Articles | Volume 22, issue 9
https://doi.org/10.5194/acp-22-5829-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-5829-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Chemically speciated mass size distribution, particle density, shape and origin of non-refractory PM1 measured at a rural background site in central Europe
Petra Pokorná
CORRESPONDING AUTHOR
Department of Aerosol Chemistry and Physics, Institute of Chemical
Process Fundamentals, Czech Academy of Sciences, Rozvojová 135/1, 165 02
Prague, Czech Republic
Naděžda Zíková
Department of Aerosol Chemistry and Physics, Institute of Chemical
Process Fundamentals, Czech Academy of Sciences, Rozvojová 135/1, 165 02
Prague, Czech Republic
Petr Vodička
Department of Aerosol Chemistry and Physics, Institute of Chemical
Process Fundamentals, Czech Academy of Sciences, Rozvojová 135/1, 165 02
Prague, Czech Republic
Radek Lhotka
Department of Aerosol Chemistry and Physics, Institute of Chemical
Process Fundamentals, Czech Academy of Sciences, Rozvojová 135/1, 165 02
Prague, Czech Republic
Institute for Environmental Studies, Faculty of Science, Charles
University, Benátská 2, 128 01 Prague, Czech Republic
Saliou Mbengue
Global Change Research Institute, Czech Academy of Sciences,
Bělidla 986/4a, 603 00 Brno, Czech Republic
Adéla Holubová Šmejkalová
Czech Hydrometeorological Institute, Air Quality Division, Na Šabatce 2050/17, 143 06 Prague, Czech Republic
Véronique Riffault
IMT Nord Europe, Institut Mines-Télécom, Université de
Lille, Centre for Energy and Environment, 59000 Lille, France
Jakub Ondráček
Department of Aerosol Chemistry and Physics, Institute of Chemical
Process Fundamentals, Czech Academy of Sciences, Rozvojová 135/1, 165 02
Prague, Czech Republic
Jaroslav Schwarz
Department of Aerosol Chemistry and Physics, Institute of Chemical
Process Fundamentals, Czech Academy of Sciences, Rozvojová 135/1, 165 02
Prague, Czech Republic
Vladimír Ždímal
Department of Aerosol Chemistry and Physics, Institute of Chemical
Process Fundamentals, Czech Academy of Sciences, Rozvojová 135/1, 165 02
Prague, Czech Republic
Related authors
Marco Wietzoreck, Marios Kyprianou, Benjamin A. Musa Bandowe, Siddika Celik, John N. Crowley, Frank Drewnick, Philipp Eger, Nils Friedrich, Minas Iakovides, Petr Kukučka, Jan Kuta, Barbora Nežiková, Petra Pokorná, Petra Přibylová, Roman Prokeš, Roland Rohloff, Ivan Tadic, Sebastian Tauer, Jake Wilson, Hartwig Harder, Jos Lelieveld, Ulrich Pöschl, Euripides G. Stephanou, and Gerhard Lammel
Atmos. Chem. Phys., 22, 8739–8766, https://doi.org/10.5194/acp-22-8739-2022, https://doi.org/10.5194/acp-22-8739-2022, 2022
Short summary
Short summary
A unique dataset of concentrations and sources of polycyclic aromatic hydrocarbons (PAHs) and their alkylated, oxygenated and nitrated derivatives, in total 74 individual species, in the marine atmosphere is presented. Exposure to these substances poses a major health risk. We found very low concentrations over the Arabian Sea, while both local and long-range-transported pollution caused elevated levels over the Mediterranean Sea and the Arabian Gulf.
Jean-Philippe Putaud, Enrico Pisoni, Alexander Mangold, Christoph Hueglin, Jean Sciare, Michael Pikridas, Chrysanthos Savvides, Jakub Ondracek, Saliou Mbengue, Alfred Wiedensohler, Kay Weinhold, Maik Merkel, Laurent Poulain, Dominik van Pinxteren, Hartmut Herrmann, Andreas Massling, Claus Nordstroem, Andrés Alastuey, Cristina Reche, Noemí Pérez, Sonia Castillo, Mar Sorribas, Jose Antonio Adame, Tuukka Petaja, Katrianne Lehtipalo, Jarkko Niemi, Véronique Riffault, Joel F. de Brito, Augustin Colette, Olivier Favez, Jean-Eudes Petit, Valérie Gros, Maria I. Gini, Stergios Vratolis, Konstantinos Eleftheriadis, Evangelia Diapouli, Hugo Denier van der Gon, Karl Espen Yttri, and Wenche Aas
Atmos. Chem. Phys., 23, 10145–10161, https://doi.org/10.5194/acp-23-10145-2023, https://doi.org/10.5194/acp-23-10145-2023, 2023
Short summary
Short summary
Many European people are still exposed to levels of air pollution that can affect their health. COVID-19 lockdowns in 2020 were used to assess the impact of the reduction in human mobility on air pollution across Europe by comparing measurement data with values that would be expected if no lockdown had occurred. We show that lockdown measures did not lead to consistent decreases in the concentrations of fine particulate matter suspended in the air, and we investigate why.
Jonas Elm, Aladár Czitrovszky, Andreas Held, Annele Virtanen, Astrid Kiendler-Scharr, Benjamin J. Murray, Daniel McCluskey, Daniele Contini, David Broday, Eirini Goudeli, Hilkka Timonen, Joan Rosell-Llompart, Jose L. Castillo, Evangelia Diapouli, Mar Viana, Maria E. Messing, Markku Kulmala, Naděžda Zíková, and Sebastian H. Schmitt
Aerosol Research, 1, 13–16, https://doi.org/10.5194/ar-1-13-2023, https://doi.org/10.5194/ar-1-13-2023, 2023
Suzanne Crumeyrolle, Jenni S. S. Kontkanen, Clémence Rose, Alejandra Velazquez Garcia, Eric Bourrianne, Maxime Catalfamo, Véronique Riffault, Emmanuel Tison, Joel Ferreira de Brito, Nicolas Visez, Nicolas Ferlay, Frédérique Auriol, and Isabelle Chiapello
Atmos. Chem. Phys., 23, 183–201, https://doi.org/10.5194/acp-23-183-2023, https://doi.org/10.5194/acp-23-183-2023, 2023
Short summary
Short summary
Ultrafine particles (UFPs) are particles with an aerodynamic diameter of 100 nm or less and negligible mass concentration but are the dominant contributor to the total particle number concentration. The present study aims to better understand the environmental factors favoring or inhibiting atmospheric new particle formation (NPF) over Lille, a large city in the north of France, and to analyze the impact of such an event on urban air quality using a long-term dataset (3 years).
Marta Via, Gang Chen, Francesco Canonaco, Kaspar R. Daellenbach, Benjamin Chazeau, Hasna Chebaicheb, Jianhui Jiang, Hannes Keernik, Chunshui Lin, Nicolas Marchand, Cristina Marin, Colin O'Dowd, Jurgita Ovadnevaite, Jean-Eudes Petit, Michael Pikridas, Véronique Riffault, Jean Sciare, Jay G. Slowik, Leïla Simon, Jeni Vasilescu, Yunjiang Zhang, Olivier Favez, André S. H. Prévôt, Andrés Alastuey, and María Cruz Minguillón
Atmos. Meas. Tech., 15, 5479–5495, https://doi.org/10.5194/amt-15-5479-2022, https://doi.org/10.5194/amt-15-5479-2022, 2022
Short summary
Short summary
This work presents the differences resulting from two techniques (rolling and seasonal) of the positive matrix factorisation model that can be run for organic aerosol source apportionment. The current state of the art suggests that the rolling technique is more accurate, but no proof of its effectiveness has been provided yet. This paper tackles this issue in the context of a synthetic dataset and a multi-site real-world comparison.
Marco Wietzoreck, Marios Kyprianou, Benjamin A. Musa Bandowe, Siddika Celik, John N. Crowley, Frank Drewnick, Philipp Eger, Nils Friedrich, Minas Iakovides, Petr Kukučka, Jan Kuta, Barbora Nežiková, Petra Pokorná, Petra Přibylová, Roman Prokeš, Roland Rohloff, Ivan Tadic, Sebastian Tauer, Jake Wilson, Hartwig Harder, Jos Lelieveld, Ulrich Pöschl, Euripides G. Stephanou, and Gerhard Lammel
Atmos. Chem. Phys., 22, 8739–8766, https://doi.org/10.5194/acp-22-8739-2022, https://doi.org/10.5194/acp-22-8739-2022, 2022
Short summary
Short summary
A unique dataset of concentrations and sources of polycyclic aromatic hydrocarbons (PAHs) and their alkylated, oxygenated and nitrated derivatives, in total 74 individual species, in the marine atmosphere is presented. Exposure to these substances poses a major health risk. We found very low concentrations over the Arabian Sea, while both local and long-range-transported pollution caused elevated levels over the Mediterranean Sea and the Arabian Gulf.
Clémence Rose, Martine Collaud Coen, Elisabeth Andrews, Yong Lin, Isaline Bossert, Cathrine Lund Myhre, Thomas Tuch, Alfred Wiedensohler, Markus Fiebig, Pasi Aalto, Andrés Alastuey, Elisabeth Alonso-Blanco, Marcos Andrade, Begoña Artíñano, Todor Arsov, Urs Baltensperger, Susanne Bastian, Olaf Bath, Johan Paul Beukes, Benjamin T. Brem, Nicolas Bukowiecki, Juan Andrés Casquero-Vera, Sébastien Conil, Konstantinos Eleftheriadis, Olivier Favez, Harald Flentje, Maria I. Gini, Francisco Javier Gómez-Moreno, Martin Gysel-Beer, Anna Gannet Hallar, Ivo Kalapov, Nikos Kalivitis, Anne Kasper-Giebl, Melita Keywood, Jeong Eun Kim, Sang-Woo Kim, Adam Kristensson, Markku Kulmala, Heikki Lihavainen, Neng-Huei Lin, Hassan Lyamani, Angela Marinoni, Sebastiao Martins Dos Santos, Olga L. Mayol-Bracero, Frank Meinhardt, Maik Merkel, Jean-Marc Metzger, Nikolaos Mihalopoulos, Jakub Ondracek, Marco Pandolfi, Noemi Pérez, Tuukka Petäjä, Jean-Eudes Petit, David Picard, Jean-Marc Pichon, Veronique Pont, Jean-Philippe Putaud, Fabienne Reisen, Karine Sellegri, Sangeeta Sharma, Gerhard Schauer, Patrick Sheridan, James Patrick Sherman, Andreas Schwerin, Ralf Sohmer, Mar Sorribas, Junying Sun, Pierre Tulet, Ville Vakkari, Pieter Gideon van Zyl, Fernando Velarde, Paolo Villani, Stergios Vratolis, Zdenek Wagner, Sheng-Hsiang Wang, Kay Weinhold, Rolf Weller, Margarita Yela, Vladimir Zdimal, and Paolo Laj
Atmos. Chem. Phys., 21, 17185–17223, https://doi.org/10.5194/acp-21-17185-2021, https://doi.org/10.5194/acp-21-17185-2021, 2021
Short summary
Short summary
Aerosol particles are a complex component of the atmospheric system the effects of which are among the most uncertain in climate change projections. Using data collected at 62 stations, this study provides the most up-to-date picture of the spatial distribution of particle number concentration and size distribution worldwide, with the aim of contributing to better representation of aerosols and their interactions with clouds in models and, therefore, better evaluation of their impact on climate.
Andrea Cuesta-Mosquera, Griša Močnik, Luka Drinovec, Thomas Müller, Sascha Pfeifer, María Cruz Minguillón, Björn Briel, Paul Buckley, Vadimas Dudoitis, Javier Fernández-García, María Fernández-Amado, Joel Ferreira De Brito, Veronique Riffault, Harald Flentje, Eimear Heffernan, Nikolaos Kalivitis, Athina-Cerise Kalogridis, Hannes Keernik, Luminita Marmureanu, Krista Luoma, Angela Marinoni, Michael Pikridas, Gerhard Schauer, Norbert Serfozo, Henri Servomaa, Gloria Titos, Jesús Yus-Díez, Natalia Zioła, and Alfred Wiedensohler
Atmos. Meas. Tech., 14, 3195–3216, https://doi.org/10.5194/amt-14-3195-2021, https://doi.org/10.5194/amt-14-3195-2021, 2021
Short summary
Short summary
Measurements of black carbon must be conducted with instruments operating in quality-checked and assured conditions to generate reliable and comparable data. Here, 23 Aethalometers monitoring black carbon mass concentrations in European networks were characterized and intercompared. The influence of different aerosol sources, maintenance activities, and the filter material on the instrumental variabilities were investigated. Good agreement and in general low deviations were seen.
