Articles | Volume 22, issue 10
https://doi.org/10.5194/acp-22-6559-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-6559-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Energy and mass exchange at an urban site in mountainous terrain – the Alpine city of Innsbruck
Department of Atmospheric and Cryospheric Sciences, University of
Innsbruck, Innsbruck, Austria
Mathias Walter Rotach
Department of Atmospheric and Cryospheric Sciences, University of
Innsbruck, Innsbruck, Austria
Alexander Gohm
Department of Atmospheric and Cryospheric Sciences, University of
Innsbruck, Innsbruck, Austria
Martin Graus
Department of Atmospheric and Cryospheric Sciences, University of
Innsbruck, Innsbruck, Austria
Thomas Karl
Department of Atmospheric and Cryospheric Sciences, University of
Innsbruck, Innsbruck, Austria
Maren Haid
Department of Atmospheric and Cryospheric Sciences, University of
Innsbruck, Innsbruck, Austria
Lukas Umek
Department of Atmospheric and Cryospheric Sciences, University of
Innsbruck, Innsbruck, Austria
Thomas Muschinski
Department of Atmospheric and Cryospheric Sciences, University of
Innsbruck, Innsbruck, Austria
Related authors
Ting Sun, Hamidreza Omidvar, Zhenkun Li, Ning Zhang, Wenjuan Huang, Simone Kotthaus, Helen C. Ward, Zhiwen Luo, and Sue Grimmond
Geosci. Model Dev., 17, 91–116, https://doi.org/10.5194/gmd-17-91-2024, https://doi.org/10.5194/gmd-17-91-2024, 2024
Short summary
Short summary
For the first time, we coupled a state-of-the-art urban land surface model – Surface Urban Energy and Water Scheme (SUEWS) – with the widely-used Weather Research and Forecasting (WRF) model, creating an open-source tool that may benefit multiple applications. We tested our new system at two UK sites and demonstrated its potential by examining how human activities in various areas of Greater London influence local weather conditions.
Mathew Lipson, Sue Grimmond, Martin Best, Winston T. L. Chow, Andreas Christen, Nektarios Chrysoulakis, Andrew Coutts, Ben Crawford, Stevan Earl, Jonathan Evans, Krzysztof Fortuniak, Bert G. Heusinkveld, Je-Woo Hong, Jinkyu Hong, Leena Järvi, Sungsoo Jo, Yeon-Hee Kim, Simone Kotthaus, Keunmin Lee, Valéry Masson, Joseph P. McFadden, Oliver Michels, Wlodzimierz Pawlak, Matthias Roth, Hirofumi Sugawara, Nigel Tapper, Erik Velasco, and Helen Claire Ward
Earth Syst. Sci. Data, 14, 5157–5178, https://doi.org/10.5194/essd-14-5157-2022, https://doi.org/10.5194/essd-14-5157-2022, 2022
Short summary
Short summary
We describe a new openly accessible collection of atmospheric observations from 20 cities around the world, capturing 50 site years. The observations capture local meteorology (temperature, humidity, wind, etc.) and the energy fluxes between the land and atmosphere (e.g. radiation and sensible and latent heat fluxes). These observations can be used to improve our understanding of urban climate processes and to test the accuracy of urban climate models.
Christian Lamprecht, Martin Graus, Marcus Striednig, Michael Stichaner, Werner Jud, Andreas Held, and Thomas Karl
Atmos. Meas. Tech., 18, 5003–5016, https://doi.org/10.5194/amt-18-5003-2025, https://doi.org/10.5194/amt-18-5003-2025, 2025
Short summary
Short summary
Air pollution management requires accurate determination of emissions and emission ratios of air pollutants. In this paper, we explore a new way to resolve excess mixing ratios in turbulent plumes, which allows aggregation of unbiased ensemble averages of air pollutant ratios that can be compared with emission models. The approach is tested in an urban environment and used to resolve emission patterns of nitrogen oxides and carbon dioxide.
Johannes Mikkola, Alexander Gohm, Victoria A. Sinclair, and Federico Bianchi
Atmos. Chem. Phys., 25, 511–533, https://doi.org/10.5194/acp-25-511-2025, https://doi.org/10.5194/acp-25-511-2025, 2025
Short summary
Short summary
This study investigates the influence of valley floor inclination on diurnal winds and passive tracer transport within idealised mountain valleys using numerical simulations. The valley inclination strengthens the daytime up-valley winds but only up to a certain point. Beyond that critical angle, the winds weaken again. The inclined valleys transport the tracers higher up in the free troposphere, which would, for example, lead to higher potential for long-range transport.
Arianna Peron, Martin Graus, Marcus Striednig, Christian Lamprecht, Georg Wohlfahrt, and Thomas Karl
Atmos. Chem. Phys., 24, 7063–7083, https://doi.org/10.5194/acp-24-7063-2024, https://doi.org/10.5194/acp-24-7063-2024, 2024
Short summary
Short summary
The anthropogenic fraction of non-methane volatile organic compound (NMVOC) emissions associated with biogenic sources (e.g., terpenes) is investigated based on eddy covariance observations. The anthropogenic fraction of terpene emissions is strongly dependent on season. When analyzing volatile chemical product (VCP) emissions in urban environments, we caution that observations from short-term campaigns might over-/underestimate their significance depending on local and seasonal circumstances.
Nevio Babić, Bianca Adler, Alexander Gohm, Manuela Lehner, and Norbert Kalthoff
Weather Clim. Dynam., 5, 609–631, https://doi.org/10.5194/wcd-5-609-2024, https://doi.org/10.5194/wcd-5-609-2024, 2024
Short summary
Short summary
Day-to-day weather over mountains remains a significant challenge in the domain of weather forecast. Using a combination of measurements from several instrument platforms, including Doppler lidars, aircraft, and radiosondes, we developed a method that relies primarily on turbulence characteristics of the lowest layers of the atmosphere. As a result, we identified new ways in which atmosphere behaves over mountains during daytime, which may serve to further improve forecasting capabilities.
Ting Sun, Hamidreza Omidvar, Zhenkun Li, Ning Zhang, Wenjuan Huang, Simone Kotthaus, Helen C. Ward, Zhiwen Luo, and Sue Grimmond
Geosci. Model Dev., 17, 91–116, https://doi.org/10.5194/gmd-17-91-2024, https://doi.org/10.5194/gmd-17-91-2024, 2024
Short summary
Short summary
For the first time, we coupled a state-of-the-art urban land surface model – Surface Urban Energy and Water Scheme (SUEWS) – with the widely-used Weather Research and Forecasting (WRF) model, creating an open-source tool that may benefit multiple applications. We tested our new system at two UK sites and demonstrated its potential by examining how human activities in various areas of Greater London influence local weather conditions.
Thomas Muschinski, Georg J. Mayr, Achim Zeileis, and Thorsten Simon
Nonlin. Processes Geophys., 30, 503–514, https://doi.org/10.5194/npg-30-503-2023, https://doi.org/10.5194/npg-30-503-2023, 2023
Short summary
Short summary
Statistical post-processing is necessary to generate probabilistic forecasts from physical numerical weather prediction models. To allow for more flexibility, there has been a shift in post-processing away from traditional parametric regression models towards modern machine learning methods. By fusing these two approaches, we developed model output statistics random forests, a new post-processing method that is highly flexible but at the same time also very robust and easy to interpret.
Matthias Göbel, Stefano Serafin, and Mathias W. Rotach
Weather Clim. Dynam., 4, 725–745, https://doi.org/10.5194/wcd-4-725-2023, https://doi.org/10.5194/wcd-4-725-2023, 2023
Short summary
Short summary
On summer days over mountains, upslope winds transport moist air towards mountain tops and beyond, making local rain showers more likely. We use idealized simulations to investigate how mountain steepness affects this mechanism. We find that steeper mountains lead to a delayed onset and lower intensity of the storms, because less moisture accumulates over the ridges and the thermal updraft zone at the top is narrower and thus more prone to the intrusion of dry air from the environment.
Hetal P. Dabhi, Mathias W. Rotach, and Michael Oberguggenberger
Hydrol. Earth Syst. Sci., 27, 2123–2147, https://doi.org/10.5194/hess-27-2123-2023, https://doi.org/10.5194/hess-27-2123-2023, 2023
Short summary
Short summary
Spatiotemporally consistent high-resolution precipitation data on climate are needed for climate change impact assessments, but obtaining these data is challenging for areas with complex topography. We present a model that generates synthetic gridded daily precipitation data at a 1 km spatial resolution using observed meteorological station data as input, thereby providing data where historical observations are unavailable. We evaluate this model for a mountainous region in the European Alps.
