beijing, Atmos.
Chem. Phys., 12, 7881–7892, https://doi.org/10.5194/acp-12-7881-2012, 2012.
MacDonald, M. K., Pomeroy, J. W., and Essery, R. L. H.: Water and energy fluxes over northern
prairies as affected by chinook winds and winter precipitation, Agr. Forest
Meteorol., 248, 372–385, https://doi.org/10.1016/j.agrformet.2017.10.025, 2018.
Matzinger, N., Andretta, M., Gorsel, E. V., Vogt, R., Ohmura, A., and Rotach, M. W.: Surface
radiation budget in an Alpine valley, Q. J. Roy. Meteorol. Soc., 129, 877–895,
https://doi.org/10.1256/qj.02.44, 2003.
Mayr, G. J., Armi, L., Arnold, S., Banta, R. M., Darby, L. S., Durran, D. D., Flamant, D., Gaberšek, S., Gohm, A., Mayr, R., Mobbs, S., Nance, L. B., Vergeiner, I., Vergeiner, J., and Whiteman, C. D.: Gap flow measurements during the Mesoscale Alpine Programme,
Meteorol. Atmos. Phys., 86, 99–119, https://doi.org/10.1007/s00703-003-0022-2, 2004.
Mayr, G., Plavcan, D., Armi, L., Elvidge, A., Grisogono, B., Horvath, K., Jackson, P., Neururer, A., Seibert, P., Steenburgh, J. W., Stiperski, I., Sturman, A., Večenaj, Ž., Vergeiner, J., Vosper, S., and Zängl, G.: The Community Foehn Classification Experiment, Bull. Am.
Meteorol. Soc., 99, 2229–2235, https://doi.org/10.1175/bams-d-17-0200.1, 2018.
McCaughey, J. H.: Energy balance storage terms in a mature mixed forest at
Petawawa, Ontario – A case study, Bound.-Lay. Meteorol., 31, 89–101,
https://doi.org/10.1007/BF00120036, 1985.
Miao, S., Chen, F., LeMone, M. A., Tewari, M., Li, Q., and Wang, Y.: An Observational and
Modeling Study of Characteristics of Urban Heat Island and Boundary Layer
Structures in Beijing, J. Appl. Meteorol. Climatol., 48,
484–501, https://doi.org/10.1175/2008JAMC1909.1, 2009.
Miao, S., Dou, J., Chen, F., Li, J., and Li, A.: Analysis of observations on the urban
surface energy balance in Beijing, Sci. China Earth Sci., 55,
1881–1890, https://doi.org/10.1007/s11430-012-4411-6, 2012.
Moncrieff, J. B., Clement, R., Finnigan, J. J., and Meyers, T.: Averaging, detrending and
filtering of eddy covariance time series, in: Handbook of Micrometeorology: a guide for surface flux
measurements, edited by: Lee, X., Massman, W. J., and Law, B. E.,
Springer, Dordrecht,
https://doi.org/10.1007/1-4020-2265-4_2, 2004.
Moriwaki, R. and Kanda, M.: Seasonal and diurnal fluxes of radiation, heat, water
vapor, and carbon dioxide over a suburban area, J. Appl. Meteorol., 43,
1700–1710, https://doi.org/10.1175/JAM2153.1, 2004.
Muschinski, T., Gohm, A., Haid, M., Umek, L., and Ward, H. C.: Spatial heterogeneity of the
Inn Valley Cold Air Pool during south foehn: Observations from an array of
temperature, Meteorol. Z., 30, 153–168, https://doi.org/10.1127/metz/2020/1043, 2021.
Nadeau, D. F., Pardyjak, E. R., Higgins, C. W., Huwald, H., and Parlange, M. B.: Flow during the
evening transition over steep Alpine slopes, Q. J. Roy. Meteorol. Soc., 139,
607–624, https://doi.org/10.1002/qj.1985, 2013.
Narita, K., Sekine, T., and Tokuoka, T.: Thermal properties of urban surface materials
– study on heat balance at asphalt pavement, Geog. Rev. Jpn. A, 57, 639–651,
1984.
Nemitz, E., Hargreaves, K. J., McDonald, A. G., Dorsey, J. R., and Fowler, D.: Meteorological
measurements of the urban heat budget and CO2 emissions on a city scale,
Environ. Sci. Technol., 36, 3139–3146, https://doi.org/10.1021/es010277e, 2002.