Paolo Laj, Alessandro Bigi, Clémence Rose, Elisabeth Andrews, Cathrine Lund Myhre, Martine Collaud Coen, Yong Lin, Alfred Wiedensohler, Michael Schulz, John A. Ogren, Markus Fiebig, Jonas Gliß, Augustin Mortier, Marco Pandolfi, Tuukka Petäja, Sang-Woo Kim, Wenche Aas, Jean-Philippe Putaud, Olga Mayol-Bracero, Melita Keywood, Lorenzo Labrador, Pasi Aalto, Erik Ahlberg, Lucas Alados Arboledas, Andrés Alastuey, Marcos Andrade, Begoña Artíñano, Stina Ausmeel, Todor Arsov, Eija Asmi, John Backman, Urs Baltensperger, Susanne Bastian, Olaf Bath, Johan Paul Beukes, Benjamin T. Brem, Nicolas Bukowiecki, Sébastien Conil, Cedric Couret, Derek Day, Wan Dayantolis, Anna Degorska, Konstantinos Eleftheriadis, Prodromos Fetfatzis, Olivier Favez, Harald Flentje, Maria I. Gini, Asta Gregorič, Martin Gysel-Beer, A. Gannet Hallar, Jenny Hand, Andras Hoffer, Christoph Hueglin, Rakesh K. Hooda, Antti Hyvärinen, Ivo Kalapov, Nikos Kalivitis, Anne Kasper-Giebl, Jeong Eun Kim, Giorgos Kouvarakis, Irena Kranjc, Radovan Krejci, Markku Kulmala, Casper Labuschagne, Hae-Jung Lee, Heikki Lihavainen, Neng-Huei Lin, Gunter Löschau, Krista Luoma, Angela Marinoni, Sebastiao Martins Dos Santos, Frank Meinhardt, Maik Merkel, Jean-Marc Metzger, Nikolaos Mihalopoulos, Nhat Anh Nguyen, Jakub Ondracek, Noemi Pérez, Maria Rita Perrone, Jean-Eudes Petit, David Picard, Jean-Marc Pichon, Veronique Pont, Natalia Prats, Anthony Prenni, Fabienne Reisen, Salvatore Romano, Karine Sellegri, Sangeeta Sharma, Gerhard Schauer, Patrick Sheridan, James Patrick Sherman, Maik Schütze, Andreas Schwerin, Ralf Sohmer, Mar Sorribas, Martin Steinbacher, Junying Sun, Gloria Titos, Barbara Toczko, Thomas Tuch, Pierre Tulet, Peter Tunved, Ville Vakkari, Fernando Velarde, Patricio Velasquez, Paolo Villani, Sterios Vratolis, Sheng-Hsiang Wang, Kay Weinhold, Rolf Weller, Margarita Yela, Jesus Yus-Diez, Vladimir Zdimal, Paul Zieger, and Nadezda Zikova
Atmos. Meas. Tech., 13, 4353–4392, https://doi.org/10.5194/amt-13-4353-2020, https://doi.org/10.5194/amt-13-4353-2020, 2020
Short summary
Short summary
The paper establishes the fiducial reference of the GAW aerosol network providing the fully characterized value chain to the provision of four climate-relevant aerosol properties from ground-based sites. Data from almost 90 stations worldwide are reported for a reference year, 2017, providing a unique and very robust view of the variability of these variables worldwide. Current gaps in the GAW network are analysed and requirements for the Global Climate Monitoring System are proposed.
Marco Pandolfi, Dennis Mooibroek, Philip Hopke, Dominik van Pinxteren, Xavier Querol, Hartmut Herrmann, Andrés Alastuey, Olivier Favez, Christoph Hüglin, Esperanza Perdrix, Véronique Riffault, Stéphane Sauvage, Eric van der Swaluw, Oksana Tarasova, and Augustin Colette
Atmos. Chem. Phys., 20, 409–429, https://doi.org/10.5194/acp-20-409-2020, https://doi.org/10.5194/acp-20-409-2020, 2020
Short summary
Short summary
In the last scientific assessment report from the LRTAP Convention, it is stated that because non-urban sources are often major contributors to urban pollution, many cities will be unable to meet WHO guideline levels for air pollutants through local action alone. Consequently, it is very important to estimate how much the local and non-local sources contribute to urban pollution in order to design global strategies to reduce the levels of pollutants in European cities.
Marie Boichu, Olivier Favez, Véronique Riffault, Jean-Eudes Petit, Yunjiang Zhang, Colette Brogniez, Jean Sciare, Isabelle Chiapello, Lieven Clarisse, Shouwen Zhang, Nathalie Pujol-Söhne, Emmanuel Tison, Hervé Delbarre, and Philippe Goloub
Atmos. Chem. Phys., 19, 14253–14287, https://doi.org/10.5194/acp-19-14253-2019, https://doi.org/10.5194/acp-19-14253-2019, 2019
Short summary
Short summary
This study, benefiting especially from recently developed mass spectrometry observations of aerosols, highlights unknown properties of volcanic sulfates in the troposphere. It shows their specific chemical fingerprint, distinct from those of freshly emitted industrial sulfates and background aerosols. We also demonstrate the large-scale persistence of the volcanic sulfate pollution over weeks. Hence, these results cast light on the impact of tropospheric eruptions on air quality and climate.
Abdoulaye Samaké, Jean-Luc Jaffrezo, Olivier Favez, Samuël Weber, Véronique Jacob, Trishalee Canete, Alexandre Albinet, Aurélie Charron, Véronique Riffault, Esperanza Perdrix, Antoine Waked, Benjamin Golly, Dalia Salameh, Florie Chevrier, Diogo Miguel Oliveira, Jean-Luc Besombes, Jean M. F. Martins, Nicolas Bonnaire, Sébastien Conil, Géraldine Guillaud, Boualem Mesbah, Benoit Rocq, Pierre-Yves Robic, Agnès Hulin, Sébastien Le Meur, Maxence Descheemaecker, Eve Chretien, Nicolas Marchand, and Gaëlle Uzu
Atmos. Chem. Phys., 19, 11013–11030, https://doi.org/10.5194/acp-19-11013-2019, https://doi.org/10.5194/acp-19-11013-2019, 2019
Short summary
Short summary
We conducted a large study focusing on the daily (24 h) PM10 sugar compound (SC) concentrations for 16 increasing space-scale sites in France (local to nationwide) over at least 1 complete year. Our main results clearly show distance-dependent covariation patterns, with SC concentrations being highly synchronous at an urban city scale and remaining well correlated throughout the same geographic regions. However, sampling sites located in two distinct geographic areas are poorly correlated.
Petr Vodička, Kimitaka Kawamura, Jaroslav Schwarz, Bhagawati Kunwar, and Vladimír Ždímal
Atmos. Chem. Phys., 19, 3463–3479, https://doi.org/10.5194/acp-19-3463-2019, https://doi.org/10.5194/acp-19-3463-2019, 2019
Short summary
Short summary
Measurements of stable carbon and nitrogen isotopic compositions in the PM1 atmospheric aerosol provide partial insight into the possible sources of aerosol at a Central European rural background station but mainly offers a deeper insight into the physical and chemical processes taking place between the gas phase and particulate matter. These processes are probably valid in general (not only at this site), especially for nitrogen compounds.
Abdoulaye Samaké, Jean-Luc Jaffrezo, Olivier Favez, Samuël Weber, Véronique Jacob, Alexandre Albinet, Véronique Riffault, Esperanza Perdrix, Antoine Waked, Benjamin Golly, Dalia Salameh, Florie Chevrier, Diogo Miguel Oliveira, Nicolas Bonnaire, Jean-Luc Besombes, Jean M. F. Martins, Sébastien Conil, Géraldine Guillaud, Boualem Mesbah, Benoit Rocq, Pierre-Yves Robic, Agnès Hulin, Sébastien Le Meur, Maxence Descheemaecker, Eve Chretien, Nicolas Marchand, and Gaëlle Uzu
Atmos. Chem. Phys., 19, 3357–3374, https://doi.org/10.5194/acp-19-3357-2019, https://doi.org/10.5194/acp-19-3357-2019, 2019
Short summary
Short summary
The contribution of primary biogenic organic aerosols to PM is barely documented. This work provides a broad overview of the spatiotemporal evolution of concentrations and contributions to OM of dominant primary sugar alcohols and saccharides for a large selection of environmental conditions in France (28 sites and more than 5 340 samples). These chemicals are ubiquitous, and are associated with coarse aerosols. Their concentrations display site-to-site and clear seasonal variations.
Marco Pandolfi, Lucas Alados-Arboledas, Andrés Alastuey, Marcos Andrade, Christo Angelov, Begoña Artiñano, John Backman, Urs Baltensperger, Paolo Bonasoni, Nicolas Bukowiecki, Martine Collaud Coen, Sébastien Conil, Esther Coz, Vincent Crenn, Vadimas Dudoitis, Marina Ealo, Kostas Eleftheriadis, Olivier Favez, Prodromos Fetfatzis, Markus Fiebig, Harald Flentje, Patrick Ginot, Martin Gysel, Bas Henzing, Andras Hoffer, Adela Holubova Smejkalova, Ivo Kalapov, Nikos Kalivitis, Giorgos Kouvarakis, Adam Kristensson, Markku Kulmala, Heikki Lihavainen, Chris Lunder, Krista Luoma, Hassan Lyamani, Angela Marinoni, Nikos Mihalopoulos, Marcel Moerman, José Nicolas, Colin O'Dowd, Tuukka Petäjä, Jean-Eudes Petit, Jean Marc Pichon, Nina Prokopciuk, Jean-Philippe Putaud, Sergio Rodríguez, Jean Sciare, Karine Sellegri, Erik Swietlicki, Gloria Titos, Thomas Tuch, Peter Tunved, Vidmantas Ulevicius, Aditya Vaishya, Milan Vana, Aki Virkkula, Stergios Vratolis, Ernest Weingartner, Alfred Wiedensohler, and Paolo Laj
Atmos. Chem. Phys., 18, 7877–7911, https://doi.org/10.5194/acp-18-7877-2018, https://doi.org/10.5194/acp-18-7877-2018, 2018
Short summary
Short summary
This investigation presents the variability in near-surface in situ aerosol particle light-scattering measurements obtained over the past decade at 28 measuring atmospheric observatories which are part of the ACTRIS Research Infrastructure, and most of them belong to the GAW network. This paper provides a comprehensive picture of the spatial and temporal variability of aerosol particles optical properties in Europe.
Laura-Hélèna Rivellini, Isabelle Chiapello, Emmanuel Tison, Marc Fourmentin, Anaïs Féron, Aboubacry Diallo, Thierno N'Diaye, Philippe Goloub, Francesco Canonaco, André Stephan Henry Prévôt, and Véronique Riffault
Atmos. Chem. Phys., 17, 10291–10314, https://doi.org/10.5194/acp-17-10291-2017, https://doi.org/10.5194/acp-17-10291-2017, 2017
Short summary
Short summary
A 3-month field campaign was conducted in March–June 2015 in Senegal, as part of the SHADOW (SaHAran Dust Over West Africa) project. This article presents the time variability of the chemical composition of submicron particles. Organics (sulfates) were predominant for days under continental (marine) influence. Half the organic sources were identified as local, including one due to open waste-burning, and half were linked to regional air masses and enhanced photochemical processes.
Andrés Alastuey, Xavier Querol, Wenche Aas, Franco Lucarelli, Noemí Pérez, Teresa Moreno, Fabrizia Cavalli, Hans Areskoug, Violeta Balan, Maria Catrambone, Darius Ceburnis, José C. Cerro, Sébastien Conil, Lusine Gevorgyan, Christoph Hueglin, Kornelia Imre, Jean-Luc Jaffrezo, Sarah R. Leeson, Nikolaos Mihalopoulos, Marta Mitosinkova, Colin D. O'Dowd, Jorge Pey, Jean-Philippe Putaud, Véronique Riffault, Anna Ripoll, Jean Sciare, Karine Sellegri, Gerald Spindler, and Karl Espen Yttri
Atmos. Chem. Phys., 16, 6107–6129, https://doi.org/10.5194/acp-16-6107-2016, https://doi.org/10.5194/acp-16-6107-2016, 2016
Short summary
Short summary
Mineral dust content in PM10 was analysed at 20 regional background sites across Europe. Higher dust loadings were observed at most sites in summer, with the most elevated concentrations in the southern- and easternmost countries, due to external and regional sources. Saharan dust outbreaks impacted western and central European in summer and eastern Mediterranean sites in winter. The spatial distribution of some metals reveals the influence of specific anthropogenic sources on a regional scale.
Sascha Pfeifer, Thomas Müller, Kay Weinhold, Nadezda Zikova, Sebastiao Martins dos Santos, Angela Marinoni, Oliver F. Bischof, Carsten Kykal, Ludwig Ries, Frank Meinhardt, Pasi Aalto, Nikolaos Mihalopoulos, and Alfred Wiedensohler
Atmos. Meas. Tech., 9, 1545–1551, https://doi.org/10.5194/amt-9-1545-2016, https://doi.org/10.5194/amt-9-1545-2016, 2016
Short summary
Short summary
15 aerodynamic particle size spectrometers (APS model 3321, TSI Inc., St. Paul, MN, USA) were compared with a focus on flow rates accuracy, particle sizing, and unit-to-unit variability of the particle number size distribution.