Thomas Muschinski, Moritz N. Lang, Georg J. Mayr, Jakob W. Messner, Achim Zeileis, and Thorsten Simon
Wind Energ. Sci., 7, 2393–2405, https://doi.org/10.5194/wes-7-2393-2022, https://doi.org/10.5194/wes-7-2393-2022, 2022
Short summary
Short summary
The power generated by offshore wind farms can vary greatly within a couple of hours, and failing to anticipate these ramp events can lead to costly imbalances in the electrical grid. A novel multivariate Gaussian regression model helps us to forecast not just the means and variances of the next day's hourly wind speeds, but also their corresponding correlations. This information is used to generate more realistic scenarios of power production and accurate estimates for ramp probabilities.
Mathew Lipson, Sue Grimmond, Martin Best, Winston T. L. Chow, Andreas Christen, Nektarios Chrysoulakis, Andrew Coutts, Ben Crawford, Stevan Earl, Jonathan Evans, Krzysztof Fortuniak, Bert G. Heusinkveld, Je-Woo Hong, Jinkyu Hong, Leena Järvi, Sungsoo Jo, Yeon-Hee Kim, Simone Kotthaus, Keunmin Lee, Valéry Masson, Joseph P. McFadden, Oliver Michels, Wlodzimierz Pawlak, Matthias Roth, Hirofumi Sugawara, Nigel Tapper, Erik Velasco, and Helen Claire Ward
Earth Syst. Sci. Data, 14, 5157–5178, https://doi.org/10.5194/essd-14-5157-2022, https://doi.org/10.5194/essd-14-5157-2022, 2022
Short summary
Short summary
We describe a new openly accessible collection of atmospheric observations from 20 cities around the world, capturing 50 site years. The observations capture local meteorology (temperature, humidity, wind, etc.) and the energy fluxes between the land and atmosphere (e.g. radiation and sensible and latent heat fluxes). These observations can be used to improve our understanding of urban climate processes and to test the accuracy of urban climate models.
Cornelius Immanuel Weiß, Alexander Gohm, Mathias Walter Rotach, and Thomas Torora Minda
Weather Clim. Dynam., 3, 1003–1019, https://doi.org/10.5194/wcd-3-1003-2022, https://doi.org/10.5194/wcd-3-1003-2022, 2022
Short summary
Short summary
Two gap flow events in the Great Rift Valley in Ethiopia were investigated based on observations, ERA5 reanalysis data, and simulations with the numerical weather prediction model WRF. The main focus was on strong winds in the area around Lake Abaya since the winds may generate waves on the lake which help to sustain the lake's ecology. That is important in terms of food supply for the local population. The gap winds exhibit a diurnal cycle and a seasonal dependence.
Sihang Wang, Bin Yuan, Caihong Wu, Chaomin Wang, Tiange Li, Xianjun He, Yibo Huangfu, Jipeng Qi, Xiao-Bing Li, Qing'e Sha, Manni Zhu, Shengrong Lou, Hongli Wang, Thomas Karl, Martin Graus, Zibing Yuan, and Min Shao
Atmos. Chem. Phys., 22, 9703–9720, https://doi.org/10.5194/acp-22-9703-2022, https://doi.org/10.5194/acp-22-9703-2022, 2022
Short summary
Short summary
Volatile organic compound (VOC) emissions from vehicles are measured using online mass spectrometers. Differences between gasoline and diesel vehicles are observed with higher emission factors of most oxygenated VOCs (OVOCs) and heavier aromatics from diesel vehicles. A higher aromatics / toluene ratio could provide good indicators to distinguish emissions from both vehicle types. We show that OVOCs account for significant contributions to VOC emissions from vehicles, especially diesel vehicles.
Lisa Kaser, Arianna Peron, Martin Graus, Marcus Striednig, Georg Wohlfahrt, Stanislav Juráň, and Thomas Karl
Atmos. Chem. Phys., 22, 5603–5618, https://doi.org/10.5194/acp-22-5603-2022, https://doi.org/10.5194/acp-22-5603-2022, 2022
Short summary
Short summary
Biogenic volatile organic compounds (e.g., terpenoids) play an essential role in atmospheric chemistry. Urban greening activities need to consider the ozone- and aerosol-forming potential of these compounds released from vegetation. NMVOC emissions in urban environments are complex, and the biogenic component remains poorly quantified. For summer conditions biogenic emissions dominate terpene emissions and heat waves can significantly modulate urban biogenic terpenoid emissions.
Manuel Saigger and Alexander Gohm
Weather Clim. Dynam., 3, 279–303, https://doi.org/10.5194/wcd-3-279-2022, https://doi.org/10.5194/wcd-3-279-2022, 2022
Short summary
Short summary
In this work a special form of a foehn wind in an Alpine valley with a large-scale northwesterly flow is investigated. The study clarifies the origin of the air mass and the mechanisms by which this air enters the valley. A trajectory analysis shows that the location where the main airstream passes the crest line is more suitable for a foehn classification than the local or large-scale wind direction. Mountain waves and a lee rotor were crucial for importing air into the valley.
Matthias Göbel, Stefano Serafin, and Mathias W. Rotach
Geosci. Model Dev., 15, 669–681, https://doi.org/10.5194/gmd-15-669-2022, https://doi.org/10.5194/gmd-15-669-2022, 2022
Short summary
Short summary
We present WRFlux, an open-source software that allows numerically consistent, time-averaged budget evaluation of prognostic variables for the numerical weather prediction model WRF as well as the transformation of the budget equations from the terrain-following grid of the model to the Cartesian coordinate system. We demonstrate the performance and a possible application of WRFlux and illustrate the detrimental effects of approximations that are inconsistent with the model numerics.
Lukas Fischer, Martin Breitenlechner, Eva Canaval, Wiebke Scholz, Marcus Striednig, Martin Graus, Thomas G. Karl, Tuukka Petäjä, Markku Kulmala, and Armin Hansel
Atmos. Meas. Tech., 14, 8019–8039, https://doi.org/10.5194/amt-14-8019-2021, https://doi.org/10.5194/amt-14-8019-2021, 2021
Short summary
Short summary
Ecosystems emit biogenic volatile organic compounds (BVOCs), which are then oxidized in the atmosphere, contributing to ozone and secondary aerosol formation. While flux measurements of BVOCs are state of the art, flux measurements of the less volatile oxidation products are difficult to achieve due to inlet losses. Here we present first flux measurements, utilizing a novel PTR3 instrument in combination with a specially designed wall-less inlet we put on top of the Hyytiälä tower in Finland.
Johannes Horak, Marlis Hofer, Ethan Gutmann, Alexander Gohm, and Mathias W. Rotach
Geosci. Model Dev., 14, 1657–1680, https://doi.org/10.5194/gmd-14-1657-2021, https://doi.org/10.5194/gmd-14-1657-2021, 2021
Short summary
Short summary
This process-based evaluation of the atmospheric model ICAR is conducted to derive recommendations to increase the likelihood of its results being correct for the right reasons. We conclude that a different diagnosis of the atmospheric background state is necessary, as well as a model top at an elevation of at least 10 km. Alternative boundary conditions at the top were not found to be effective in reducing this model top elevation. The results have wide implications for future ICAR studies.
Christian Lamprecht, Martin Graus, Marcus Striednig, Michael Stichaner, and Thomas Karl
Atmos. Chem. Phys., 21, 3091–3102, https://doi.org/10.5194/acp-21-3091-2021, https://doi.org/10.5194/acp-21-3091-2021, 2021
Short summary
Short summary
The first European SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) wave and associated lockdown provided a unique sensitivity experiment to study air pollution. We find significantly different emission trajectories between classical air pollution and climate gases (e.g., carbon dioxide). The analysis suggests that European policies, shifting residential, public, and commercial energy demand towards cleaner combustion, have helped to improve air quality more than expected.
Arianna Peron, Lisa Kaser, Anne Charlott Fitzky, Martin Graus, Heidi Halbwirth, Jürgen Greiner, Georg Wohlfahrt, Boris Rewald, Hans Sandén, and Thomas Karl
Biogeosciences, 18, 535–556, https://doi.org/10.5194/bg-18-535-2021, https://doi.org/10.5194/bg-18-535-2021, 2021
Short summary
Short summary
Drought events are expected to become more frequent with climate change. Along with these events atmospheric ozone is also expected to increase. Both can stress plants. Here we investigate to what extent these factors modulate the emission of volatile organic compounds (VOCs) from oak plants. We find an antagonistic effect between drought stress and ozone, impacting the emission of different BVOCs, which is indirectly controlled by stomatal opening, allowing plants to control their water budget.