Newton, T., Oke, T. R., Grimmond, C. S. B., and Roth, M.: The suburban energy balance in
Miami, Florida, Geogr. Ann. A, 89,
331–347, https://doi.org/10.1111/j.1468-0459.2007.00329.x, 2007.
Nicolini, G., Antoniella, G., Carotenuto, F., Christen, A., Ciais, P., Feigenwinter, C., Gioli, B., Stagakis, S., Velasco, E., Vogt, R., Ward, H. C., Barlow, J., Chrysoulakis, N., Duce, P., Graus, M., Helfter, C., Heusinkveld, B., Järvi, L., Karl, T., Marras, S., Masson, V., Matthews, B., Meier, F., Nemitz, E., Sabbatini, S., Scherer, D., Schume, H., Sirca, C., Steeneveld, G.-J., Vagnoli, C., Wang, Y., Zaldei, A., Zheng, B., and Papale, D.: Direct observations of CO2 emission reductions due to
COVID-19 lockdown across European urban districts, Sci. Total
Environ., 830, 154662, https://doi.org/10.1016/j.scitotenv.2022.154662, 2022.
Nordbo, A., Järvi, L., Haapanala, S., Wood, C. R., and Vesala, T.: Fraction of natural
area as main predictor of net CO2 emissions from cities, Geophys.
Res. Lett., 39, L20802, https://doi.org/10.1029/2012GL053087, 2012.
Novak, M. D.: The moisture and thermal regimes of a bare soil in the Lower
Fraser Valley during spring. PhD thesis Thesis, University of British
Columbia, 175 pp.,
https://doi.org/10.14288/1.0095282, 1981.
Offerle, B., Grimmond, C. S. B., and Fortuniak, K.: Heat storage and anthropogenic heat
flux in relation to the energy balance of a central European city centre,
Int. J. Climatol., 25, 1405–1419, https://doi.org/10.1002/joc.1198, 2005a.
Offerle, B., Jonsson, P., Eliasson, I., and Grimmond, C. S. B.: Urban Modification of the
Surface Energy Balance in the West African Sahel: Ouagadougou, Burkina Faso,
J. Clim., 18, 3983–3995, https://doi.org/10.1175/jcli3520.1, 2005b.
Offerle, B., Grimmond, C. S. B., Fortuniak, K., and Pawlak, W.: Intraurban differences of
surface energy fluxes in a central European city, J. Appl.
Meteorol. Climatol., 45, 125–136, https://doi.org/10.1175/JAM2319.1, 2006.
Oke, T. R.: Canyon geometry and the nocturnal urban heat island: Comparison of
scale model and field observations, J. Climatol., 1, 237–254,
https://doi.org/10.1002/joc.3370010304, 1981.
Oke, T. R., Spronken-Smith, R. A., Jáuregui, E., and Grimmond, C. S. B.: The energy balance
of central Mexico City during the dry season, Atmos. Environ., 33,
3919–3930, https://doi.org/10.1016/S1352-2310(99)00134-X, 1999.
Oke, T. R., Mills, G., Christen, A., and Voogt, J. A.: Urban Climates, Cambridge University
Press, Cambridge, https://doi.org/10.1017/9781139016476, 2017.
Papaioannou, G., Papanikolaou, N., and Retalis, D.: Relationships of
photosynthetically active radiation and shortwave irradiance, Theor.
Appl. Climatol., 48, 23–27, https://doi.org/10.1007/bf00864910, 1993.
Pataki, D. E., Tyler, B. J., Peterson, R. E., Nair, A. P., Steenburgh, W. J., and Pardyjak, E. R.: Can
carbon dioxide be used as a tracer of urban atmospheric transport?, J. Geophys. Res.-Atmos., 110, D15102, https://doi.org/10.1029/2004JD005723, 2005.
Pawlak, W., Fortuniak, K., and Siedlecki, M.: Carbon dioxide flux in the centre of Łódź, Poland – analysis of a 2-year eddy covariance measurement data
set, Int. J. Climatol., 31, 232–243, https://doi.org/10.1002/joc.2247, 2010.
Peixoto, J. P. and Oort, A. H.: Physics of Climate, American Institute of Physics, New York, 520
pp.,
ISBN 0-88318-711-6, 1992.