Flow rate deviations were relatively small, while the sizing accuracy was found to be within 10 % compared to polystyrene latex reference particles. The unit-to-unit variability in terms of the particle number size distribution during this study was between 10 % and 60 %.
A. S. Fonseca, N. Talbot, J. Schwarz, J. Ondráček, V. Ždímal, J. Kozáková, M. Viana, A. Karanasiou, X. Querol, A. Alastuey, T. V. Vu, J. M. Delgado-Saborit, and R. M. Harrison
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2015-1016, https://doi.org/10.5194/acp-2015-1016, 2016
Revised manuscript not accepted
Short summary
Short summary
This work assessed the performance of 4 cascade impactors, by means of two intercomparison exercises in 2 European locations. The comparability between the different types of impactors assessed was dependent on particle size and on impactor design characteristics. Particle processes such as particle bounce, dissociation of semi volatiles in the coarser stages and/or particle shrinkage were identified as the main causes for the differences observed in particle mass across size fractions.
V. Crenn, J. Sciare, P. L. Croteau, S. Verlhac, R. Fröhlich, C. A. Belis, W. Aas, M. Äijälä, A. Alastuey, B. Artiñano, D. Baisnée, N. Bonnaire, M. Bressi, M. Canagaratna, F. Canonaco, C. Carbone, F. Cavalli, E. Coz, M. J. Cubison, J. K. Esser-Gietl, D. C. Green, V. Gros, L. Heikkinen, H. Herrmann, C. Lunder, M. C. Minguillón, G. Močnik, C. D. O'Dowd, J. Ovadnevaite, J.-E. Petit, E. Petralia, L. Poulain, M. Priestman, V. Riffault, A. Ripoll, R. Sarda-Estève, J. G. Slowik, A. Setyan, A. Wiedensohler, U. Baltensperger, A. S. H. Prévôt, J. T. Jayne, and O. Favez
Atmos. Meas. Tech., 8, 5063–5087, https://doi.org/10.5194/amt-8-5063-2015, https://doi.org/10.5194/amt-8-5063-2015, 2015
Short summary
Short summary
A large intercomparison study of 13 Q-ACSM was conducted for a 3-week period in the region of Paris to evaluate the performance of this instrument and to monitor the major NR-PM1 chemical components. Reproducibility expanded uncertainties of Q-ACSM concentration measurements were found to be 9, 15, 19, 28, and 36% for NR-PM1, NO3, OM, SO4, and NH4, respectively. Some recommendations regarding best calibration practices, standardized data processing and data treatment are also provided.
R. Fröhlich, V. Crenn, A. Setyan, C. A. Belis, F. Canonaco, O. Favez, V. Riffault, J. G. Slowik, W. Aas, M. Aijälä, A. Alastuey, B. Artiñano, N. Bonnaire, C. Bozzetti, M. Bressi, C. Carbone, E. Coz, P. L. Croteau, M. J. Cubison, J. K. Esser-Gietl, D. C. Green, V. Gros, L. Heikkinen, H. Herrmann, J. T. Jayne, C. R. Lunder, M. C. Minguillón, G. Močnik, C. D. O'Dowd, J. Ovadnevaite, E. Petralia, L. Poulain, M. Priestman, A. Ripoll, R. Sarda-Estève, A. Wiedensohler, U. Baltensperger, J. Sciare, and A. S. H. Prévôt
Atmos. Meas. Tech., 8, 2555–2576, https://doi.org/10.5194/amt-8-2555-2015, https://doi.org/10.5194/amt-8-2555-2015, 2015
Short summary
Short summary
Source apportionment (SA) of organic aerosol mass spectrometric data measured with the Aerodyne ACSM using PMF/ME2 is a frequently used technique in the AMS/ACSM community. ME2 uncertainties due to instrument-to-instrument variations are elucidated by performing SA on ambient data from 14 individual, co-located ACSMs, recorded during the first ACTRIS ACSM intercomparison study at SIRTA near Paris (France). The mean uncertainty was 17.2%. Recommendations for future studies using ME2 are provided.
A. Dvorská, P. Sedlák, J. Schwarz, M. Fusek, V. Hanuš, P. Vodička, and J. Trusina
Adv. Sci. Res., 12, 79–83, https://doi.org/10.5194/asr-12-79-2015, https://doi.org/10.5194/asr-12-79-2015, 2015
Short summary
Short summary
First measurements at the Atmospheric Station Křešín u Pacova revealed a seasonal variability of elemental and organic carbon with slightly higher autumn and winter concentrations. A suitable statistical method for the replacement of very low elemental carbon concentrations (i.e. under the instrument quantification limit) was found. In summer, the top of the 250 m tall station tower is frequently above the nocturnal surface inversions, thus being decoupled from local influences.
P. Panteliadis, T. Hafkenscheid, B. Cary, E. Diapouli, A. Fischer, O. Favez, P. Quincey, M. Viana, R. Hitzenberger, R. Vecchi, D. Saraga, J. Sciare, J. L. Jaffrezo, A. John, J. Schwarz, M. Giannoni, J. Novak, A. Karanasiou, P. Fermo, and W. Maenhaut
Atmos. Meas. Tech., 8, 779–792, https://doi.org/10.5194/amt-8-779-2015, https://doi.org/10.5194/amt-8-779-2015, 2015
D. C. S. Beddows, M. Dall'Osto, R. M. Harrison, M. Kulmala, A. Asmi, A. Wiedensohler, P. Laj, A.M. Fjaeraa, K. Sellegri, W. Birmili, N. Bukowiecki, E. Weingartner, U. Baltensperger, V. Zdimal, N. Zikova, J.-P. Putaud, A. Marinoni, P. Tunved, H.-C. Hansson, M. Fiebig, N. Kivekäs, E. Swietlicki, H. Lihavainen, E. Asmi, V. Ulevicius, P. P. Aalto, N. Mihalopoulos, N. Kalivitis, I. Kalapov, G. Kiss, G. de Leeuw, B. Henzing, C. O'Dowd, S. G. Jennings, H. Flentje, F. Meinhardt, L. Ries, H. A. C. Denier van der Gon, and A. J. H. Visschedijk
Atmos. Chem. Phys., 14, 4327–4348, https://doi.org/10.5194/acp-14-4327-2014, https://doi.org/10.5194/acp-14-4327-2014, 2014
Related subject area
Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Morphological features and water solubility of iron in aged fine aerosol particles over the Indian Ocean
What chemical species are responsible for new particle formation and growth in the Netherlands? A hybrid positive matrix factorization (PMF) analysis using aerosol composition (ACSM) and size (SMPS)
Measurement report: Stoichiometry of dissolved iron and aluminum as an indicator of the factors controlling the fractional solubility of aerosol iron – results of the annual observations of size-fractionated aerosol particles in Japan
In-depth study of the formation processes of single atmospheric particles in the south-eastern margin of the Tibetan Plateau
Climatology of aerosol properties at an atmospheric monitoring site on the northern California coast
Concurrent photochemical whitening and darkening of ambient brown carbon
High-time-resolution chemical composition and source apportionment of PM2.5 in northern Chinese cities: implications for policy
Measurement report: New insights into the mixing structures of black carbon on the eastern Tibetan Plateau – soot redistribution and fractal dimension enhancement by liquid–liquid phase separation
Seasonal variations in the production of singlet oxygen and organic triplet excited states in aqueous PM2.5 in Hong Kong SAR, South China
Nighttime NO emissions strongly suppress chlorine and nitrate radical formation during the winter in Delhi
Influence of natural and anthropogenic aerosols on cloud base droplet size distributions in clouds over the South China Sea and West Pacific
The important contribution of secondary formation and biomass burning to oxidized organic nitrogen (OON) in a polluted urban area: insights from in situ measurements of a chemical ionization mass spectrometer (CIMS)
Measurement report: A 1-year study to estimate maritime contributions to PM10 in a coastal area in northern France
Evolution and chemical characteristics of organic aerosols during wintertime PM2.5 episodes in Shanghai, China: insights gained from online measurements of organic molecular markers
Arctic observations of hydroperoxymethyl thioformate (HPMTF) – seasonal behavior and relationship to other oxidation products of dimethyl sulfide at the Zeppelin Observatory, Svalbard
Gas-Particle Partitioning of Semivolatile Organic Compounds When Wildfire Smoke Comes to Town
A 1-year aerosol chemical speciation monitor (ACSM) source analysis of organic aerosol particle contributions from anthropogenic sources after long-range transport at the TROPOS research station Melpitz
Contributions of primary emissions and secondary formation to nitrated aromatic compounds in themountain background region of Southeast China
Mist cannon trucks can exacerbate the formation of water-soluble organic aerosol and PM2.5 pollution in the road environment
Amino acids, carbohydrates, and lipids in the tropical oligotrophic Atlantic Ocean: sea-to-air transfer and atmospheric in situ formation
Ambient carbonaceous aerosol levels in Cyprus and the role of pollution transport from the Middle East
High contribution of anthropogenic combustion sources to atmospheric inorganic reactive nitrogen in South China evidenced by isotopes
Measurement report: Diurnal variations of brown carbon during two distinct seasons in a megacity in northeast China
Vertical profiles of volatile organic compounds and fine particles in atmospheric air by using an aerial drone with miniaturized samplers and portable devices
Multiple pathways for the formation of secondary organic aerosol in the North China Plain in summer
Brown carbon in fine particles in four typical cities in Northwest China during wintertime: coupling optical properties with chemical processes
Insights into characteristics and formation mechanisms of secondary organic aerosols in the Guangzhou urban area
Chemical Composition-Dependent Hygroscopic Behavior of Individual Ambient Aerosol Particles Collected at a Coastal Site
An attribution of the low single-scattering albedo of biomass burning aerosol over the southeastern Atlantic
Measurement report: Rapid changes of chemical characteristics and health risks for highly time resolved trace elements in PM2.5 in a typical industrial city in response to stringent clean air actions
Measurement report: Summertime fluorescence characteristics of atmospheric water-soluble organic carbon in the marine boundary layer of the western Arctic Ocean
High frequency of new particle formation events driven by summer monsoon in the central Tibetan Plateau, China
Chemical precursors of new particle formation in coastal New Zealand
Insights into the single-particle composition, size, mixing state, and aspect ratio of freshly emitted mineral dust from field measurements in the Moroccan Sahara using electron microscopy
Enrichment of calcium in sea spray aerosol through bulk measurements and individual particle analysis during the R/V Xuelong cruise over the Ross Sea, Antarctica
Seasonal variation of aerosol iron solubility in coarse and fine particles at an inland city in northwestern China
Unambiguous identification of N-containing oxygenated organic molecules using a chemical-ionization Orbitrap (CI-Orbitrap) in an eastern Chinese megacity
Estimating hub-height wind speed based on a machine learning algorithm: implications for wind energy assessment
Characteristics and degradation of organic aerosols from cooking sources based on hourly observations of organic molecular markers in urban environments
Characteristics of particulate-bound n-alkanes indicating sources of PM2.5 in Beijing, China
Characterization of volatile organic compounds and submicron organic aerosol in a traffic environment
Non-volatile marine and non-refractory continental sources of particle-phase amine during the North Atlantic Aerosols and Marine Ecosystems Study (NAAMES)
Effects of transport on a biomass burning plume from Indochina during EMeRGe-Asia identified by WRF-Chem
The shifting of secondary inorganic aerosol formation mechanisms during haze aggravation: the decisive role of aerosol liquid water
Collective geographical ecoregions and precursor sources driving Arctic new particle formation
Measurement report: Chemical components and 13C and 15N isotope ratios of fine aerosols over Tianjin, North China: year-round observations
Impact of biogenic secondary organic aerosol (SOA) loading on the molecular composition of wintertime PM2.5 in urban Tianjin: an insight from Fourier transform ion cyclotron resonance mass spectrometry
Impacts of biomass burning and photochemical processing on the light absorption of brown carbon in the southeastern Tibetan Plateau
Fates of secondary organic aerosols in the atmosphere identified from compound-specific dual-carbon isotope analysis of oxalic acid
Measurement report: Aerosol vertical profiles over the western North Atlantic Ocean during the North Atlantic Aerosols and Marine Ecosystems Study (NAAMES)
Sayako Ueda, Yoko Iwamoto, Fumikazu Taketani, Mingxu Liu, and Hitoshi Matsui
Atmos. Chem. Phys., 23, 10117–10135, https://doi.org/10.5194/acp-23-10117-2023, https://doi.org/10.5194/acp-23-10117-2023, 2023
Short summary
Short summary
We examine iron in atmospheric fine aerosol particles collected over the Indian Ocean during shipborne observations in November 2018. Transmission electron microscopy analysis with water dialysis shows that various types of iron (fly ash, iron oxide, and mineral dust) co-exist with ammonium sulfate and that their solubility differs depending on the iron type. Using PM2.5 bulk samples and global model simulations, we elucidate their origins, aging, and implications for present iron simulations.