Bettina Richter, Alec van Herwijnen, Mathias W. Rotach, and Jürg Schweizer
Nat. Hazards Earth Syst. Sci., 20, 2873–2888, https://doi.org/10.5194/nhess-20-2873-2020, https://doi.org/10.5194/nhess-20-2873-2020, 2020
Short summary
Short summary
We investigated the sensitivity of modeled snow instability to uncertainties in meteorological input, typically found in complex terrain. The formation of the weak layer was very robust due to the long dry period, indicated by a widespread avalanche problem. Once a weak layer has formed, precipitation mostly determined slab and weak layer properties and hence snow instability. When spatially assessing snow instability for avalanche forecasting, accurate precipitation patterns have to be known.
Cited articles
Adler, B., Kalthoff, N., and Kiseleva, O.: Detection of structures in the horizontal
wind field over complex terrain using coplanar Doppler lidar scans,
Meteorol. Z., 29, 467–481, https://doi.org/10.1127/metz/2020/1031,
2020.
Allwine, K. J., Shinn, J. H., Streit, G. E., Clawson, K. L., and Brown, M.: Overview of URBAN
2000: A Multiscale Field Study of Dispersion through an Urban Environment,
Bull. Am. Meteorol. Soc., 83, 521–536 https://doi.org/10.1175/1520-0477(2002)083<0521:OOUAMF>2.3.CO;2, 2002.
Anandakumar, K.: A study on the partition of net radiation into heat fluxes on
a dry asphalt surface, Atmos. Environ., 33, 3911–3918, 1999.
Ao, X., Grimmond, C. S. B., Chang, Y., Liu, D., Tang, Y., Hu, P., Wang, Y., Zou, J., and Tan, J:
Heat, water and carbon exchanges in the tall megacity of Shanghai:
challenges and results, Int. J. Climatol., 36, 4608–4624,
https://doi.org/10.1002/joc.4657, 2016.
Asaeda, T. and Ca, V.: The subsurface transport of heat and moisture and its effect
on the environment: A numerical model, Bound.-Lay. Meteorol., 65, 159–179,
https://doi.org/10.1007/BF00708822, 1993.
Babić, N., Adler, B., Gohm, A., Kalthoff, N., Haid, M., Lehner, M., Ladstätter,
P., and Rotach, M. W.: Cross-valley vortices in the Inn valley, Austria: Structure,
evolution and governing force imbalances, Q. J. Roy. Meteorol. Soc., 147, 3835–3861, https://doi.org/10.1002/qj.4159, 2021.
Balogun, A., Adegoke, J., Vezhapparambu, S., Mauder, M., McFadden, J., and Gallo, K.:
Surface energy balance measurements above an exurban residential
neighbourhood of Kansas City, Missouri, Bound.-Lay. Meteorol., 133, 299–321,
https://doi.org/10.1007/s10546-009-9421-3, 2009.
Bergeron, O. and Strachan, I. B.: Wintertime radiation and energy budget along an
urbanization gradient in Montreal, Can. Int. J. Climatol., 32, 137–152, https://doi.org/10.1002/joc.2246, 2010.
Bergeron, O. and Strachan, I. B.: CO2 sources and sinks in urban and suburban
areas of a northern mid-latitude city, Atmos. Environ., 45, 1564–1573,
https://doi.org/10.1016/j.atmosenv.2010.12.043, 2011.
Björkegren, A. and Grimmond, C. S. B.: Net carbon dioxide emissions from central
London, Urban Clim., 23, 131–158, https://doi.org/10.1016/j.uclim.2016.10.002, 2017.
Christen, A. and Vogt, R.: Energy and radiation balance of a central European city,
Int. J. Climatol., 24, 1395–1421, https://doi.org/10.1002/joc.1074, 2004.
Christen, A., Rotach, M. W., and Vogt, R.: The Budget of Turbulent Kinetic Energy in the
Urban Roughness Sublayer, Bound.-Lay. Meteorol., 131, 193–222, https://doi.org/10.1007/s10546-009-9359-5, 2009.
Christen, A., Coops, N., Crawford, B., Kellett, R., Liss, K., Olchovski, I., Tooke, T.,
Van Der Laan, M., and Voogt, J.: Validation of modeled carbon-dioxide emissions from
an urban neighborhood with direct eddy-covariance measurements, Atmos.
Environ., 45, 6057–6069, https://doi.org/10.1016/j.atmosenv.2011.07.040, 2011.
City Population: Population of Innsbruck by quarter, https://www.citypopulation.de/php/austria-innsbruck.php (last access: 20 March 2019), 2018.
Coutts, A. M., Beringer, J., and Tapper, N. J.: Characteristics influencing the
variability of urban CO2 fluxes in Melbourne, Australia, Atmos.
Environ., 41, 51–62, https://doi.org/10.1016/j.atmosenv.2006.08.030, 2007a.
Coutts, A. M., Beringer, J., and Tapper, N. J.: Impact of increasing urban density on
local climate: Spatial and temporal variations in the surface energy balance
in Melbourne, Australia, J. Appl. Meteorol. Climatol., 46,
477–493, https://doi.org/10.1175/jam2462.1, 2007b.
Crawford, B., Grimmond, C. S. B., and Christen, A.: Five years of carbon dioxide fluxes
measurements in a highly vegetated suburban area, Atmos. Environ.,
45, 896–905, https://doi.org/10.1016/j.atmosenv.2010.11.017,
2011.
Crawford, B., Krayenhoff, E. S., and Cordy, P.: The urban energy balance of a
lightweight low-rise neighborhood in Andacollo, Chile, Theor.
Appl. Climatol., 131, 55–68, https://doi.org/10.1007/s00704-016-1922-7, 2016.
Deventer, M. J., von der Heyden, L., Lamprecht, C., Graus, M., Karl, T., and Held, A.: Aerosol
particles during the Innsbruck Air Quality Study (INNAQS): Fluxes of
nucleation to accumulation mode particles in relation to selective urban
tracers, Atmos. Environ., 190, 376–388, https://doi.org/10.1016/j.atmosenv.2018.04.043, 2018.
Doll, D., Ching, J. K. S., and Kaneshiro, J.: Parameterization of subsurface heating for
soil and concrete using net radiation data, Bound.-Lay. Meteorol., 32, 351–372,
https://doi.org/10.1007/BF00122000, 1985.
Doran, J. C., Fast, J. D., and Horel, J.: The VTMX 2000 campaign, Bull. Am. Meteorol.
Soc., 83, 537–551, https://doi.org/10.1175/1520-0477(2002)083<0537:TVC>2.3.CO;2, 2002.
Dou, J., Grimmond, S., Cheng, Z., Miao, S., Feng, D., and Liao, M.: Summertime surface
energy balance fluxes at two Beijing sites, Int. J. Climatol., 39, 2793–2810, https://doi.org/10.1002/joc.5989,
2019.
Dreiseitl, E., Feichter, H., Pichler, H., Steinacker, R., and Vergeiner, I.: Windregimes
an der Gabelung zweier Alpentäler, Arch. Meteorol.,
Geophys. Bioklimatol. Ser. B, 28, 257–275, https://doi.org/10.1007/BF02245357, 1980.
Fernando, H. J. S.: Fluid Dynamics of Urban Atmospheres in Complex Terrain, Annu.
Rev. Fluid Mech., 42, 365–389, https://doi.org/10.1146/annurev-fluid-121108-145459, 2010.
Foken, T. and Wichura, B.: Tools for quality assessment of surface-based flux
measurements, Agr. Forest Meteorol., 78, 83–105, https://doi.org/10.1016/0168-1923(95)02248-1, 1996.
Fortuniak, K., Pawlak, W., and Siedlecki, M.: Integral Turbulence Statistics Over a
Central European City Centre, Bound.-Lay. Meteorol., 146, 257–276, https://doi.org/10.1007/s10546-012-9762-1, 2013.
Fratini, G., Ibrom, A., Arriga, N., Burba, G., and Papale, D.: Relative humidity effects
on water vapour fluxes measured with closed-path eddy-covariance systems
with short sampling lines, Agr. Forest Meteorol., 165, 53–63, https://doi.org/10.1016/j.agrformet.2012.05.018, 2012.