Pérez-Lombard, L., Ortiz, J., and Pout, C.: A review on buildings energy
consumption information, Energ. Build., 40, 394–398, https://doi.org/10.1016/j.enbuild.2007.03.007, 2008.
Perpiñán, O.: solaR: Solar Radiation and Photovoltaic Systems with R,
J. Stat. Softw., 50, 1–32, 2012.
Pigeon, G., Legain, D., Durand, P., and Masson, V.: Anthropogenic heat release in an old
European agglomeration (Toulouse, France), Int. J. Climatol., 27, 1969–1981, https://doi.org/10.1002/joc.1530,
2007.
Plavcan, D., Mayr, G. J., and Zeileis, A.: Automatic and Probabilistic Foehn Diagnosis
with a Statistical Mixture Model, J. Appl. Meteorol.
Climatol., 53, 652–659, https://doi.org/10.1175/jamc-d-13-0267.1, 2014.
Ramamurthy, P. and Pardyjak, E. R.: Toward understanding the behavior of carbon
dioxide and surface energy fluxes in the urbanized semi-arid Salt Lake
Valley, Utah, USA, Atmos. Environ., 45, 73–84, https://doi.org/10.1016/j.atmosenv.2010.09.049, 2011.
Reid, K. H. and Steyn, D. G.: Diurnal variations of boundary-layer carbon dioxide in a
coastal city – Observations and comparison with model results, Atmos.
Environ., 31, 3101–3114, https://doi.org/10.1016/S1352-2310(97)00050-2, 1997.
Rotach, M. W., Vogt, R., Bernhofer, C., Batchvarova, E., Christen, A., Clappier, A., Feddersen, B., Gryning, S.-E., Martucci, G., Mayer, H., Mitev, V., Oke, T. R., Parlow, E., Richner, H., Roth, M., Roulet, Y.-A., Ruffieux, D., Salmond, J. A., Schatzmann, M., and Voogt, J. A.: BUBBLE – an Urban Boundary Layer Meteorology Project,
Theor. Appl. Climatol., 81, 231–261, https://doi.org/10.1007/s00704-004-0117-9, 2005.
Rotach, M. W., Stiperski, I., Fuhrer, O., Goger, B., Gohm, A., Obleitner, F., Rau, G., Sfyri,
E., and Vergeiner, J.: Investigating Exchange Processes over Complex Topography:
the Innsbruck-Box (i-Box), Bull. Am. Meteorol. Soc., 98, 787–805, https://doi.org/10.1175/BAMS-D-15-00246.1, 2017.
Rotach, M. W., Serafin, S., Ward, H. C., Arpagaus, M., Colfescu, I., Cuxart J., De Wekker, S. F. J., Grubišić, V., Kalthoff, N., Karl, T. G., Kirshbaum, D. J., Lehner, M., Mobbs, S., Paci, A., Palazzi, E., Bailey, A., Schmidli, J., Wittmann, C., Wohlfahrt, G., and Zardi, D.: A collaborative effort to better understand, measure and
model atmospheric exchange processes over mountains, Bull. Am. Meteorol. Soc., 103, E1282–E1295,
https://doi.org/10.1175/BAMS-D-21-0232.1, 2022.
Roth, M., Jansson, C., and Velasco, E.: Multi-year energy balance and carbon dioxide
fluxes over a residential neighbourhood in a tropical city, Int. J. Climatol., 37, 2679–2698, https://doi.org/10.1002/joc.4873, 2017.
Sabatier, T., Paci, A., Canut, G., Largeron, Y., Dabas, A., Donier, J.-M., and Douffet, T.:
Wintertime Local Wind Dynamics from Scanning Doppler Lidar and Air Quality
in the Arve River Valley, Atmosphere, 9, 118, https://doi.org/10.3390/atmos9040118, 2018.
Sailor, D. J. and Lu, L.: A top-down methodology for developing diurnal and seasonal
anthropogenic heating profiles for urban areas, Atmos. Environ., 38,
2737–2748, https://doi.org/10.1016/j.atmosenv.2004.01.034, 2004.
Sailor, D. J. and Vasireddy, C.: Correcting aggregate energy consumption data to
account for variability in local weather, Environ. Model.
Softw., 21, 733–738, https://doi.org/10.1016/j.envsoft.2005.08.001, 2006.