Farhan R. Nursanto, Roy Meinen, Rupert Holzinger, Maarten C. Krol, Xinya Liu, Ulrike Dusek, Bas Henzing, and Juliane L. Fry
Atmos. Chem. Phys., 23, 10015–10034, https://doi.org/10.5194/acp-23-10015-2023, https://doi.org/10.5194/acp-23-10015-2023, 2023
Short summary
Short summary
Particulate matter (PM) is a harmful air pollutant that depends on the complex mixture of natural and anthropogenic emissions into the atmosphere. Thus, in different regions and seasons, the way that PM is formed and grows can differ. In this study, we use a combined statistical analysis of the chemical composition and particle size distribution to determine what drives particle formation and growth across seasons, using varying wind directions to elucidate the role of different sources.
Kohei Sakata, Aya Sakaguchi, Yoshiaki Yamakawa, Chihiro Miyamoto, Minako Kurisu, and Yoshio Takahashi
Atmos. Chem. Phys., 23, 9815–9836, https://doi.org/10.5194/acp-23-9815-2023, https://doi.org/10.5194/acp-23-9815-2023, 2023
Short summary
Short summary
Anthropogenic iron is the dominant source of dissolved Fe in aerosol particles, but its contribution to dissolved Fe in aerosol particles has not been quantitatively evaluated. We established the molar concentration ratio of dissolved Fe to dissolved Al as a new indicator to evaluate the contribution of anthropogenic iron. As a result, about 10 % of dissolved Fe in aerosol particles was derived from anthropogenic iron when aerosol particles were transported from East Asia to the Pacific Ocean.
Li Li, Qiyuan Wang, Jie Tian, Huikun Liu, Yong Zhang, Steven Sai Hang Ho, Weikang Ran, and Junji Cao
Atmos. Chem. Phys., 23, 9597–9612, https://doi.org/10.5194/acp-23-9597-2023, https://doi.org/10.5194/acp-23-9597-2023, 2023
Short summary
Short summary
The Tibetan Plateau has a unique geographical location, but there is a lack of detailed research on the real-time characteristics of full aerosol composition. This study elaborates the changes in chemical characteristics between transport and local fine particles during the pre-monsoon, reveals the size distribution and the mixing states of different individual particles, and highlights the contributions of photooxidation and aqueous reaction to the formation of the secondary species.
Erin K. Boedicker, Elisabeth Andrews, Patrick J. Sheridan, and Patricia K. Quinn
Atmos. Chem. Phys., 23, 9525–9547, https://doi.org/10.5194/acp-23-9525-2023, https://doi.org/10.5194/acp-23-9525-2023, 2023
Short summary
Short summary
We present 15 years of measurements from a marine site on the northern California coast and characterize the seasonal trends of aerosol ion composition and optical properties at the site. We investigate the relationship between the chemical and optical properties and show that they both support similar seasonal variations in aerosol sources at the site. Additionally, we show through comparisons to other marine aerosol observations that the site is representative of a clean marine environment.
Qian Li, Dantong Liu, Xiaotong Jiang, Ping Tian, Yangzhou Wu, Siyuan Li, Kang Hu, Quan Liu, Mengyu Huang, Ruijie Li, Kai Bi, Shaofei Kong, Deping Ding, and Chenjie Yu
Atmos. Chem. Phys., 23, 9439–9453, https://doi.org/10.5194/acp-23-9439-2023, https://doi.org/10.5194/acp-23-9439-2023, 2023
Short summary
Short summary
By attributing the shortwave absorption from black carbon, primary organic aerosol and secondary organic aerosol in a suburban environment, we firstly observed that the photochemically produced nitrogen-containing secondary organic aerosol may contribute to the enhancement of brown carbon absorption, partly compensating for some bleaching effect on the absorption of primary organic aerosol, hereby exerting radiative impacts.
Yong Zhang, Jie Tian, Qiyuan Wang, Lu Qi, Manousos Ioannis Manousakas, Yuemei Han, Weikang Ran, Yele Sun, Huikun Liu, Renjian Zhang, Yunfei Wu, Tianqu Cui, Kaspar Rudolf Daellenbach, Jay Gates Slowik, André S. H. Prévôt, and Junji Cao
Atmos. Chem. Phys., 23, 9455–9471, https://doi.org/10.5194/acp-23-9455-2023, https://doi.org/10.5194/acp-23-9455-2023, 2023
Short summary
Short summary
PM2.5 pollution still frequently occurs in northern China during winter, and it is necessary to figure out the causes of air pollution based on intensive real-time measurement. The findings elaborate the chemical characteristics and source contributions of PM2.5 in three pilot cities, reveal potential formation mechanisms of secondary aerosols, and highlight the importance of controlling biomass burning and inhibiting generation of secondary aerosol for air quality improvement.
Qi Yuan, Yuanyuan Wang, Yixin Chen, Siyao Yue, Jian Zhang, Yinxiao Zhang, Liang Xu, Wei Hu, Dantong Liu, Pingqing Fu, Huiwang Gao, and Weijun Li
Atmos. Chem. Phys., 23, 9385–9399, https://doi.org/10.5194/acp-23-9385-2023, https://doi.org/10.5194/acp-23-9385-2023, 2023
Short summary
Short summary
This study for the first time found large amounts of liquid–liquid phase separation particles with soot redistributing in organic coatings instead of sulfate cores in the eastern Tibetan Plateau atmosphere. The particle size and the ratio of the organic matter coating thickness to soot size are two of the major possible factors that likely affect the soot redistribution process. The soot redistribution process promoted the morphological compaction of soot particles.
Yuting Lyu, Yin Hau Lam, Yitao Li, Nadine Borduas-Dedekind, and Theodora Nah
Atmos. Chem. Phys., 23, 9245–9263, https://doi.org/10.5194/acp-23-9245-2023, https://doi.org/10.5194/acp-23-9245-2023, 2023
Short summary
Short summary
We measured singlet oxygen (1O2*) and triplet excited states of organic matter (3C*) in illuminated aqueous extracts of PM2.5 collected in different seasons at different sites in Hong Kong SAR, South China. In contrast to the locations, seasonality had significant effects on 3C* and 1O2* production due to seasonal variations in long-range air mass transport. The steady-state concentrations of 3C* and 1O2* correlated with the concentration and absorbance of water-soluble organic carbon.
Sophie L. Haslett, David M. Bell, Varun Kumar, Jay G. Slowik, Dongyu S. Wang, Suneeti Mishra, Neeraj Rastogi, Atinderpal Singh, Dilip Ganguly, Joel Thornton, Feixue Zheng, Yuanyuan Li, Wei Nie, Yongchun Liu, Wei Ma, Chao Yan, Markku Kulmala, Kaspar R. Daellenbach, David Hadden, Urs Baltensperger, Andre S. H. Prevot, Sachchida N. Tripathi, and Claudia Mohr
Atmos. Chem. Phys., 23, 9023–9036, https://doi.org/10.5194/acp-23-9023-2023, https://doi.org/10.5194/acp-23-9023-2023, 2023
Short summary
Short summary
In Delhi, some aspects of daytime and nighttime atmospheric chemistry are inverted, and parodoxically, vehicle emissions may be limiting other forms of particle production. This is because the nighttime emissions of nitrogen oxide (NO) by traffic and biomass burning prevent some chemical processes that would otherwise create even more particles and worsen the urban haze.
Rose Marie Miller, Robert M. Rauber, Larry Di Girolamo, Matthew Rilloraza, Dongwei Fu, Greg M. McFarquhar, Stephen W. Nesbitt, Luke D. Ziemba, Sarah Woods, and Kenneth Lee Thornhill
Atmos. Chem. Phys., 23, 8959–8977, https://doi.org/10.5194/acp-23-8959-2023, https://doi.org/10.5194/acp-23-8959-2023, 2023
Short summary
Short summary
The influence of human-produced aerosols on clouds remains one of the uncertainties in radiative forcing of Earth’s climate. Measurements of aerosol chemistry from sources around the Philippines illustrate the linkage between aerosol chemical composition and cloud droplet characteristics. Differences in aerosol chemical composition in the marine layer from biomass burning, industrial, ship-produced, and marine aerosols are shown to impact cloud microphysical structure just above cloud base.
Yiyu Cai, Chenshuo Ye, Wei Chen, Weiwei Hu, Wei Song, Yuwen Peng, Shan Huang, Jipeng Qi, Sihang Wang, Chaomin Wang, Caihong Wu, Zelong Wang, Baolin Wang, Xiaofeng Huang, Lingyan He, Sasho Gligorovski, Bin Yuan, Min Shao, and Xinming Wang
Atmos. Chem. Phys., 23, 8855–8877, https://doi.org/10.5194/acp-23-8855-2023, https://doi.org/10.5194/acp-23-8855-2023, 2023
Short summary
Short summary
We studied the variability and molecular composition of ambient oxidized organic nitrogen (OON) in both gas and particle phases using a state-of-the-art online mass spectrometer in urban air. Biomass burning and secondary formation were found to be the two major sources of OON. Daytime nitrate radical chemistry for OON formation was more important than previously thought. Our results improved the understanding of the sources and molecular composition of OON in the polluted urban atmosphere.
Frédéric Ledoux, Cloé Roche, Gilles Delmaire, Gilles Roussel, Olivier Favez, Marc Fadel, and Dominique Courcot
Atmos. Chem. Phys., 23, 8607–8622, https://doi.org/10.5194/acp-23-8607-2023, https://doi.org/10.5194/acp-23-8607-2023, 2023
Short summary
Short summary
We quantify the emissions from the marine sector in northern France, whether from natural or human-made sources. Therefore, a 1-year PM10 sampling campaign was conducted at a French coastal site. Results showed that sea salts contributed 37 %, while secondary nitrate and sulfate contributed 42 %, biomass burning 8 %, and heavy-fuel-oil combustion from shipping emissions 5 %. Sources contributing more than 80 % of PM10 are of regional and/or long-range origin.
Shuhui Zhu, Min Zhou, Liping Qiao, Dan Dan Huang, Qiongqiong Wang, Shan Wang, Yaqin Gao, Shengao Jing, Qian Wang, Hongli Wang, Changhong Chen, Cheng Huang, and Jian Zhen Yu
Atmos. Chem. Phys., 23, 7551–7568, https://doi.org/10.5194/acp-23-7551-2023, https://doi.org/10.5194/acp-23-7551-2023, 2023
Short summary
Short summary
Organic aerosol (OA) is increasingly important in urban PM2.5 pollution as inorganic ions are becoming lower. We investigated the chemical characteristics of OA during nine episodes in Shanghai. The availability of bi-hourly measured molecular markers revealed that the control of local urban sources such as vehicular and cooking emissions lessened the severity of local episodes. Regional control of precursors and biomass burning would reduce PM2.5 episodes influenced by regional transport.
Karolina Siegel, Yvette Gramlich, Sophie L. Haslett, Gabriel Freitas, Radovan Krejci, Paul Zieger, and Claudia Mohr
Atmos. Chem. Phys., 23, 7569–7587, https://doi.org/10.5194/acp-23-7569-2023, https://doi.org/10.5194/acp-23-7569-2023, 2023
Short summary
Short summary
Hydroperoxymethyl thioformate (HPMTF) is a recently discovered oxidation product of dimethyl sulfide (DMS). We present a full year of concurrent gas- and particle-phase observations of HPMTF and other DMS oxidation products from the Arctic. We did not observe significant amounts of HPMTF in the particle phase but a good agreement between gas-phase HMPTF and methanesulfonic acid in the summer. Our study provides information about the relationship between HPMTF and other DMS oxidation products.
Yutong Liang, Rebecca A. Wernis, Kasper Kristensen, Nathan M. Kreisberg, Philip L. Croteau, Scott C. Herndon, Arthur W. H. Chan, Nga L. Ng, and Allen H. Goldstein
EGUsphere, https://doi.org/10.5194/egusphere-2023-1419, https://doi.org/10.5194/egusphere-2023-1419, 2023
Short summary
Short summary
We measured the gas-particle partitioning behaviors of biomass burning markers and examined the effect of wildfire organic aerosol on the partitioning of SVOCs. We found that most compounds measured are less volatile than model prediction. Wildfire aerosol enhanced the condensation of polar compounds, while causing some nonpolar compounds (such as PAHs) to partition more into the gas phase, which can affect their lifetimes in the atmosphere and the mode of exposure.