Frey, C. M., Parlow, E., Vogt, R., Harhash, M., and Abdel Wahab, M. M.: Flux measurements in
Cairo, Part 1: in situ measurements and their applicability for comparison
with satellite data, Int. J. Climatol., 31, 218–231,
https://doi.org/10.1002/joc.2140, 2011.
Fuchs, M. and Hadas, A.: The heat flux density in a non-homogeneous bare loessial
soil, Bound.-Lay. Meteorol., 3, 191–200, https://doi.org/10.1007/BF02033918, 1972.
Ghaemi, S. and Brauner, G.: User behavior and patterns of electricity use for
energy saving, Internationale Energiewirtschaftstagung an der TU Wien, IEWT, https://publik.tuwien.ac.at/files/PubDat_180870.pdf (last access: 29 March 2019),
2009.
Gioli, B., Toscano, P., Lugato, E., Matese, A., Miglietta, F., Zaldei, A., and Vaccari, F.:
Methane and carbon dioxide fluxes and source partitioning in urban areas:
The case study of Florence, Italy, Environ. Pollut., 164, 125–131,
https://doi.org/10.1016/j.envpol.2012.01.019, 2012.
Giovannini, L., Zardi, D., de Franceschi, M., and Chen, F.: Numerical simulations of
boundary-layer processes and urban-induced alterations in an Alpine valley,
Int. J. Climatol., 34, 1111–1131, https://doi.org/10.1002/joc.3750, 2014.
Giovannini, L., Laiti, L., Serafin, S., and Zardi, D.: The thermally driven diurnal wind
system of the Adige Valley in the Italian Alps, Q. J. Roy. Meteorol. Soc., 143,
2389–2402, https://doi.org/10.1002/qj.3092, 2017.
Gohm, A., Harnisch, F., Vergeiner, J., Obleitner, F., Schnitzhofer, R., Hansel, A., Fix, A., Neininger, B., Emeis, S., and Schäfer, K.: Air Pollution Transport in an Alpine Valley: Results From
Airborne and Ground-Based Observations, Bound.-Lay. Meteorol., 131, 441–463,
https://doi.org/10.1007/s10546-009-9371-9, 2009.
Gohm, A., Haid, M., Umek, L., Ward, H. C., and Rotach, M. W.: PIANO (Penetration and
Interruption of Alpine Foehn) – Doppler wind lidar data set, Zenodo [data set],
https://doi.org/10.5281/zenodo.4674773, 2021a.
Gohm, A., Umek, L., Haid, M., Ward, H. C., and Rotach, M. W.: PIANO (Penetration and
Interruption of Alpine Foehn) – MOMAA weather station data set, Zenodo [data set],
https://doi.org/10.5281/zenodo.4745957, 2021b.
Goldbach, A. and Kuttler, W.: Quantification of turbulent heat fluxes for
adaptation strategies within urban planning, Int. J. Climatol., 33, 143–159, https://doi.org/10.1002/joc.3437, 2013.
Grimmond, C. S. B. and Oke, T. R.: Comparison of Heat Fluxes from Summertime Observations
in the Suburbs of Four North American Cities, J. Appl. Meteorol., 34, 873–889,
https://doi.org/10.1175/1520-0450(1995)034<0873:COHFFS>2.0.CO;2, 1995.
Grimmond, C. S. B. and Oke, T. R.: Aerodynamic properties of urban areas derived from
analysis of surface form, J. Appl. Meteorol., 38, 1262–1292, https://doi.org/10.1175/1520-0450(1999)038<1262:APOUAD>2.0.CO;2, 1999.
Grimmond, C. S. B. and Oke, T. R.: Turbulent heat fluxes in urban areas: Observations and
a local-scale urban meteorological parameterization scheme (LUMPS), J. Appl.
Meteorol., 41, 792–810, https://doi.org/10.1175/1520-0450(2002)041<0792:THFIUA>2.0.CO;2, 2002.
Grimmond, C. S. B., Cleugh, H. A., and Oke, T. R.: An objective urban heat storage model and
its comparison with other schemes, Atmos. Environ. Pt. B., 25, 311–326, 1991.
Grimmond, C. S. B., Salmond, J. A., Oke, T. R., Offerle, B., and Lemonsu, A.: Flux and turbulence
measurements at a densely built-up site in Marseille: Heat, mass (water and
carbon dioxide), and momentum, J. Geophys. Res.-Atmos., 109, D24101,
D2410110.1029/2004jd004936, 2004.
Haid, M., Gohm, A., Umek, L., Ward, H. C., Muschinski, T., Lehner, L., and Rotach, M. W.:
Foehn–cold pool interactions in the Inn Valley during PIANO IOP2, Q. J. Roy.
Meteorol. Soc., 146, 1232–1263, https://doi.org/10.1002/qj.3735,
2020.
Haid, M., Gohm, A., Umek, L., Ward, H. C., and Rotach, M. W.: Cold-air pool processes in the
Inn Valley during foehn: A comparison of four cases during PIANO, Bound.-Lay. Meteorol., 182, 335–362, https://doi.org/10.1007/s10546-021-00663-9,
2021.
Hamilton, I. G., Davies, M., Steadman, P., Stone, A., Ridley, I., and Evans, S.: The
significance of the anthropogenic heat emissions of London's buildings: A
comparison against captured shortwave solar radiation, Build.
Environ., 44, 807–817, https://doi.org/10.1016/j.buildenv.2008.05.024, 2009.
Hammerle, A., Haslwanter, A., Tappeiner, U., Cernusca, A., and Wohlfahrt, G.: Leaf area
controls on energy partitioning of a temperate mountain grassland,
Biogeosciences, 5, 421–431 https://doi.org/10.5194/bg-5-421-2008, 2008.
Hayashi, M., Hirota, T., Iwata, Y., and Takayabu, I.: Snowmelt Energy Balance and Its
Relation to Foehn Events in Tokachi, Japan, J. Meteorol.
Soc. Jpn. Ser. II, 83, 783–798, https://doi.org/10.2151/jmsj.83.783, 2005.
Helfter, C., Famulari, D., Phillips, G. J., Barlow, J. F., Wood, C. R., Grimmond, C. S. B., and Nemitz,
E.: Controls of carbon dioxide concentrations and fluxes above central
London, Atmos. Chem. Phys., 11, 1913–1928, https://doi.org/10.5194/acp-11-1913-2011, 2011.
Henao, J. J., Rendón, A. M., and Salazar, J. F.: Trade-off between urban heat island
mitigation and air quality in urban valleys, Urban Clim., 31, 100542,
https://doi.org/10.1016/j.uclim.2019.100542, 2020.
Hiller, R., Zeeman, M. J., and Eugster, W.: Eddy-covariance flux measurements in the
complex terrain of an Alpine valley in Switzerland, Bound.-Lay. Meteorol.,
127, 449–467, https://doi.org/10.1007/s10546-008-9267-0, 2008.
Hirano, T., Sugawara, H., Murayama, S., and Kondo, H.: Diurnal variation of CO2 flux in
an urban area of Tokyo, Sola, 11, 100–103, https://doi.org/10.2151/sola.2015-024, 2015.
Hirsch, A. L., Evans, J. P., Thomas, C., Conroy, B., Hart, M. A., Lipson, M., and Ertler, W.:
Resolving the influence of local flows on urban heat amplification during
heatwaves, Environ. Res. Lett., 16, 064066, https://doi.org/10.1088/1748-9326/ac0377, 2021.
Ichinose, T., Shimodozono, K., and Hanaki, K.: Impact of anthropogenic heat on urban
climate in Tokyo, Atmos. Environ., 33, 3897–3909, https://doi.org/10.1016/S1352-2310(99)00132-6, 1999.
IPCC: 2006 IPCC guidelines for national greenhouse gas inventories, Institute for Global Environmental Strategies (IGES), ISBN 4-88788-032-4, 2006
Järvi, L., Nordbo, A., Junninen, H., Riikonen, A., Moilanen, J., Nikinmaa, E.,
and Vesala, T.: Seasonal and annual variation of carbon dioxide surface fluxes in
Helsinki, Finland, in 2006–2010, Atmos. Chem. Phys., 12,
8475–8489, https://doi.org/10.5194/acp-12-8475-2012, 2012.