Sailor, D. J., Georgescu, M., Milne, J. M., and Hart, M. A.: Development of a national
anthropogenic heating database with an extrapolation for international
cities, Atmos. Environ., 118, 7–18, https://doi.org/10.1016/j.atmosenv.2015.07.016, 2015.
Schmid, F., Schmidli, J., Hervo, M., and Haefele, A.: Diurnal Valley Winds in a Deep
Alpine Valley: Observations, Atmosphere, 11, 54, https://doi.org/10.3390/atmos11010054, 2020.
Schmutz, M., Vogt, R., Feigenwinter, C., and Parlow, E.: Ten years of eddy covariance
measurements in Basel, Switzerland: Seasonal and interannual variabilities
of urban CO2 mole fraction and flux, J. Geophys. Res.-Atmos., 121, 8649–8667, https://doi.org/10.1002/2016JD025063, 2016.
Schotanus, P., Nieuwstadt, F. T. M., and Bruin, H. A. R.: Temperature measurement with a sonic
anemometer and its application to heat and moisture fluxes, Bound.-Lay.
Meteorol., 26, 81–93, https://doi.org/10.1007/bf00164332, 1983.
Seibert, P.: Fallstudien und statistische Untersuchungen zum Südföhn
im Raum Tirol, University of Innsbruck, 368 pp., University of Innsbruck, Innsrbuck, Austria, https://www.uibk.ac.at/acinn/theses/dissertations.html.en (last access: 26 January 2021), 1985.
Seibert, P., Feldmann, H., Neininger, B., Bäumle, M., and Trickl, T.: South foehn and
ozone in the Eastern Alps – case study and climatological aspects,
Atmos. Environ., 34, 1379–1394, https://doi.org/10.1016/S1352-2310(99)00439-2, 2000.
Souch, C., Grimmond, C. S. B., and Wolfe, C. P.: Evapotranspiration rates from wetlands with
different disturbance histories: Indiana Dunes National Lakeshore, Wetlands,
18, 216–229, https://doi.org/10.1007/BF03161657, 1998.
Spronken-Smith, R. A.: Comparison of summer- and winter-time suburban energy
fluxes in Christchurch, New Zealand, Int. J. Climatol.,
22, 979–992, https://doi.org/10.1002/joc.767, 2002.
Stagakis, S., Chrysoulakis, N., Spyridakis, N., Feigenwinter, C., and Vogt, R.: Eddy
Covariance measurements and source partitioning of CO2 emissions in an urban
environment: Application for Heraklion, Greece, Atmos. Environ., 201,
278–292, https://doi.org/10.1016/j.atmosenv.2019.01.009, 2019.
Statistik Austria: Atlas der Erwerbspendlerinnen und -pendler, https://www.statistik.at/atlas/pendler/ (last access: 20 March 2019),
2016.
Statistik Austria: Energy statistics: Domestic Energy Consumption – Overall
consumption of fuels 2015/2016, https://www.statistik.at/
(last access: 20 July 2020), 2017a.
Statistik Austria: Energy statistics: Domestic energy consumption
(Microcensus 2015/2016) – Driven kilometres and fuel consumption of private
cars, https://www.statistik.at/
(last access: 19 March 2019), 2017b.
Statistik Austria: Statistiken, http://www.statistik-austria.at/web_de/statistiken/index.html (last access: 27 February 2019), 2018.
Stewart, I. D. and Oke, T. R.: Local Climate Zones for Urban Temperature Studies, Bull.
Am. Meteorol. Soc., 93, 1879–1900, https://doi.org/10.1175/BAMS-D-11-00019.1, 2012.
Stewart, J. Q., Whiteman, C. D., Steenburgh, W. J., and Bian, X.: A Climatological study of
thermally driven wind systems of the U.S. Intermountain West, Bull. Am.
Meteorol. Soc., 83, 699–708, https://doi.org/10.1175/1520-0477(2002)083<0699:acsotd>2.3.co;2, 2002.
Sugawara, H. and Narita, K.-I.: Mitigation of Urban Thermal Environment by River,
J. Jpn. Soc. Hydrol. Water Res., 25, 351–361,
https://doi.org/10.3178/jjshwr.25.351, 2012.
Taesler, R.: Studies of the development and thermal structure of the urban
boundary layer in Uppsala, Meteorological Institute of the University of
Uppsala, Uppsala, Sweden,
1980.