Samira Atabakhsh, Laurent Poulain, Gang Chen, Francesco Canonaco, André S. H. Prévôt, Mira Pöhlker, Alfred Wiedensohler, and Hartmut Herrmann
Atmos. Chem. Phys., 23, 6963–6988, https://doi.org/10.5194/acp-23-6963-2023, https://doi.org/10.5194/acp-23-6963-2023, 2023
Short summary
Short summary
The study focuses on the aerosol chemical variations found in the rural-background station of Melpitz based on ACSM and MAAP measurements. Source apportionment on both organic aerosol (OA) and black carbon (eBC) was performed, and source seasonality was also linked to air mass trajectories. Overall, three anthropogenic sources were identified in OA and eBC plus two additional aged OA. Our results demonstrate the influence of transported coal-combustion-related OA even during summer time.
Yanqin Ren, Gehui Wang, Jie Wei, Jun Tao, Zhisheng Zhang, and Hong Li
Atmos. Chem. Phys., 23, 6835–6848, https://doi.org/10.5194/acp-23-6835-2023, https://doi.org/10.5194/acp-23-6835-2023, 2023
Short summary
Short summary
Nine quantified nitrated aromatic compounds (NACs) in PM2.5 were examined at the peak of Mt. Wuyi. They manifested a significant rise in overall abundance in the winter and autumn. The transport of contaminants had a significant impact on NACs. Under low-NOx conditions, the formation of NACs was comparatively sensitive to NO2, suggesting that NACs would become significant in the aerosol characteristics when nitrate concentrations decreased as a result of emission reduction measures.
Yu Xu, Xin-Ni Dong, Chen He, Dai-She Wu, Hong-Wei Xiao, and Hua-Yun Xiao
Atmos. Chem. Phys., 23, 6775–6788, https://doi.org/10.5194/acp-23-6775-2023, https://doi.org/10.5194/acp-23-6775-2023, 2023
Short summary
Short summary
The air pollution associated with fine particles and secondary organic aerosol is not weakened by the application of mist cannon trucks but rather is aggravated. Our results provide not only new insights into the formation processes of aerosol water-soluble organic compounds associated with the water mist sprayed by mist cannon trucks in the road atmospheric environment but also crucial information for the decision makers to regulate the operation of mist cannon trucks in many cities in China.
Manuela van Pinxteren, Sebastian Zeppenfeld, Khanneh Wadinga Fomba, Nadja Triesch, Sanja Frka, and Hartmut Herrmann
Atmos. Chem. Phys., 23, 6571–6590, https://doi.org/10.5194/acp-23-6571-2023, https://doi.org/10.5194/acp-23-6571-2023, 2023
Short summary
Short summary
Important marine organic carbon compounds were identified in the Atlantic Ocean and marine aerosol particles. These compounds were strongly enriched in the atmosphere. Their enrichment was, however, not solely explained via sea-to-air transfer but also via atmospheric in situ formation. The identified compounds constituted about 50 % of the organic carbon on the aerosol particles, and a pronounced coupling between ocean and atmosphere for this oligotrophic region could be concluded.
Aliki Christodoulou, Iasonas Stavroulas, Mihalis Vrekoussis, Maximillien Desservettaz, Michael Pikridas, Elie Bimenyimana, Jonilda Kushta, Matic Ivančič, Martin Rigler, Philippe Goloub, Konstantina Oikonomou, Roland Sarda-Estève, Chrysanthos Savvides, Charbel Afif, Nikos Mihalopoulos, Stéphane Sauvage, and Jean Sciare
Atmos. Chem. Phys., 23, 6431–6456, https://doi.org/10.5194/acp-23-6431-2023, https://doi.org/10.5194/acp-23-6431-2023, 2023
Short summary
Short summary
Our study presents, for the first time, a detailed source identification of aerosols at an urban background site in Cyprus (eastern Mediterranean), a region strongly impacted by climate change and air pollution. Here, we identify an unexpected high contribution of long-range transported pollution from fossil fuel sources in the Middle East, highlighting an urgent need to further characterize these fast-growing emissions and their impacts on regional atmospheric composition, climate, and health.
Tingting Li, Jun Li, Zeyu Sun, Hongxing Jiang, Chongguo Tian, and Gan Zhang
Atmos. Chem. Phys., 23, 6395–6407, https://doi.org/10.5194/acp-23-6395-2023, https://doi.org/10.5194/acp-23-6395-2023, 2023
Short summary
Short summary
N-NH4+ and N-NO3- were vital components in nitrogenous aerosols and contributed 69 % to total nitrogen in PM2.5. Coal combustion was still the most important source of urban atmospheric NO3-. However, the non-agriculture sources play an increasingly important role in NH4+ emissions.
Yuan Cheng, Xu-bing Cao, Jiu-meng Liu, Ying-jie Zhong, Qin-qin Yu, Qiang Zhang, and Ke-bin He
Atmos. Chem. Phys., 23, 6241–6253, https://doi.org/10.5194/acp-23-6241-2023, https://doi.org/10.5194/acp-23-6241-2023, 2023
Short summary
Short summary
Brown carbon (BrC) aerosols were explored in the northernmost megacity in China during a frigid winter and an agricultural-fire-impacted spring. BrC was more light absorbing at night for both seasons, with more pronounced diurnal variations in spring, and the dominant drivers were identified as regulations on heavy-duty diesel trucks and open burning, respectively. Agricultural fires resulted in unique absorption spectra of BrC, which were characterized by a distinct peak at ∼365 nm.
Eka Dian Pusfitasari, Jose Ruiz-Jimenez, Aleksi Tiusanen, Markus Suuronen, Jesse Haataja, Yusheng Wu, Juha Kangasluoma, Krista Luoma, Tuukka Petäjä, Matti Jussila, Kari Hartonen, and Marja-Liisa Riekkola
Atmos. Chem. Phys., 23, 5885–5904, https://doi.org/10.5194/acp-23-5885-2023, https://doi.org/10.5194/acp-23-5885-2023, 2023
Short summary
Short summary
A miniaturized air-sampling drone system was successfully applied for the collection of volatile organic compounds (VOCs) and for the measurement of black carbon (BC) and total particle number concentrations in atmospheric air. Here we report, for the first time, the vertical profiles of BC and aerosol number concentrations above the boreal forest in Hyytiälä (Finland) at high altitudes close to the boundary layer in autumn 2021. VOC composition with its distribution was studied as well.
Yifang Gu, Ru-Jin Huang, Jing Duan, Wei Xu, Chunshui Lin, Haobin Zhong, Ying Wang, Haiyan Ni, Quan Liu, Ruiguang Xu, Litao Wang, and Yong Jie Li
Atmos. Chem. Phys., 23, 5419–5433, https://doi.org/10.5194/acp-23-5419-2023, https://doi.org/10.5194/acp-23-5419-2023, 2023
Short summary
Short summary
Secondary organic aerosol (SOA) can be produced by various pathways, but its formation mechanisms are unclear. Observations were conducted in the North China Plain during a highly oxidizing atmosphere in summer. We found that fast photochemistry dominated SOA formation during daytime. Two types of aqueous-phase chemistry (nocturnal and daytime processing) take place at high relative humidity. The potential transformation from primary organic aerosol (POA) to SOA was also an important pathway.
Miao Zhong, Jianzhong Xu, Huiqin Wang, Li Gao, Haixia Zhu, Lixiang Zhai, Xinghua Zhang, and Wenhui Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2023-752, https://doi.org/10.5194/egusphere-2023-752, 2023
Short summary
Short summary
This study focus on coal combustion dominated aerosol in urban areas in Northwest China and combines the results of optical measurement and chemical analysis to deduce the evolution of these characteristics in the atmosphere, which has far from been known previously. The results provide insights into the effects of atmospheric processes and emissions on BrC properties.
Miaomiao Zhai, Ye Kuang, Li Liu, Yao He, Biao Luo, Wanyun Xu, Jiangchuan Tao, Yu Zou, Fei Li, Changqin Yin, Chunhui Li, Hanbing Xu, and Xuejiao Deng
Atmos. Chem. Phys., 23, 5119–5133, https://doi.org/10.5194/acp-23-5119-2023, https://doi.org/10.5194/acp-23-5119-2023, 2023
Short summary
Short summary
Using year-long aerosol mass spectrometer measurements, roles of secondary organic aerosols (SOA) during haze formations in an urban area of southern China were systematically analyzed. Almost all severe haze events were accompanied by continuous daytime and nighttime SOA formations, whereas coordinated gas-phase photochemistry and aqueous-phase reactions likely played significant roles in quick daytime SOA formations, and nitrate radicals played significant roles in nighttime SOA formations.
Li Wu, Hyo-Jin Eom, Hanjin Yoo, Dhrubajyoti Gupta, Hye-Rin Cho, Pingqing Fu, and Chul-Un Ro
EGUsphere, https://doi.org/10.5194/egusphere-2023-693, https://doi.org/10.5194/egusphere-2023-693, 2023
Short summary
Short summary
Hygroscopicity of ambient marine aerosols are of critical relevance to investigate their atmospheric impacts, which however, remains uncertain due to their complex compositions and mixing states. Therefore, a study on the hygroscopic behavior of ambient marine aerosols for understanding its phase states when interacting with water vapor at different RHs as well as their subsequent impacts on the heterogeneous chemical reactions, atmospheric environment, and human health, is of vital importance.
Amie Dobracki, Paquita Zuidema, Steven G. Howell, Pablo Saide, Steffen Freitag, Allison C. Aiken, Sharon P. Burton, Arthur J. Sedlacek III, Jens Redemann, and Robert Wood
Atmos. Chem. Phys., 23, 4775–4799, https://doi.org/10.5194/acp-23-4775-2023, https://doi.org/10.5194/acp-23-4775-2023, 2023
Short summary
Short summary
Southern Africa produces approximately one-third of the world’s carbon from fires. The thick smoke layer can flow westward, interacting with the southeastern Atlantic cloud deck. The net radiative impact can alter regional circulation patterns, impacting rainfall over Africa. We find that the smoke is highly absorbing of sunlight, mostly because it contains more black carbon than smoke over the Northern Hemisphere.
Rui Li, Yining Gao, Yubao Chen, Meng Peng, Weidong Zhao, Gehui Wang, and Jiming Hao
Atmos. Chem. Phys., 23, 4709–4726, https://doi.org/10.5194/acp-23-4709-2023, https://doi.org/10.5194/acp-23-4709-2023, 2023
Short summary
Short summary
A random forest model was used to isolate the effects of emission and meteorology to trace elements in PM2.5 in Tangshan. The results suggested that control measures facilitated decreases of Ga, Co, Pb, Zn, and As, due to the strict implementation of coal-to-gas strategies and optimisation of industrial structure and layout. However, the deweathered levels of Ca, Cr, and Fe only displayed minor decreases, indicating that ferrous metal smelting and vehicle emission controls should be enhanced.
Jinyoung Jung, Yuzo Miyazaki, Jin Hur, Yun Kyung Lee, Mi Hae Jeon, Youngju Lee, Kyoung-Ho Cho, Hyun Young Chung, Kitae Kim, Jung-Ok Choi, Catherine Lalande, Joo-Hong Kim, Taejin Choi, Young Jun Yoon, Eun Jin Yang, and Sung-Ho Kang
Atmos. Chem. Phys., 23, 4663–4684, https://doi.org/10.5194/acp-23-4663-2023, https://doi.org/10.5194/acp-23-4663-2023, 2023
Short summary
Short summary
This study examined the summertime fluorescence properties of water-soluble organic carbon (WSOC) in aerosols over the western Arctic Ocean. We found that the WSOC in fine-mode aerosols in coastal areas showed a higher polycondensation degree and aromaticity than in sea-ice-covered areas. The fluorescence properties of atmospheric WSOC in the summertime marine Arctic boundary can improve our understanding of the WSOC chemical and biological linkages at the ocean–sea-ice–atmosphere interface.
Lizi Tang, Min Hu, Dongjie Shang, Xin Fang, Jianjiong Mao, Wanyun Xu, Jiacheng Zhou, Weixiong Zhao, Yaru Wang, Chong Zhang, Yingjie Zhang, Jianlin Hu, Limin Zeng, Chunxiang Ye, Song Guo, and Zhijun Wu
Atmos. Chem. Phys., 23, 4343–4359, https://doi.org/10.5194/acp-23-4343-2023, https://doi.org/10.5194/acp-23-4343-2023, 2023
Short summary
Short summary
There was an evident distinction in the frequency of new particle formation (NPF) events at Nam Co station on the Tibetan Plateau: 15 % in pre-monsoon season and 80 % in monsoon season. The frequent NPF events in monsoon season resulted from the higher frequency of southerly air masses, which brought the organic precursors to participate in the NPF process. It increased the amount of aerosol and CCN compared with those in pre-monsoon season, which may markedly affect earth's radiation balance.
Maija Peltola, Clémence Rose, Jonathan V. Trueblood, Sally Gray, Mike Harvey, and Karine Sellegri
Atmos. Chem. Phys., 23, 3955–3983, https://doi.org/10.5194/acp-23-3955-2023, https://doi.org/10.5194/acp-23-3955-2023, 2023
Short summary
Short summary
We measured the chemical composition of ambient ions at a coastal New Zealand site and connected these data with aerosol size distribution data to study the chemical precursors of new particle formation at the site. Our results showed that iodine oxides and sulfur species were important for particle formation in marine air, while in land-influenced air sulfuric acid and organics were connected to new particle formation events.