Järvi, L., Grimmond, C. S. B., Taka, M., Nordbo, A., Setälä, H., and Strachan, I. B.:
Development of the Surface Urban Energy and Water Balance Scheme (SUEWS) for
cold climate cities, Geosci. Model Dev., 7, 1691–1711, https://doi.org/10.5194/gmd-7-1691-2014, 2014.
Järvi, L., Rannik, Ü., Kokkonen, T. V., Kurppa, M., Karppinen, A., Kouznetsov,
R. D., Rantala, P., Vesala, T., and Wood, C. R.: Uncertainty of eddy covariance flux
measurements over an urban area based on two towers, Atmos. Meas. Tech., 11,
5421–5438, https://doi.org/10.5194/amt-11-5421-2018, 2018.
Järvi, L., Havu, M., Ward, H. C., Bellucco, V., McFadden, J. P., Toivonen, T., Heikinheimo, V. , Kolari, P., Riikonen, A., and Grimmond, C. S. B.: Spatial modelling of local-scale biogenic and
anthropogenic carbon dioxide emissions in Helsinki, J. Geophys.
Res.-Atmos., 124, 8363–8384, https://doi.org/10.1029/2018JD029576, 2019.
Jáuregui, E. and Luyando, E.: Global radiation attenuation by air pollution and
its effects on the thermal climate in Mexico City, Int. J. Climatol., 19, 683–694, https://doi.org/10.1002/(SICI)1097-0088(199905)19:6<683::AID-JOC389>3.0.CO;2-8, 1999.
Johnson, G. T. and Watson, I. D.: The Determination of View-Factors in Urban Canyons,
J. Appl. Meteorol. Climatol., 23, 329–335, https://doi.org/10.1175/1520-0450(1984)023<0329:tdovfi>2.0.co;2, 1984.
Karl, T., Graus, M., Striednig, M., Lamprecht, C., Hammerle, A., Wohlfahrt, G., Held, A., von der Heyden, L., Deventer, M. J., Krismer, A., Haun, C., Feichter, R., and Lee, J.: Urban eddy covariance measurements reveal significant missing
NOx emissions in Central Europe, Sci. Rep., 7, 2536, https://doi.org/10.1038/s41598-017-02699-9, 2017.
Karl, T., Striednig, M., Graus, M., Hammerle, A., and Wohlfahrt, G.: Urban flux
measurements reveal a large pool of oxygenated volatile organic compound
emissions, P. Natl. Acad. Sci. USA, 115, 1186–1191,
https://doi.org/10.1073/pnas.1714715115, 2018.
Karl, T., Gohm, A., Rotach, M. W., Ward, H. C., Graus, M., Cede, A., Wohlfahrt, G., Hammerle, A., Haid, M., Tiefengraber, M., Lamprecht, C., Vergeiner, J., Kreuter, A., Wagner, J., and Staudinger, M.: Studying urban climate and air quality in the Alps – The
Innsbruck Atmospheric Observatory, Bull. Am. Meteorol. Soc., 101, E488–E507, https://doi.org/10.1175/BAMS-D-19-0270.1, 2020.
Karsisto, P., Fortelius, C., Demuzere, M., Grimmond, C. S. B., Oleson, K. W., Kouznetsov, R.,
Masson, V., and Järvi, L.: Seasonal surface urban energy balance and wintertime
stability simulated using three land-surface models in the high-latitude
city Helsinki, Q. J. Roy. Meteorol. Soc., 142, 401–417, https://doi.org/10.1002/qj.2659, 2015.
Kaser, L., Peron, A., Graus, M., Striednig, M., Wohlfahrt, G., Juráň, S., and Karl, T.: Interannual variability of terpenoid emissions in an alpine city, Atmos. Chem. Phys., 22, 5603–5618, https://doi.org/10.5194/acp-22-5603-2022, 2022.
Kleingeld, E., van Hove, B., Elbers, J., and Jacobs, C.: Carbon dioxide fluxes in the
city centre of Arnhem, A middle-sized Dutch city, Urban Clim., 24, 994–1010,
https://doi.org/10.1016/j.uclim.2017.12.003, 2018.
Kljun, N., Calanca, P., Rotach, M. W., and Schmid, H. P.: A simple two-dimensional
parameterisation for Flux Footprint Prediction (FFP), Geosci. Model Dev., 8,
3695–3713, https://doi.org/10.5194/gmd-8-3695-2015, 2015.
Kordowski, K. and Kuttler, W.: Carbon dioxide fluxes over an urban park area,
Atmos. Environ., 44, 2722–2730, https://doi.org/10.1016/j.atmosenv.2010.04.039, 2010.
Kosugi, Y., Takanashi, S., Ohkubo, S., Matsuo, N., Tani, M., Mitani, T., Tsutsumi, D., and Nik,
A. R.: CO2 exchange of a tropical rainforest at Pasoh in Peninsular Malaysia,
Agr. Forest Meteorol., 148, 439–452, https://doi.org/10.1016/j.agrformet.2007.10.007, 2008.
Kotthaus, S. and Grimmond, C. S. B.: Energy exchange in a dense urban environment –
Part I: temporal variability of long-term observations in central London,
Urban Clim., 10, 261–280, https://doi.org/10.1016/j.uclim.2013.10.002, 2014a.
Kotthaus, S. and Grimmond, C. S. B.: Energy exchange in a dense urban environment –
Part II: impact of spatial heterogeneity of the surface, Urban Clim., 10,
281–307, https://doi.org/10.1016/j.uclim.2013.10.001, 2014b.
Lamprecht, C., Graus, M., Striednig, M., Stichaner, M., and Karl, T.: Decoupling of urban
CO2 and air pollutant emission reductions during the European SARS-CoV-2
lockdown, Atmos. Chem. Phys., 21, 3091–3102, https://doi.org/10.5194/acp-21-3091-2021, 2021.
Land Tirol: Verkehrsinformation, https://verkehrsinformation.tirol.gv.at/web/html/vde.html#, last access: 22 February 2022.
Largeron, Y. and Staquet, C.: The Atmospheric Boundary Layer during Wintertime
Persistent Inversions in the Grenoble Valleys, Front. Earth Sci., 4, 70,
https://doi.org/10.3389/feart.2016.00070, 2016.
Lee, K., Hong, J. W., Kim, J., Jo, S., and Hong, J.: Traces of urban forest in temperature
and CO2 signals in monsoon East Asia, Atmos. Chem. Phys., 21, 17833–17853,
https://doi.org/10.5194/acp-21-17833-2021, 2021.
Lehner, M. and Rotach, M. W.: Current Challenges in Understanding and Predicting
Transport and Exchange in the Atmosphere over Mountainous Terrain,
Atmosphere, 9, 276, https://doi.org/10.3390/atmos9070276, 2018.
Lehner, M., Rotach, M. W., and Obleitner, F.: A Method to Identify Synoptically
Undisturbed, Clear-Sky Conditions for Valley-Wind Analysis, Bound.-Lay.
Meteorol., 173, 435–450, https://doi.org/10.1007/s10546-019-00471-2, 2019.
Lehner, M., Rotach, M. W., Sfyri, E., and Obleitner, F.: Spatial and temporal variations
in near-surface energy fluxes in an Alpine valley under synoptically
undisturbed and clear-sky conditions, Q. J. Roy. Meteorol. Soc., 147, 2173–2196,
https://doi.org/10.1002/qj.4016, 2021.
Leukauf, D., Gohm, A., and Rotach, M. W.: Toward Generalizing the Impact of Surface
Heating, Stratification, and Terrain Geometry on the Daytime Heat Export
from an Idealized Valley, J. Appl. Meteorol. Climatol., 56,
2711–2727, https://doi.org/10.1175/jamc-d-16-0378.1, 2017.
Li, Y.-L., Tenhunen, J., Owen, K., Schmitt, M., Bahn, M., Droesler, M., Otieno, D., Schmidt, M., Gruenwald, T., Hussain, M. Z., Mirzae, H., and Bernhofer, C.: Patterns in CO2 gas exchange capacity of grassland ecosystems
in the Alps, Agr. Forest Meteorol., 148, 51–68, https://doi.org/10.1016/j.agrformet.2007.09.002, 2008.
Liu, H., Feng, J., Järvi, L., and Vesala, T.: Four-year (2006–2009) eddy covariance
measurements of CO2 flux over an urban area in Beijing, Atmos.
Chem. Phys., 12, 7881–7892, https://doi.org/10.5194/acp-12-7881-2012, 2012.