Umek, L., Gohm, A., Haid, M., Ward, H. C., and Rotach, M. W.: Large eddy simulation of
foehn-cold pool interactions in the Inn Valley during PIANO IOP2, Q. J.
Roy. Meteorol. Soc., 147, 944–982, https://doi.org/10.1002/qj.3954,
2021.
Umek, L., Gohm, A., Haid, M., Ward, H. C., and Rotach, M. W.: Influence of grid resolution of
large-eddy simulations on foehn-cold pool interaction, Q. J. Roy. Meteorol.
Soc., 1–24, https://doi.org/10.1002/qj.4281, 2022.
Urbanski, S., Barford, C., Wofsy, S., Kucharik, C., Pyle, E., Budney, J., McKain, J., Fitzjarrald, D., Czikowsky, M., and Munger, J. W.: Factors controlling CO2 exchange on timescales from
hourly to decadal at Harvard Forest, J. Geophys. Res.-Biogeo., 112, G02020, https://doi.org/10.1029/2006JG000293, 2007.
Velasco, E., Lamb, B., Westberg, H., Allwine, E., Sosa, G., Arriaga-Colina, J. L., Jobson, B. T., Alexander, M. L., Prazeller, P., Knighton, W. B., Rogers, T. M., Grutter, M., Herndon, S. C., Kolb, C. E., Zavala, M., de Foy, B., Volkamer, R., Molina, L. T., and Molina, M. J.: Distribution, magnitudes, reactivities, ratios and diurnal patterns of volatile organic compounds in the Valley of Mexico during the MCMA 2002 & 2003 field campaigns, Atmos. Chem. Phys., 7, 329–353, https://doi.org/10.5194/acp-7-329-2007, 2007.
Velasco, E., Perrusquia, R., Jiménez, E., Hernández, F., Camacho, P.,
Rodríguez, S., Retama, A., and Molina, L.: Sources and sinks of carbon dioxide in
a neighborhood of Mexico City, Atmos. Environ., 97, 226–238,
https://doi.org/10.1016/j.atmosenv.2014.08.018, 2014.
Vergeiner, I. and Dreiseitl, E.: Valley winds and slope winds – Observations and
elementary thoughts, Meteorol. Atmos. Phys., 36, 264–286,
https://doi.org/10.1007/BF01045154, 1987.
Vesala, T., Järvi, L., Launiainen, S., Sogachev, A., Rannik, Ü., Mammarella, I., Ivola, E. S., Keronen, P., Rinne, J., Riikonen, A., and Nikinmaa, E.: Surface–atmosphere interactions over complex urban terrain
in Helsinki, Finland, Tellus B, 60, 188–199, https://doi.org/10.1111/j.1600-0889.2007.00312.x, 2008.
Wagner, J. S., Gohm, A., and Rotach, M. W.: The impact of valley geometry on daytime
thermally driven flows and vertical transport processes, Q. J. Roy. Meteorol.
Soc., 141, 1780–1794, https://doi.org/10.1002/qj.2481, 2015.
Ward, H. C., Evans, J. G., and Grimmond, C. S. B.: Multi-season eddy covariance observations
of energy, water and carbon fluxes over a suburban area in Swindon, UK,
Atmos. Chem. Phys., 13, 4645–4666, https://doi.org/10.5194/acp-13-4645-2013, 2013.
Ward, H. C., Kotthaus, S., Grimmond, C. S. B., Bjorkegren, A., Wilkinson, M., Morrison, W. T. J.,
Evans, J. G., Morison, J. I. L., and Iamarino, M.: Effects of urban density on carbon
dioxide exchanges: Observations of dense urban, suburban and woodland areas
of southern England, Environ. Pollut., 198, 186–200, https://doi.org/10.1016/j.envpol.2014.12.031, 2015.
Ward, H. C., Kotthaus, S., Järvi, L., and Grimmond, C. S. B.: Surface Urban Energy and
Water Balance Scheme (SUEWS): Development and evaluation at two UK sites,
Urban Clim., 18, 1–32, https://doi.org/10.1016/j.uclim.2016.05.001, 2016.
Ward, H. C., Gohm, A., Umek, L., Haid, M., Muschinski, T., Graus, M., Karl, T., and Rotach, M. W.:
PIANO (Penetration and Interruption of Alpine Foehn) – flux station data
set, Zenodo [data set], https://doi.org/10.5281/zenodo.5795431, 2021.