Agnesh Panta, Konrad Kandler, Andres Alastuey, Cristina González-Flórez, Adolfo González-Romero, Martina Klose, Xavier Querol, Cristina Reche, Jesús Yus-Díez, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 23, 3861–3885, https://doi.org/10.5194/acp-23-3861-2023, https://doi.org/10.5194/acp-23-3861-2023, 2023
Short summary
Short summary
Desert dust is a major aerosol component of the Earth system and affects the climate. Dust properties are influenced by particle size, mineralogy, shape, and mixing state. This work characterizes freshly emitted individual mineral dust particles from a major source region using electron microscopy. Our new insights into critical particle-specific information will contribute to better constraining climate models that consider mineralogical variations in their representation of the dust cycle.
Bojiang Su, Xinhui Bi, Zhou Zhang, Yue Liang, Congbo Song, Tao Wang, Yaohao Hu, Lei Li, Zhen Zhou, Jinpei Yan, Xinming Wang, and Guohua Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2023-322, https://doi.org/10.5194/egusphere-2023-322, 2023
Short summary
Short summary
During R/V Xuelong cruise observations over the Ross Sea, Antarctica, the concentrations of water-soluble Ca2+ and the mass spectra of individual particles were measured. Our results indicated that lower temperature, lower wind speed, and the presence of sea ice may facilitate Ca2+ enrichment in SSAs and highlighted the potential contribution of organically complexed calcium to calcium enrichment, which has been neglected when only Ca2+ was considered in the estimation.
Huanhuan Zhang, Rui Li, Chengpeng Huang, Xiaofei Li, Shuwei Dong, Fu Wang, Tingting Li, Yizhu Chen, Guohua Zhang, Yan Ren, Qingcai Chen, Ru-jin Huang, Siyu Chen, Tao Xue, Xinming Wang, and Mingjin Tang
Atmos. Chem. Phys., 23, 3543–3559, https://doi.org/10.5194/acp-23-3543-2023, https://doi.org/10.5194/acp-23-3543-2023, 2023
Short summary
Short summary
This work investigated the seasonal variation of aerosol Fe solubility for coarse and fine particles in Xi’an, a megacity in northwestern China severely affected by anthropogenic emission and desert dust aerosol. In addition, we discussed in depth what controlled aerosol Fe solubility at different seasons for coarse and fine particles.
Yiqun Lu, Yingge Ma, Dan Dan Huang, Shengrong Lou, Sheng'ao Jing, Yaqin Gao, Hongli Wang, Yanjun Zhang, Hui Chen, Yunhua Chang, Naiqiang Yan, Jianmin Chen, Christian George, Matthieu Riva, and Cheng Huang
Atmos. Chem. Phys., 23, 3233–3245, https://doi.org/10.5194/acp-23-3233-2023, https://doi.org/10.5194/acp-23-3233-2023, 2023
Short summary
Short summary
N-containing oxygenated organic molecules have been identified as important precursors of aerosol particles. We used an ultra-high-resolution mass spectrometer coupled with an online sample inlet to accurately measure their molecular composition, concentration level and variation patterns. We show their formation process and influencing factors in a Chinese megacity involving various volatile organic compound precursors and atmospheric oxidants, and we highlight the influence of PM2.5 episodes.
Boming Liu, Xin Ma, Jianping Guo, Hui Li, Shikuan Jin, Yingying Ma, and Wei Gong
Atmos. Chem. Phys., 23, 3181–3193, https://doi.org/10.5194/acp-23-3181-2023, https://doi.org/10.5194/acp-23-3181-2023, 2023
Short summary
Short summary
Wind energy is one of the most essential clean and renewable forms of energy in today’s world. However, the traditional power law method generally estimates the hub-height wind speed by assuming a constant exponent between surface and hub-height wind speeds. This inevitably leads to significant uncertainties in estimating the wind speed profile. To minimize the uncertainties, we here use a machine learning algorithm known as random forest to estimate the wind speed at hub height.
Rui Li, Kun Zhang, Qing Li, Liumei Yang, Shunyao Wang, Zhiqiang Liu, Xiaojuan Zhang, Hui Chen, Yanan Yi, Jialiang Feng, Qiongqiong Wang, Ling Huang, Wu Wang, Yangjun Wang, Jian Zhen Yu, and Li Li
Atmos. Chem. Phys., 23, 3065–3081, https://doi.org/10.5194/acp-23-3065-2023, https://doi.org/10.5194/acp-23-3065-2023, 2023
Short summary
Short summary
Molecular markers in organic aerosol (OA) provide specific source information on PM2.5, and the contribution of cooking emissions to OA is significant, especially in urban environments. This study investigates the variation in concentrations and oxidative degradation of fatty acids and corresponding oxidation products in ambient air, which can be a guide for the refinement of aerosol source apportionment and provide scientific support for the development of emission source control policies.
Jiyuan Yang, Guoyang Lei, Chang Liu, Yutong Wu, Kai Hu, Jinfeng Zhu, Junsong Bao, Weili Lin, and Jun Jin
Atmos. Chem. Phys., 23, 3015–3029, https://doi.org/10.5194/acp-23-3015-2023, https://doi.org/10.5194/acp-23-3015-2023, 2023
Short summary
Short summary
The characteristics of n-alkanes and the contributions of various sources of PM2.5 in the atmosphere in Beijing were studied. There were marked seasonal and diurnal differences in the n-alkane concentrations (p<0.01). Particulate-bound n-alkanes were supplied by anthropogenic and biogenic sources; fossil fuel combustion was the dominant contributor. Vehicle exhausts strongly affect PM2.5 pollution. Controlling vehicle exhaust emissions is key to control n-alkane and PM2.5 pollution in Beijing.
Sanna Saarikoski, Heidi Hellén, Arnaud P. Praplan, Simon Schallhart, Petri Clusius, Jarkko V. Niemi, Anu Kousa, Toni Tykkä, Rostislav Kouznetsov, Minna Aurela, Laura Salo, Topi Rönkkö, Luis M. F. Barreira, Liisa Pirjola, and Hilkka Timonen
Atmos. Chem. Phys., 23, 2963–2982, https://doi.org/10.5194/acp-23-2963-2023, https://doi.org/10.5194/acp-23-2963-2023, 2023
Short summary
Short summary
This study elucidates properties and sources of volatile organic compounds (VOCs) and organic aerosol (OA) in a traffic environment. Anthropogenic VOCs (aVOCs) were clearly higher than biogenic VOCs (bVOCs), but bVOCs produced a larger portion of oxidation products. OA consisted mostly of oxygenated OA, representing secondary OA (SOA). SOA was partly associated with bVOCs, but it was also related to long-range transport. Primary OA originated mostly from traffic.
Veronica Z. Berta, Lynn M. Russell, Derek J. Price, Chia-Li Chen, Alex K. Y. Lee, Patricia K. Quinn, Timothy S. Bates, Thomas G. Bell, and Michael J. Behrenfeld
Atmos. Chem. Phys., 23, 2765–2787, https://doi.org/10.5194/acp-23-2765-2023, https://doi.org/10.5194/acp-23-2765-2023, 2023
Short summary
Short summary
Amines are compounds emitted from a variety of marine and continental sources and were measured by aerosol mass spectrometry and Fourier transform infrared spectroscopy during the North Atlantic Aerosols and Marine Ecosystems Study (NAAMES) cruises. Secondary continental and primary marine sources of amines were identified by comparisons to tracers. The results show that the two methods are complementary for investigating amines in the marine environment.
Chuan-Yao Lin, Wan-Chin Chen, Yi-Yun Chien, Charles C. K. Chou, Chian-Yi Liu, Helmut Ziereis, Hans Schlager, Eric Förster, Florian Obersteiner, Ovid O. Krüger, Bruna A. Holanda, Mira L. Pöhlker, Katharina Kaiser, Johannes Schneider, Birger Bohn, Klaus Pfeilsticker, Benjamin Weyland, Maria Dolores Andrés Hernández, and John P. Burrows
Atmos. Chem. Phys., 23, 2627–2647, https://doi.org/10.5194/acp-23-2627-2023, https://doi.org/10.5194/acp-23-2627-2023, 2023
Short summary
Short summary
During the EMeRGe campaign in Asia, atmospheric pollutants were measured on board the HALO aircraft. The WRF-Chem model was employed to evaluate the biomass burning (BB) plume transported from Indochina and its impact on the downstream areas. The combination of BB aerosol enhancement with cloud water resulted in a reduction in incoming shortwave radiation at the surface in southern China and the East China Sea, which potentially has significant regional climate implications.
Fei Xie, Yue Su, Yongli Tian, Yanju Shi, Xingjun Zhou, Peng Wang, Ruihong Yu, Wei Wang, Jiang He, Jinyuan Xin, and Changwei Lü
Atmos. Chem. Phys., 23, 2365–2378, https://doi.org/10.5194/acp-23-2365-2023, https://doi.org/10.5194/acp-23-2365-2023, 2023
Short summary
Short summary
This work finds the shifting of secondary inorganic aerosol formation mechanisms during haze aggravation and explains the decisive role of aerosol liquid water on a broader scale (~ 500 μg m3) in an ammonia-rich atmosphere based on the in situ high-resolution online monitoring datasets.
James Brean, David C. S. Beddows, Roy M. Harrison, Congbo Song, Peter Tunved, Johan Ström, Radovan Krejci, Eyal Freud, Andreas Massling, Henrik Skov, Eija Asmi, Angelo Lupi, and Manuel Dall'Osto
Atmos. Chem. Phys., 23, 2183–2198, https://doi.org/10.5194/acp-23-2183-2023, https://doi.org/10.5194/acp-23-2183-2023, 2023
Short summary
Short summary
Our results emphasize how understanding the geographical variation in surface types across the Arctic is key to understanding secondary aerosol sources. We provide a harmonised analysis of new particle formation across the Arctic.
Zhichao Dong, Chandra Mouli Pavuluri, Zhanjie Xu, Yu Wang, Peisen Li, Pingqing Fu, and Cong-Qiang Liu
Atmos. Chem. Phys., 23, 2119–2143, https://doi.org/10.5194/acp-23-2119-2023, https://doi.org/10.5194/acp-23-2119-2023, 2023
Short summary
Short summary
This study has provided comprehensive baseline data of carbonaceous and inorganic aerosols as well as their isotope ratios in the Tianjin region, North China, found that Tianjin aerosols were derived from coal combustion, biomass burning and photochemical reactions of VOCs, and also implied that the Tianjin aerosols were more aged during long-range atmospheric transport in summer via carbonaceous and isotope data analysis.
Shujun Zhong, Shuang Chen, Junjun Deng, Yanbing Fan, Qiang Zhang, Qiaorong Xie, Yulin Qi, Wei Hu, Libin Wu, Xiaodong Li, Chandra Mouli Pavuluri, Jialei Zhu, Xin Wang, Di Liu, Xiaole Pan, Yele Sun, Zifa Wang, Yisheng Xu, Haijie Tong, Hang Su, Yafang Cheng, Kimitaka Kawamura, and Pingqing Fu
Atmos. Chem. Phys., 23, 2061–2077, https://doi.org/10.5194/acp-23-2061-2023, https://doi.org/10.5194/acp-23-2061-2023, 2023
Short summary
Short summary
This study investigated the role of the secondary organic aerosol (SOA) loading on the molecular composition of wintertime urban aerosols by ultrahigh-resolution mass spectrometry. Results demonstrate that the SOA loading is an important factor associated with the oxidation degree, nitrate group content, and chemodiversity of nitrooxy–organosulfates. Our study also found that the hydrolysis of nitrooxy–organosulfates is a possible pathway for the formation of organosulfates.
Jie Tian, Qiyuan Wang, Yongyong Ma, Jin Wang, Yongming Han, and Junji Cao
Atmos. Chem. Phys., 23, 1879–1892, https://doi.org/10.5194/acp-23-1879-2023, https://doi.org/10.5194/acp-23-1879-2023, 2023
Short summary
Short summary
We investigated the light absorption properties of brown carbon (BrC) in the Tibetan Plateau (TP). BrC made a substantial contribution to the submicron aerosol absorption, which is related to the cross-border transport of biomass burning emission and secondary aerosol from Southeast Asia. The radiative effect of BrC was half that of black carbon, which can remarkably affect the radiative balance of the TP.
Buqing Xu, Jiao Tang, Tiangang Tang, Shizhen Zhao, Guangcai Zhong, Sanyuan Zhu, Jun Li, and Gan Zhang
Atmos. Chem. Phys., 23, 1565–1578, https://doi.org/10.5194/acp-23-1565-2023, https://doi.org/10.5194/acp-23-1565-2023, 2023
Short summary
Short summary
We analyzed compound-specific dual-carbon isotope signatures (Δ14C and δ13C) of dominant secondary organic aerosol (SOA) tracer molecules (i.e., oxalic acid) to investigate the fates of SOAs in the atmosphere at five emission hotspots in China. The results indicated that SOA carbon sources and chemical processes producing SOAs vary spatially and seasonally, and these variations need to be included in Chinese climate projection models and air quality management practices.