MacDonald, M. K., Pomeroy, J. W., and Essery, R. L. H.: Water and energy fluxes over northern
prairies as affected by chinook winds and winter precipitation, Agr. Forest
Meteorol., 248, 372–385, https://doi.org/10.1016/j.agrformet.2017.10.025, 2018.
Matzinger, N., Andretta, M., Gorsel, E. V., Vogt, R., Ohmura, A., and Rotach, M. W.: Surface
radiation budget in an Alpine valley, Q. J. Roy. Meteorol. Soc., 129, 877–895,
https://doi.org/10.1256/qj.02.44, 2003.
Mayr, G. J., Armi, L., Arnold, S., Banta, R. M., Darby, L. S., Durran, D. D., Flamant, D., Gaberšek, S., Gohm, A., Mayr, R., Mobbs, S., Nance, L. B., Vergeiner, I., Vergeiner, J., and Whiteman, C. D.: Gap flow measurements during the Mesoscale Alpine Programme,
Meteorol. Atmos. Phys., 86, 99–119, https://doi.org/10.1007/s00703-003-0022-2, 2004.
Mayr, G., Plavcan, D., Armi, L., Elvidge, A., Grisogono, B., Horvath, K., Jackson, P., Neururer, A., Seibert, P., Steenburgh, J. W., Stiperski, I., Sturman, A., Večenaj, Ž., Vergeiner, J., Vosper, S., and Zängl, G.: The Community Foehn Classification Experiment, Bull. Am.
Meteorol. Soc., 99, 2229–2235, https://doi.org/10.1175/bams-d-17-0200.1, 2018.
McCaughey, J. H.: Energy balance storage terms in a mature mixed forest at
Petawawa, Ontario – A case study, Bound.-Lay. Meteorol., 31, 89–101,
https://doi.org/10.1007/BF00120036, 1985.
Miao, S., Chen, F., LeMone, M. A., Tewari, M., Li, Q., and Wang, Y.: An Observational and
Modeling Study of Characteristics of Urban Heat Island and Boundary Layer
Structures in Beijing, J. Appl. Meteorol. Climatol., 48,
484–501, https://doi.org/10.1175/2008JAMC1909.1, 2009.
Miao, S., Dou, J., Chen, F., Li, J., and Li, A.: Analysis of observations on the urban
surface energy balance in Beijing, Sci. China Earth Sci., 55,
1881–1890, https://doi.org/10.1007/s11430-012-4411-6, 2012.
Moncrieff, J. B., Clement, R., Finnigan, J. J., and Meyers, T.: Averaging, detrending and
filtering of eddy covariance time series, in: Handbook of Micrometeorology: a guide for surface flux
measurements, edited by: Lee, X., Massman, W. J., and Law, B. E.,
Springer, Dordrecht,
https://doi.org/10.1007/1-4020-2265-4_2, 2004.
Moriwaki, R. and Kanda, M.: Seasonal and diurnal fluxes of radiation, heat, water
vapor, and carbon dioxide over a suburban area, J. Appl. Meteorol., 43,
1700–1710, https://doi.org/10.1175/JAM2153.1, 2004.
Muschinski, T., Gohm, A., Haid, M., Umek, L., and Ward, H. C.: Spatial heterogeneity of the
Inn Valley Cold Air Pool during south foehn: Observations from an array of
temperature, Meteorol. Z., 30, 153–168, https://doi.org/10.1127/metz/2020/1043, 2021.
Nadeau, D. F., Pardyjak, E. R., Higgins, C. W., Huwald, H., and Parlange, M. B.: Flow during the
evening transition over steep Alpine slopes, Q. J. Roy. Meteorol. Soc., 139,
607–624, https://doi.org/10.1002/qj.1985, 2013.
Narita, K., Sekine, T., and Tokuoka, T.: Thermal properties of urban surface materials
– study on heat balance at asphalt pavement, Geog. Rev. Jpn. A, 57, 639–651,
1984.
Nemitz, E., Hargreaves, K. J., McDonald, A. G., Dorsey, J. R., and Fowler, D.: Meteorological
measurements of the urban heat budget and CO2 emissions on a city scale,
Environ. Sci. Technol., 36, 3139–3146, https://doi.org/10.1021/es010277e, 2002.
Newton, T., Oke, T. R., Grimmond, C. S. B., and Roth, M.: The suburban energy balance in
Miami, Florida, Geogr. Ann. A, 89,
331–347, https://doi.org/10.1111/j.1468-0459.2007.00329.x, 2007.
Nicolini, G., Antoniella, G., Carotenuto, F., Christen, A., Ciais, P., Feigenwinter, C., Gioli, B., Stagakis, S., Velasco, E., Vogt, R., Ward, H. C., Barlow, J., Chrysoulakis, N., Duce, P., Graus, M., Helfter, C., Heusinkveld, B., Järvi, L., Karl, T., Marras, S., Masson, V., Matthews, B., Meier, F., Nemitz, E., Sabbatini, S., Scherer, D., Schume, H., Sirca, C., Steeneveld, G.-J., Vagnoli, C., Wang, Y., Zaldei, A., Zheng, B., and Papale, D.: Direct observations of CO2 emission reductions due to
COVID-19 lockdown across European urban districts, Sci. Total
Environ., 830, 154662, https://doi.org/10.1016/j.scitotenv.2022.154662, 2022.
Nordbo, A., Järvi, L., Haapanala, S., Wood, C. R., and Vesala, T.: Fraction of natural
area as main predictor of net CO2 emissions from cities, Geophys.
Res. Lett., 39, L20802, https://doi.org/10.1029/2012GL053087, 2012.
Novak, M. D.: The moisture and thermal regimes of a bare soil in the Lower
Fraser Valley during spring. PhD thesis Thesis, University of British
Columbia, 175 pp.,
https://doi.org/10.14288/1.0095282, 1981.
Offerle, B., Grimmond, C. S. B., and Fortuniak, K.: Heat storage and anthropogenic heat
flux in relation to the energy balance of a central European city centre,
Int. J. Climatol., 25, 1405–1419, https://doi.org/10.1002/joc.1198, 2005a.
Offerle, B., Jonsson, P., Eliasson, I., and Grimmond, C. S. B.: Urban Modification of the
Surface Energy Balance in the West African Sahel: Ouagadougou, Burkina Faso,
J. Clim., 18, 3983–3995, https://doi.org/10.1175/jcli3520.1, 2005b.
Offerle, B., Grimmond, C. S. B., Fortuniak, K., and Pawlak, W.: Intraurban differences of
surface energy fluxes in a central European city, J. Appl.
Meteorol. Climatol., 45, 125–136, https://doi.org/10.1175/JAM2319.1, 2006.
Oke, T. R.: Canyon geometry and the nocturnal urban heat island: Comparison of
scale model and field observations, J. Climatol., 1, 237–254,
https://doi.org/10.1002/joc.3370010304, 1981.
Oke, T. R., Spronken-Smith, R. A., Jáuregui, E., and Grimmond, C. S. B.: The energy balance
of central Mexico City during the dry season, Atmos. Environ., 33,
3919–3930, https://doi.org/10.1016/S1352-2310(99)00134-X, 1999.
Oke, T. R., Mills, G., Christen, A., and Voogt, J. A.: Urban Climates, Cambridge University
Press, Cambridge, https://doi.org/10.1017/9781139016476, 2017.
Papaioannou, G., Papanikolaou, N., and Retalis, D.: Relationships of
photosynthetically active radiation and shortwave irradiance, Theor.
Appl. Climatol., 48, 23–27, https://doi.org/10.1007/bf00864910, 1993.
Pataki, D. E., Tyler, B. J., Peterson, R. E., Nair, A. P., Steenburgh, W. J., and Pardyjak, E. R.: Can
carbon dioxide be used as a tracer of urban atmospheric transport?, J. Geophys. Res.-Atmos., 110, D15102, https://doi.org/10.1029/2004JD005723, 2005.
Pawlak, W., Fortuniak, K., and Siedlecki, M.: Carbon dioxide flux in the centre of Łódź, Poland – analysis of a 2-year eddy covariance measurement data
set, Int. J. Climatol., 31, 232–243, https://doi.org/10.1002/joc.2247, 2010.
Peixoto, J. P. and Oort, A. H.: Physics of Climate, American Institute of Physics, New York, 520
pp.,
ISBN 0-88318-711-6, 1992.
Pérez-Lombard, L., Ortiz, J., and Pout, C.: A review on buildings energy
consumption information, Energ. Build., 40, 394–398, https://doi.org/10.1016/j.enbuild.2007.03.007, 2008.