Ward, H. C., Rotach, M. W., Graus, M., Karl, T., Gohm, A., Umek, L., and Haid, M.: Turbulence
characteristics at an urban site in highly complex terrain, 2022.
Weissert, L. F., Salmond, J. A., Turnbull, J. C., and Schwendenmann, L.: Temporal variability
in the sources and fluxes of CO2 in a residential area in an evergreen
subtropical city, Atmos. Environ., 143, 164–176, https://doi.org/10.1016/j.atmosenv.2016.08.044, 2016.
Whiteman, C. D.: Mountain Meteorology, Fundamentals and Applications, Oxford
University Press, New York-Oxford, ISBN 9780195132717, 2000.
Whiteman, C. D., Allwine, K. J., Fritschen, L. J., Orgill, M. M., and Simpson, J. R.: Deep Valley
Radiation and Surface Energy Budget Microclimates, Part I: Radiation, J.
Appl. Meteorol., 28, 414–426, https://doi.org/10.1175/1520-0450(1989)028<0414:DVRASE>2.0.CO;2, 1989.
Wohlfahrt, G., Bahn, M., Haslwanter, A., Newesely, C., and Cernusca, A.: Estimation of
daytime ecosystem respiration to determine gross primary production of a
mountain meadow, Agr. Forest Meteorol., 130, 13–25, https://doi.org/10.1016/j.agrformet.2005.02.001, 2005.
Wohlfahrt, G., Hammerle, A., Haslwanter, A., Bahn, M., Tappeiner, U., and Cernusca, A.:
Seasonal and inter-annual variability of the net ecosystem CO2 exchange of a
temperate mountain grassland: Effects of weather and management, J.
Geophys. Res.-Atmos., 113, D08110, https://doi.org/10.1029/2007jd009286, 2008.
Xie, J., Jia, X., He, G., Zhou, C., Yu, H., Wu, Y., Bourque, C. P. A., Liu, H., and Zha, T.:
Environmental control over seasonal variation in carbon fluxes of an urban
temperate forest ecosystem, Landscape Urban Plann., 142, 63–70,
https://doi.org/10.1016/j.landurbplan.2015.04.011, 2015.
Yap, D. H.: Sensible heat fluxes measured in and near Vancouver, B.C. PhD
Thesis, University of British Columbia, Vancouver, Canada, 199 pp.,
https://doi.org/10.14288/1.0101037, 1973.
Yoshida, A., Tominaga, K., and Watatani, S.: Field measurements on energy balance of
an urban canyon in the summer season, Energ. Build., 15, 417–423,
https://doi.org/10.1016/0378-7788(90)90016-C, 1990.
Yoshida, A., Tominaga, K., and Watatani, S.: Field investigation on heat transfer in
an urban canyon, Heat Transfer – Japanese Research, 20, 230–244, 1991.
ZAMG: Klimamonitoring, https://www.zamg.ac.at/cms/de/klima/klima-aktuell/klimamonitoring/?station=11803¶m=t&period=period-ym-2017-05&ref=3, last access: 23 November 2021.
Zängl, G.: Deep and shallow south foehn in the region of Innsbruck:
Typical features and semi-idelized numerical simulations, Meteorol.
Atmos. Phys., 83, 237–261, https://doi.org/10.1007/s00703-002-0565-7, 2003.
Zardi, D. and Whiteman, C. D.: Diurnal mountain wind systems, in: Mountain weather research and forecasting, edited by: Chow, F. K., De
Wekker, S. F. J., and Snyder, B. J.,
Springer Atmospheric Sciences, Springer, Dordrecht, 35–119, https://doi.org/10.1007/978-94-007-4098-3_2, 2013.
Short summary
This study examines how cities and their surroundings influence turbulent exchange processes responsible for weather and climate. Analysis of a 4-year observational dataset for the Alpine city of Innsbruck reveals several similarities with other (flat) city centre sites. However, the mountain setting leads to characteristic daily and seasonal flow patterns (valley winds) and downslope windstorms that have a marked effect on temperature, wind speed, turbulence and pollutant concentration.
This study examines how cities and their surroundings influence turbulent exchange processes...
Altmetrics
Final-revised paper
Preprint