Francesca Gallo, Kevin J. Sanchez, Bruce E. Anderson, Ryan Bennett, Matthew D. Brown, Ewan C. Crosbie, Chris Hostetler, Carolyn Jordan, Melissa Yang Martin, Claire E. Robinson, Lynn M. Russell, Taylor J. Shingler, Michael A. Shook, Kenneth L. Thornhill, Elizabeth B. Wiggins, Edward L. Winstead, Armin Wisthaler, Luke D. Ziemba, and Richard H. Moore
Atmos. Chem. Phys., 23, 1465–1490, https://doi.org/10.5194/acp-23-1465-2023, https://doi.org/10.5194/acp-23-1465-2023, 2023
Short summary
Short summary
We integrate in situ ship- and aircraft-based measurements of aerosol, trace gases, and meteorological parameters collected during the NASA North Atlantic Aerosols and Marine Ecosystems Study (NAAMES) field campaigns in the western North Atlantic Ocean region. A comprehensive characterization of the vertical profiles of aerosol properties under different seasonal regimes is provided for improving the understanding of aerosol key processes and aerosol–cloud interactions in marine regions.
Cited articles
Allan, J. D., Delia, A. E., Coe, H., Bower, K. N., Alfarra, M. R., Jimenez,
J. L., Middlebrook, A. M., Drewnick, F., Onasch, T. B., Canagaratna, M. R.,
Jayne, J. T., and Worsnop, D. R.: A generalised method for the extraction of
chemically resolved mass spectra from Aerodyne aerosol mass spectrometer
data, J. Aerosol Sci., 35, 909–922,
https://doi.org/10.1016/j.jaerosci.2004.02.007, 2004.
Allan, J. D., Alfarra, M. R., Bower, K. N., Coe, H., Jayne, J. T., Worsnop, D. R., Aalto, P. P., Kulmala, M., Hyötyläinen, T., Cavalli, F., and Laaksonen, A.: Size and composition measurements of background aerosol and new particle growth in a Finnish forest during QUEST 2 using an Aerodyne Aerosol Mass Spectrometer, Atmos. Chem. Phys., 6, 315–327, https://doi.org/10.5194/acp-6-315-2006, 2006.
Beddows, D. C. S., Harrison, R. M., Green, D. C., and Fuller, G. W.: Receptor modelling of both particle composition and size distribution from a background site in London, UK, Atmos. Chem. Phys., 15, 10107–10125, https://doi.org/10.5194/acp-15-10107-2015, 2015.
Belis, C. A., Karagulian, F., Larsen, B. R., and Hopke, P. K.: Critical review
and metaanalysis of ambient particulate matter source apportionment using
receptor models in Europe, Atmos. Environ., 69, 94–108,
https://doi.org/10.1016/j.atmosenv.2012.11.009, 2013.
Bressi, M., Cavalli, F., Putaud, J. P., Fröhlich, R., Petit, J.-E., Aas, W., Äijälä, A., Alastuey, A., Allan, J. D., Aurela, M., Berico, M., Bougiatioti, A., Bukowiecki, N., Canonaco, F., Crenn, V., Dusanter, S., Ehn, M., Elsasser, M., Flentje, H., Graf, P., Green, D. C., Heikkinen, L., Hermann, H., Holzinger, R., Hueglin, C., Keernik, H., Kiendler-Scharr, A., Kubelova, L., Lunder, C., Maasikmets, M., Malaguti, A., Mihalopoulos, N., Nicolas, J. B., O'Dowd, C., Ovadnevaite, J., Petralia, E., Poulain, L., Priestman, M., Riffault, V., Ripoll, A., Schlag, P., Schwarz, J., Sciare, J., Slowik, J., Sosedova, Y., Stavroulasm, I., Teinemaa, E., Via, M., Williams, P. I., Wiedensohler., A., Young, D. E., Zhang, E., Favez, O., Minguillon, M. C., and Prevot, A. S. H.: A European aerosol phenomenology – 7: High-time
resolution chemical characteristics of submicron particulate matter across
Europe, Atmos. Environ., 10, 100108,
https://doi.org/10.1016/j.aeaoa.2021.100108, 2021.
Carslaw, D. C. and Ropkins, K.: Openair – an R package for air quality data
analysis, Environ. Modell. Softw., 27–28, 52–61,
https://doi.org/10.1016/j.envsoft.2011.09.008, 2012.
Cavalli, F., Viana, M., Yttri, K. E., Genberg, J., and Putaud, J.-P.: Toward a standardised thermal-optical protocol for measuring atmospheric organic and elemental carbon: the EUSAAR protocol, Atmos. Meas. Tech., 3, 79–89, https://doi.org/10.5194/amt-3-79-2010, 2010.
Cavallia, F., Alastue, A., Areskoug, H., Ceburnis, D., Čech, J., Genber,
J., Harrison, R. M., Jaffrezo, J. L., Kiss, G., Laj, P., Mihalopoulos, N.,
Perez, N., Quincey, P., Schwarz, J., Sellegri, K., Spindler, G., Swietlicki,
E., Theodosi, C., and Putaud, J. P.: A European aerosol phenomenology – 4:
Harmonized concentrations of carbonaceous aerosol at 10 regional background
sites across Europe, Atmos. Environ., 144, 133–145,
https://doi.org/10.1016/j.atmosenv.2016.07.050, 2016.
Chen, G., Canonaco, F., Tobler, A., Aas, W., Alastuey, A., Allan, J., Atabakhsh, S., Aurela, M., Baltensperger, U., Bougiatioti, A., De Brito, J. F., Ceburnis, D., Chazeau, B., Chebaicheb, H., Daellenbach, K. R., Ehn, M., El Haddad, I., Eleftheriadis, K., Favez, O., Flentje, H., Font, A., Fossum, K., Freney, E., Gini, M., Green, D. C., Heikkinen, L., Herrmann, H., Kalogridis, A.-C., Keernik, H., Lhotka, R., Lin, C., Lunder, C., Maasikmets, M., Manousakas, M.I., Marchand, N., Marin, C., Marmureanu, L., Mihalopoulos, N., Močnik, G., Nȩcki, J., O'Dowd, C., Ovadnevaite, J., Peter, T., Petit, J.E., Pikridas, M., Platt, S. M., Pokorná, P., Poulain, L., Priestman, M., Riffault, V., Rinaldi, M., Różański, K.., Schwarz, J., Sciare, J., Simon, L., Skiba, A., Slowik, J. G., Sosedova, Y., Stavroulas, I., Styszko, K., Teinemaa, E., Timonen, H., Tremper, A., Vasilescu, J., Via, M., Vodička, P., Wiedensohler, A., Zografou, O., Minguillón, M. C., and Prévôt, A. S. H.: European Aerosol Phenomenology – 8: Harmonised Source Apportionment of Organic Aerosol using 22 Yearlong ACSM/AMS Datasets, https://arxiv.org/abs/2201.00579# (last access: 28 April 2022), 2021.
Costabile, F., Birmili, W., Klose, S., Tuch, T., Wehner, B., Wiedensohler, A., Franck, U., König, K., and Sonntag, A.: Spatio-temporal variability and principal components of the particle number size distribution in an urban atmosphere, Atmos. Chem. Phys., 9, 3163–3195, https://doi.org/10.5194/acp-9-3163-2009, 2009.
CHMI: Tabular Survey 2019, Czech Hydrometeorological Institute (CHMI),
http://portal.chmi.cz/files/portal/docs/uoco/isko/tab_roc/2019_enh/index_GB.html (last
access: 4 June 2021), 2019a.
CHMI: Annual report 2019, Czech Hydrometeorological Institute (CHMI),
https://www.chmi.cz/files/portal/docs/uoco/isko/grafroc/19groc/gr19cz/19_rocenka_UKO_web_tisk_up1.pdf (last access: 4 June 2021), 2019b.
Cubison, M. J., Ortega, A. M., Hayes, P. L., Farmer, D. K., Day, D., Lechner, M. J., Brune, W. H., Apel, E., Diskin, G. S., Fisher, J. A., Fuelberg, H. E., Hecobian, A., Knapp, D. J., Mikoviny, T., Riemer, D., Sachse, G. W., Sessions, W., Weber, R. J., Weinheimer, A. J., Wisthaler, A., and Jimenez, J. L.: Effects of aging on organic aerosol from open biomass burning smoke in aircraft and laboratory studies, Atmos. Chem. Phys., 11, 12049–12064, https://doi.org/10.5194/acp-11-12049-2011, 2011.
Crippa, M., DeCarlo, P. F., Slowik, J. G., Mohr, C., Heringa, M. F., Chirico, R., Poulain, L., Freutel, F., Sciare, J., Cozic, J., Di Marco, C. F., Elsasser, M., Nicolas, J. B., Marchand, N., Abidi, E., Wiedensohler, A., Drewnick, F., Schneider, J., Borrmann, S., Nemitz, E., Zimmermann, R., Jaffrezo, J.-L., Prévôt, A. S. H., and Baltensperger, U.: Wintertime aerosol chemical composition and source apportionment of the organic fraction in the metropolitan area of Paris, Atmos. Chem. Phys., 13, 961–981, https://doi.org/10.5194/acp-13-961-2013, 2013.
Dall'Osto, M., Harrison, R. M., Coe, H., Williams, P. I., and Allan, J. D.: Real time chemical characterization of local and regional nitrate aerosols, Atmos. Chem. Phys., 9, 3709–3720, https://doi.org/10.5194/acp-9-3709-2009, 2009.
DeCarlo, P. F., Slowik, J. G., Worsnop, D. R., Davidovits, P., and Jimenez, J.
L.: Particle Morphology and Density Characterization by Combined Mobility
and Aerodynamic Diameter Measurements. Part 1: Theory, Aerosol Sci.
Tech., 38, 1185–1205, https://doi.org/10.1080/027868290903907, 2004.
Drewnick, F., Jayne, J. T., Canargaratna, M., Worsnop, D. R., and Demerjian, K. L.: Measurement of ambient aerosol composition during the PMTACS-NY 2001
Using and Aersosol Mass Spectrometer. Part II: Chemically speciated mass
distribution, Aerosol Sci. Tech., 38, 104–117, https://doi.org/10.1080/02786820390229534, 2004.
Drewnick, F., Hings, S. S., DeCarlo, P., Jayne, J. T., Gonin, M., Fuhrer,
K., Weimer, S., JImenez, J. L., Demerjian, K. L., Borrmann, S., and Worsnop, R.:
A new Time-of-Flight Aerosol Mass Spectrometer (TOF-AMS) – Instrument
description and first field deployment, Aerosol Sci. Tech., 39,
637–658, https://doi.org/10.1080/02786820500182040, 2005.
EEA: Air Quality in Europe – 2019 Report, European Environment Agency
Report No. 10/2019,
https://www.eea.europa.eu/publications/air-quality-in-europe-2019 (last access: 4 June 2021), 2019.
Favez, O., Weber, S., Petit, J-E., Alleman, L. Y., Albinet, A., Riffault,
V., Chazeau, B., Amodeo, T., Salameh, D., Zhang, Y., Srivastava, S. et al.:
Overview of the French Operational Network for In Situ Observation of PM
Chemical Composition and Sources in Urban Environments (CARA Program),
Atmosphere, 12, 207, https://doi.org/10.3390/atmos12020207, 2021.
Freney, E. J., Sellegri, K., Canonaco, F., Boulon, J., Hervo, M., Weigel, R., Pichon, J. M., Colomb, A., Prévôt, A. S. H., and Laj, P.: Seasonal variations in aerosol particle composition at the puy-de-Dôme research station in France, Atmos. Chem. Phys., 11, 13047–13059, https://doi.org/10.5194/acp-11-13047-2011, 2011.
Freney, E. J., Sellegri, K., Canonaco, F., Colomb, A., Borbon, A., Michoud, V., Doussin, J.-F., Crumeyrolle, S., Amarouche, N., Pichon, J.-M., Bourianne, T., Gomes, L., Prevot, A. S. H., Beekmann, M., and Schwarzenböeck, A.: Characterizing the impact of urban emissions on regional aerosol particles: airborne measurements during the MEGAPOLI experiment, Atmos. Chem. Phys., 14, 1397–1412, https://doi.org/10.5194/acp-14-1397-2014, 2014.