Perpiñán, O.: solaR: Solar Radiation and Photovoltaic Systems with R,
J. Stat. Softw., 50, 1–32, 2012.
Pigeon, G., Legain, D., Durand, P., and Masson, V.: Anthropogenic heat release in an old
European agglomeration (Toulouse, France), Int. J. Climatol., 27, 1969–1981, https://doi.org/10.1002/joc.1530,
2007.
Plavcan, D., Mayr, G. J., and Zeileis, A.: Automatic and Probabilistic Foehn Diagnosis
with a Statistical Mixture Model, J. Appl. Meteorol.
Climatol., 53, 652–659, https://doi.org/10.1175/jamc-d-13-0267.1, 2014.
Ramamurthy, P. and Pardyjak, E. R.: Toward understanding the behavior of carbon
dioxide and surface energy fluxes in the urbanized semi-arid Salt Lake
Valley, Utah, USA, Atmos. Environ., 45, 73–84, https://doi.org/10.1016/j.atmosenv.2010.09.049, 2011.
Reid, K. H. and Steyn, D. G.: Diurnal variations of boundary-layer carbon dioxide in a
coastal city – Observations and comparison with model results, Atmos.
Environ., 31, 3101–3114, https://doi.org/10.1016/S1352-2310(97)00050-2, 1997.
Rotach, M. W., Vogt, R., Bernhofer, C., Batchvarova, E., Christen, A., Clappier, A., Feddersen, B., Gryning, S.-E., Martucci, G., Mayer, H., Mitev, V., Oke, T. R., Parlow, E., Richner, H., Roth, M., Roulet, Y.-A., Ruffieux, D., Salmond, J. A., Schatzmann, M., and Voogt, J. A.: BUBBLE – an Urban Boundary Layer Meteorology Project,
Theor. Appl. Climatol., 81, 231–261, https://doi.org/10.1007/s00704-004-0117-9, 2005.
Rotach, M. W., Stiperski, I., Fuhrer, O., Goger, B., Gohm, A., Obleitner, F., Rau, G., Sfyri,
E., and Vergeiner, J.: Investigating Exchange Processes over Complex Topography:
the Innsbruck-Box (i-Box), Bull. Am. Meteorol. Soc., 98, 787–805, https://doi.org/10.1175/BAMS-D-15-00246.1, 2017.
Rotach, M. W., Serafin, S., Ward, H. C., Arpagaus, M., Colfescu, I., Cuxart J., De Wekker, S. F. J., Grubišić, V., Kalthoff, N., Karl, T. G., Kirshbaum, D. J., Lehner, M., Mobbs, S., Paci, A., Palazzi, E., Bailey, A., Schmidli, J., Wittmann, C., Wohlfahrt, G., and Zardi, D.: A collaborative effort to better understand, measure and
model atmospheric exchange processes over mountains, Bull. Am. Meteorol. Soc., 103, E1282–E1295,
https://doi.org/10.1175/BAMS-D-21-0232.1, 2022.
Roth, M., Jansson, C., and Velasco, E.: Multi-year energy balance and carbon dioxide
fluxes over a residential neighbourhood in a tropical city, Int. J. Climatol., 37, 2679–2698, https://doi.org/10.1002/joc.4873, 2017.
Sabatier, T., Paci, A., Canut, G., Largeron, Y., Dabas, A., Donier, J.-M., and Douffet, T.:
Wintertime Local Wind Dynamics from Scanning Doppler Lidar and Air Quality
in the Arve River Valley, Atmosphere, 9, 118, https://doi.org/10.3390/atmos9040118, 2018.
Sailor, D. J. and Lu, L.: A top-down methodology for developing diurnal and seasonal
anthropogenic heating profiles for urban areas, Atmos. Environ., 38,
2737–2748, https://doi.org/10.1016/j.atmosenv.2004.01.034, 2004.
Sailor, D. J. and Vasireddy, C.: Correcting aggregate energy consumption data to
account for variability in local weather, Environ. Model.
Softw., 21, 733–738, https://doi.org/10.1016/j.envsoft.2005.08.001, 2006.
Sailor, D. J., Georgescu, M., Milne, J. M., and Hart, M. A.: Development of a national
anthropogenic heating database with an extrapolation for international
cities, Atmos. Environ., 118, 7–18, https://doi.org/10.1016/j.atmosenv.2015.07.016, 2015.
Schmid, F., Schmidli, J., Hervo, M., and Haefele, A.: Diurnal Valley Winds in a Deep
Alpine Valley: Observations, Atmosphere, 11, 54, https://doi.org/10.3390/atmos11010054, 2020.
Schmutz, M., Vogt, R., Feigenwinter, C., and Parlow, E.: Ten years of eddy covariance
measurements in Basel, Switzerland: Seasonal and interannual variabilities
of urban CO2 mole fraction and flux, J. Geophys. Res.-Atmos., 121, 8649–8667, https://doi.org/10.1002/2016JD025063, 2016.
Schotanus, P., Nieuwstadt, F. T. M., and Bruin, H. A. R.: Temperature measurement with a sonic
anemometer and its application to heat and moisture fluxes, Bound.-Lay.
Meteorol., 26, 81–93, https://doi.org/10.1007/bf00164332, 1983.
Seibert, P.: Fallstudien und statistische Untersuchungen zum Südföhn
im Raum Tirol, University of Innsbruck, 368 pp., University of Innsbruck, Innsrbuck, Austria, https://www.uibk.ac.at/acinn/theses/dissertations.html.en (last access: 26 January 2021), 1985.
Seibert, P., Feldmann, H., Neininger, B., Bäumle, M., and Trickl, T.: South foehn and
ozone in the Eastern Alps – case study and climatological aspects,
Atmos. Environ., 34, 1379–1394, https://doi.org/10.1016/S1352-2310(99)00439-2, 2000.
Souch, C., Grimmond, C. S. B., and Wolfe, C. P.: Evapotranspiration rates from wetlands with
different disturbance histories: Indiana Dunes National Lakeshore, Wetlands,
18, 216–229, https://doi.org/10.1007/BF03161657, 1998.
Spronken-Smith, R. A.: Comparison of summer- and winter-time suburban energy
fluxes in Christchurch, New Zealand, Int. J. Climatol.,
22, 979–992, https://doi.org/10.1002/joc.767, 2002.
Stagakis, S., Chrysoulakis, N., Spyridakis, N., Feigenwinter, C., and Vogt, R.: Eddy
Covariance measurements and source partitioning of CO2 emissions in an urban
environment: Application for Heraklion, Greece, Atmos. Environ., 201,
278–292, https://doi.org/10.1016/j.atmosenv.2019.01.009, 2019.
Statistik Austria: Atlas der Erwerbspendlerinnen und -pendler, https://www.statistik.at/atlas/pendler/ (last access: 20 March 2019),
2016.
Statistik Austria: Energy statistics: Domestic Energy Consumption – Overall
consumption of fuels 2015/2016, https://www.statistik.at/
(last access: 20 July 2020), 2017a.
Statistik Austria: Energy statistics: Domestic energy consumption
(Microcensus 2015/2016) – Driven kilometres and fuel consumption of private
cars, https://www.statistik.at/
(last access: 19 March 2019), 2017b.
Statistik Austria: Statistiken, http://www.statistik-austria.at/web_de/statistiken/index.html (last access: 27 February 2019), 2018.
Stewart, I. D. and Oke, T. R.: Local Climate Zones for Urban Temperature Studies, Bull.
Am. Meteorol. Soc., 93, 1879–1900, https://doi.org/10.1175/BAMS-D-11-00019.1, 2012.
Stewart, J. Q., Whiteman, C. D., Steenburgh, W. J., and Bian, X.: A Climatological study of
thermally driven wind systems of the U.S. Intermountain West, Bull. Am.
Meteorol. Soc., 83, 699–708, https://doi.org/10.1175/1520-0477(2002)083<0699:acsotd>2.3.co;2, 2002.
Sugawara, H. and Narita, K.-I.: Mitigation of Urban Thermal Environment by River,
J. Jpn. Soc. Hydrol. Water Res., 25, 351–361,
https://doi.org/10.3178/jjshwr.25.351, 2012.
Taesler, R.: Studies of the development and thermal structure of the urban
boundary layer in Uppsala, Meteorological Institute of the University of
Uppsala, Uppsala, Sweden,
1980.
Umek, L., Gohm, A., Haid, M., Ward, H. C., and Rotach, M. W.: Large eddy simulation of
foehn-cold pool interactions in the Inn Valley during PIANO IOP2, Q. J.
Roy. Meteorol. Soc., 147, 944–982, https://doi.org/10.1002/qj.3954,
2021.
Umek, L., Gohm, A., Haid, M., Ward, H. C., and Rotach, M. W.: Influence of grid resolution of
large-eddy simulations on foehn-cold pool interaction, Q. J. Roy. Meteorol.
Soc., 1–24, https://doi.org/10.1002/qj.4281, 2022.
Urbanski, S., Barford, C., Wofsy, S., Kucharik, C., Pyle, E., Budney, J., McKain, J., Fitzjarrald, D., Czikowsky, M., and Munger, J. W.: Factors controlling CO2 exchange on timescales from
hourly to decadal at Harvard Forest, J. Geophys. Res.-Biogeo., 112, G02020, https://doi.org/10.1029/2006JG000293, 2007.
Velasco, E., Lamb, B., Westberg, H., Allwine, E., Sosa, G., Arriaga-Colina, J. L., Jobson, B. T., Alexander, M. L., Prazeller, P., Knighton, W. B., Rogers, T. M., Grutter, M., Herndon, S. C., Kolb, C. E., Zavala, M., de Foy, B., Volkamer, R., Molina, L. T., and Molina, M. J.: Distribution, magnitudes, reactivities, ratios and diurnal patterns of volatile organic compounds in the Valley of Mexico during the MCMA 2002 & 2003 field campaigns, Atmos. Chem. Phys., 7, 329–353, https://doi.org/10.5194/acp-7-329-2007, 2007.
Velasco, E., Perrusquia, R., Jiménez, E., Hernández, F., Camacho, P.,
Rodríguez, S., Retama, A., and Molina, L.: Sources and sinks of carbon dioxide in
a neighborhood of Mexico City, Atmos. Environ., 97, 226–238,
https://doi.org/10.1016/j.atmosenv.2014.08.018, 2014.
Vergeiner, I. and Dreiseitl, E.: Valley winds and slope winds – Observations and
elementary thoughts, Meteorol. Atmos. Phys., 36, 264–286,
https://doi.org/10.1007/BF01045154, 1987.
Vesala, T., Järvi, L., Launiainen, S., Sogachev, A., Rannik, Ü., Mammarella, I., Ivola, E. S., Keronen, P., Rinne, J., Riikonen, A., and Nikinmaa, E.: Surface–atmosphere interactions over complex urban terrain
in Helsinki, Finland, Tellus B, 60, 188–199, https://doi.org/10.1111/j.1600-0889.2007.00312.x, 2008.
Wagner, J. S., Gohm, A., and Rotach, M. W.: The impact of valley geometry on daytime
thermally driven flows and vertical transport processes, Q. J. Roy. Meteorol.
Soc., 141, 1780–1794, https://doi.org/10.1002/qj.2481, 2015.
Ward, H. C., Evans, J. G., and Grimmond, C. S. B.: Multi-season eddy covariance observations
of energy, water and carbon fluxes over a suburban area in Swindon, UK,
Atmos. Chem. Phys., 13, 4645–4666, https://doi.org/10.5194/acp-13-4645-2013, 2013.
Ward, H. C., Kotthaus, S., Grimmond, C. S. B., Bjorkegren, A., Wilkinson, M., Morrison, W. T. J.,
Evans, J. G., Morison, J. I. L., and Iamarino, M.: Effects of urban density on carbon
dioxide exchanges: Observations of dense urban, suburban and woodland areas
of southern England, Environ. Pollut., 198, 186–200, https://doi.org/10.1016/j.envpol.2014.12.031, 2015.
Ward, H. C., Kotthaus, S., Järvi, L., and Grimmond, C. S. B.: Surface Urban Energy and
Water Balance Scheme (SUEWS): Development and evaluation at two UK sites,
Urban Clim., 18, 1–32, https://doi.org/10.1016/j.uclim.2016.05.001, 2016.
Ward, H. C., Gohm, A., Umek, L., Haid, M., Muschinski, T., Graus, M., Karl, T., and Rotach, M. W.:
PIANO (Penetration and Interruption of Alpine Foehn) – flux station data
set, Zenodo [data set], https://doi.org/10.5281/zenodo.5795431, 2021.
Ward, H. C., Rotach, M. W., Graus, M., Karl, T., Gohm, A., Umek, L., and Haid, M.: Turbulence
characteristics at an urban site in highly complex terrain, 2022.
Weissert, L. F., Salmond, J. A., Turnbull, J. C., and Schwendenmann, L.: Temporal variability
in the sources and fluxes of CO2 in a residential area in an evergreen
subtropical city, Atmos. Environ., 143, 164–176, https://doi.org/10.1016/j.atmosenv.2016.08.044, 2016.
Whiteman, C. D.: Mountain Meteorology, Fundamentals and Applications, Oxford
University Press, New York-Oxford, ISBN 9780195132717, 2000.
Whiteman, C. D., Allwine, K. J., Fritschen, L. J., Orgill, M. M., and Simpson, J. R.: Deep Valley
Radiation and Surface Energy Budget Microclimates, Part I: Radiation, J.
Appl. Meteorol., 28, 414–426, https://doi.org/10.1175/1520-0450(1989)028<0414:DVRASE>2.0.CO;2, 1989.
Wohlfahrt, G., Bahn, M., Haslwanter, A., Newesely, C., and Cernusca, A.: Estimation of
daytime ecosystem respiration to determine gross primary production of a
mountain meadow, Agr. Forest Meteorol., 130, 13–25, https://doi.org/10.1016/j.agrformet.2005.02.001, 2005.
Wohlfahrt, G., Hammerle, A., Haslwanter, A., Bahn, M., Tappeiner, U., and Cernusca, A.:
Seasonal and inter-annual variability of the net ecosystem CO2 exchange of a
temperate mountain grassland: Effects of weather and management, J.
Geophys. Res.-Atmos., 113, D08110, https://doi.org/10.1029/2007jd009286, 2008.
Xie, J., Jia, X., He, G., Zhou, C., Yu, H., Wu, Y., Bourque, C. P. A., Liu, H., and Zha, T.:
Environmental control over seasonal variation in carbon fluxes of an urban
temperate forest ecosystem, Landscape Urban Plann., 142, 63–70,
https://doi.org/10.1016/j.landurbplan.2015.04.011, 2015.
Yap, D. H.: Sensible heat fluxes measured in and near Vancouver, B.C. PhD
Thesis, University of British Columbia, Vancouver, Canada, 199 pp.,
https://doi.org/10.14288/1.0101037, 1973.
Yoshida, A., Tominaga, K., and Watatani, S.: Field measurements on energy balance of
an urban canyon in the summer season, Energ. Build., 15, 417–423,
https://doi.org/10.1016/0378-7788(90)90016-C, 1990.
Yoshida, A., Tominaga, K., and Watatani, S.: Field investigation on heat transfer in
an urban canyon, Heat Transfer – Japanese Research, 20, 230–244, 1991.
ZAMG: Klimamonitoring, https://www.zamg.ac.at/cms/de/klima/klima-aktuell/klimamonitoring/?station=11803¶m=t&period=period-ym-2017-05&ref=3, last access: 23 November 2021.
Zängl, G.: Deep and shallow south foehn in the region of Innsbruck:
Typical features and semi-idelized numerical simulations, Meteorol.
Atmos. Phys., 83, 237–261, https://doi.org/10.1007/s00703-002-0565-7, 2003.
Zardi, D. and Whiteman, C. D.: Diurnal mountain wind systems, in: Mountain weather research and forecasting, edited by: Chow, F. K., De
Wekker, S. F. J., and Snyder, B. J.,
Springer Atmospheric Sciences, Springer, Dordrecht, 35–119, https://doi.org/10.1007/978-94-007-4098-3_2, 2013.
Short summary
This study examines how cities and their surroundings influence turbulent exchange processes responsible for weather and climate. Analysis of a 4-year observational dataset for the Alpine city of Innsbruck reveals several similarities with other (flat) city centre sites. However, the mountain setting leads to characteristic daily and seasonal flow patterns (valley winds) and downslope windstorms that have a marked effect on temperature, wind speed, turbulence and pollutant concentration.
This study examines how cities and their surroundings influence turbulent exchange processes...
Altmetrics
Final-revised paper
Preprint