Freutel, F., Schneider, J., Drewnick, F., von der Weiden-Reinmüller, S.-L., Crippa, M., Prévôt, A. S. H., Baltensperger, U., Poulain, L., Wiedensohler, A., Sciare, J., Sarda-Estève, R., Burkhart, J. F., Eckhardt, S., Stohl, A., Gros, V., Colomb, A., Michoud, V., Doussin, J. F., Borbon, A., Haeffelin, M., Morille, Y., Beekmann, M., and Borrmann, S.: Aerosol particle measurements at three stationary sites in the megacity of Paris during summer 2009: meteorology and air mass origin dominate aerosol particle composition and size distribution, Atmos. Chem. Phys., 13, 933–959, https://doi.org/10.5194/acp-13-933-2013, 2013.
Hersey, S. P., Craven, J. S., Schilling, K. A., Metcalf, A. R., Sorooshian, A., Chan, M. N., Flagan, R. C., and Seinfeld, J. H.: The Pasadena Aerosol Characterization Observatory (PACO): chemical and physical analysis of the Western Los Angeles basin aerosol, Atmos. Chem. Phys., 11, 7417–7443, https://doi.org/10.5194/acp-11-7417-2011, 2011.
Hinds, W. C.: Aerosol Technology, 2nd ed., John Wiley & Sons, New York,
ISBN 978-0-471-19410-1, 1999.
Holubová Šmejkalová, A., Zíková, N., Ždímal,
V., Plachá, H., and Bitter, M.: Atmospheric aerosol growth rates at
different background station types, Environ. Sci. Poll. Res., 28,
13352–13364, https://doi.org/10.1007/s11356-020-11424-5, 2021.
Hock, N., Schneider, J., Borrmann, S., Römpp, A., Moortgat, G., Franze, T., Schauer, C., Pöschl, U., Plass-Dülmer, C., and Berresheim, H.: Rural continental aerosol properties and processes observed during the Hohenpeissenberg Aerosol Characterization Experiment (HAZE2002), Atmos. Chem. Phys., 8, 603–623, https://doi.org/10.5194/acp-8-603-2008, 2008.
Jayne, J. T., Leard, D. C., Zhang, X., Davidovits, P., Smith, K. A., Kolb,
C. E., and Worsnop, D. R.: Development of an Aerosol Mass Spectrometer
for Size and Composition Analysis of Submicron Particles, Aerosol Sci.
Tech., 33, 49–70, https://doi.org/10.1080/027868200410840, 2000.
Jimenez, J. L., Jayne, J. T., Shi, Q., Kolb, C. E., Worsnop, D. R.,
Yourshaw, I., Seinfeld, J. H., Flagan, R. C., Zhang, X., Smith, K. A.,
Morris, J., and Davidovits, P.: Ambient aerosol sampling using the Aerodyne
Aerosol Mass Spectrometer, J. Geophys. Res., 108, 8425,
https://doi.org/10.1029/2001JD001213, 2003a.
Jimenez, J. L., Bahreini, R., Cocker III, D. R., Zhuang, H., Varutbangkul, V., Flagan, R. C., Seinfeld, J. H., O'Dowd, C. D., and Hoffman, T.: New Particle Formation from Photooxidation of Diiodomethane (CH2I2), J. Geophys. Res.-Atmos., 108, 4318, https://doi.org/10.1029/2002JD002452, 2003b.
Jimenez. J. L., Bahreini, R., Cocker III, D. R., Zhuang, H., Varutbangkul, V., Flagan, R. C., Seinfeld, J. H., O'Dowd, C. D., and Hoffman, T.: Correction to “New Particle Formation from Photooxidation of Diiodomethane (CH2I2)”, J. Geophys. Res.-Atmos., 108, 4733, https://doi.org/10.1029/2003JD004249, 2003c.
Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prevot, A. S. H., Zhang, Q., Kroll, J. H., DeCarlo, P. F., Allan, J. D., Coe, H., Ng, N. L., Aiken, A. C., Docherty, K. D., Ulbrich, I. M., Grieshop, A. P., Robinson, A. L., Duplissy, J., Smith, J. D., Wilson, K. R., Lanz, V. A., Hueglin, C., Sun, Y. L., Tian, J., Laaksonen, A., Raatikainen, T., Rautiainen, J., Vaattovaara, P., Ehn, M., Kulmala, M., Tomlinson, J. M., Collins, D. R., Cubison, M. J., Dunlea, E. J., Hauffman, J. A., Onasch, T. B., Alfarra, M. R., Williams, P. I., Bower, K., Kondo, Y., Scheider, J., Drewnick, F., Borrmann, S., Wimer, S., Demerjian, K., Salcedo, D., Cottrell, L., Griffin, R., Takami, A., MiYoshi, T., Hatakeyama, S., Shimono, A., Sun, J. Y., Zhang, Y. M., Dzepina, K., Kimmel, J. R., Sueper, D., Jayne, J. T., Herndon, S. C., Trimborn, A. M., Williams, L. R., Wood, E. C., Middlebrook, A. M., Kolb, C. E., Baltensperger, U., and Worsnop, D. R.: Evolution of Organic Aerosols in the Atmosphere, Science, 326, 1525–1529, https://doi.org/10.1126/science.1180353, 2009.
Kozáková, J., Pokorná, P., Vodička, P.,
Ondráčková, L., Ondráček, J., Křůmal, K.,
Mikuška, P., Hovorka, J., Moravec, P., and Schwarz, J.: Influence of
regional air pollution transport at a European air pollution hotspot,
Environ Sci. Pollut. R., 26, 1675–1692,
https://doi.org/10.1007/s11356-018-3670-y, 2019.
Kubelová, L., Vodička, P., Schwarz, J., Cusack, M., Makeš, O.,
Ondráček, J., and Ždímal, V.: A study of summer and winter high
time-resolved submicron aerosol composition measured at a suburban site in
Prague, Atmos. Environ., 118, 45–57,
https://doi.org/10.1016/j.atmosenv.2015.07.030, 2015.
Křůmal, K. and Mikuška, P.: Mass concentrations and lung cancer
risk assessment of PAHs bound to PM1 aerosol in six industrial, urban and
rural areas in the Czech Republic, Central Europe, Atmos. Pollut. Res.,
11, 401–408, https://doi.org/10.1016/j.apr.2019.11.012, 2020.
Leoni, C., Pokorná, P., Hovorka, J., Masiol, M., Topinka, J., Zhao, Y.,
Křůmal, K., Cliff, S., Mikuška, P., and Hopke, P. K.: Source
apportionment of aerosol particles at a European air pollution hot spot
using particle number size distributions and chemical composition, Environ.
Pollut., 234, 145–154, https://doi.org/10.1016/j.envpol.2017.10.097, 2018.
Lide, D. R.: CRC Handbook of Chemistry and Physics, CRC Press Inc, USA,
ISBN 978-0-849-30472-9, 1991.
Masiol, M., Vu, T. V., Beddows D. C. S., and Harrison, R. M.: Source
apportionment of wide range particle size spectra and black carbon collected
at the airport of Venice (Italy), Atmos. Environ., 139, 56–74, 2016.
Mbengue, S., Fusek, M., Schwarz, J., Vodička, P., Holubová
Šmejkalová, A., and Holoubek, I.: Four years of highly time resolved
measurements of elemental and organic carbon at a rural background site in
Central Europe, Atmos. Environ., 182, 335–346,
https://doi.org/10.1016/j.atmosenv.2018.03.056, 2018.
Mbengue, S., Serfozo, N., Schwarz, J., Ziková, N., Holubová
Šmejkalová, A., and Holoubek, I.: Characterization of Equivalent Black
Carbon at a regional background site in Central Europe: Variability and
source apportionment, Environ. Pollut., 260, 113771,
https://doi.org/10.1016/j.envpol.2019.113771, 2020.
Middlebrook, A. M., Bahreini, R., Jimenez, J. L., and Canagaratna, M. R.:
Evaluation of Composition-Dependent Collection Efficiencies for the Aerodyne
Aerosol Mass Spectrometer using Field Data, Aerosol Sci. Techn., 46,
258–271, https://doi.org/10.1080/02786826.2011.620041, 2012.
Milic, A., Mallet, M. D., Cravigan, L. T., Alroe, J., Ristovski, Z. D., Selleck, P., Lawson, S. J., Ward, J., Desservettaz, M. J., Paton-Walsh, C., Williams, L. R., Keywood, M. D., and Miljevic, B.: Biomass burning and biogenic aerosols in northern Australia during the SAFIRED campaign, Atmos. Chem. Phys., 17, 3945–3961, https://doi.org/10.5194/acp-17-3945-2017, 2017.
Moffet, R. C., Qin, X. Y., Rebotier, T., Furutani, H., and Prather, K. A.:
Chemically segregated optical and microphysical properties of ambient
aerosols measured in a single-particle mass spectrometer, J. Geophys. Res.-Atmos., 113, D12213, https://doi.org/10.1029/2007JD009393, 2008.
Ng, N. L., Canagaratna, M. R., Zhang, Q., Jimenez, J. L., Tian, J., Ulbrich, I. M., Kroll, J. H., Docherty, K. S., Chhabra, P. S., Bahreini, R., Murphy, S. M., Seinfeld, J. H., Hildebrandt, L., Donahue, N. M., DeCarlo, P. F., Lanz, V. A., Prévôt, A. S. H., Dinar, E., Rudich, Y., and Worsnop, D. R.: Organic aerosol components observed in Northern Hemispheric datasets from Aerosol Mass Spectrometry, Atmos. Chem. Phys., 10, 4625–4641, https://doi.org/10.5194/acp-10-4625-2010, 2010.
Park, K., Kittelson, D. B., Zachariah, M. R., and McMurry, P. H.:
Measurement of Inherent Material Density of Nanoparticle Agglomerates, J.
Nanopart. Res., 6, 267–272, https://doi.org/10.1080/02786820903401427,
2004.
Petit, J.-E., Amodeo, T., Meleux, F., Bessagnet, B., Menut, L., Grenier, D., Pellan, Y., Ockler, A., Rocq, B., Gros, V., Sciare, J., and Favez, O.: Characterising an intense PM pollution episode in March 2015 in France from multi-site approach and near real time data, Atmos. Environ., 155, 68–84,
https://doi.org/10.1016/j.atmosenv.2017.02.012, 2017.
Petit, J.-E., Pallarès, C., Favez, O., Alleman, L. Y., Bonnaire, N.,
and Rivière, E.: Sources and Geographical Origins of PM10 in Metz (France)
Using Oxalate as a Marker of Secondary Organic Aerosols by Positive Matrix
Factorization Analysis, Atmosphere, 10, 370, https://doi.org/10.3390/atmos10070370, 2019.
Pokorná, P., Schwarz, J., Krejci, R., Swietlicki, E., Havránek, V.,
and Ždímal, V.: Comparison of PM2.5 chemical composition and sources at
a rural background site in Central Europe between the years 1993/1994/1995
and 2009/2010: Effect of legislative regulations and economic transformation
on the air quality, Environ. Pollut., 241, 841–851,
https://doi.org/10.1016/j.envpol.2018.06.015, 2018.
Pokorná, P., Leoni, C., Schwarz, J., Ondráček, J.,
Ondráčková, L., Vodička, P., Zíková, N., Moravec,
P., Bendl, J., Klán, M., Hovorka, J., Zhao, Y., Cliff, S. S.,
Ždímal, V., and Hopke, P. K.: Spatial-temporal variability of
aerosol sources based on chemical composition and particle number size
distributions in an urban settlement influenced by metallurgical industry,
Environ. Sci. Pollut. R., 27, 38631–38643, 2020.
Poulain, L., Spindler, G., Birmili, W., Plass-Dülmer, C., Wiedensohler, A., and Herrmann, H.: Seasonal and diurnal variations of particulate nitrate and organic matter at the IfT research station Melpitz, Atmos. Chem. Phys., 11, 12579–12599, https://doi.org/10.5194/acp-11-12579-2011, 2011.
Poulain, L., Spindler, G., Grüner, A., Tuch, T., Stieger, B., van Pinxteren, D., Petit, J.-E., Favez, O., Herrmann, H., and Wiedensohler, A.: Multi-year ACSM measurements at the central European research station Melpitz (Germany) – Part 1: Instrument robustness, quality assurance, and impact of upper size cutoff diameter, Atmos. Meas. Tech., 13, 4973–4994, https://doi.org/10.5194/amt-13-4973-2020, 2020.
Putaud, J. P., Raes, F., Van Dingenen, R., Brüggemann, E., Facchini, M., Decesari, S., Fuzzi, S., Gehrig, R., Hüglin, C., Laj, P., Lorbeer, G., Maenhaut, W., Mihalopoulos, N., Müller, K., Querol, X., Rodriguez, S., Schneider, J., Spindler, G., ten Brink, H., Tørseth, K., and Wiedensohler, A.: A European aerosol phenomenology – 2: chemical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe, Atmos. Environ., 38, 2579–2595, https://doi.org/10.1016/j.atmosenv.2004.01.041, 2004.
Putaud, J. P., Van Dingenen, R., Alastuey, A., Bauer, H., Birmili, W., Cyrys, J., Flentje, H., Fuzzi, S., Gehrig, R., Hansson, H. C., Harrison, R. M., Herrmann, H., Hitzenberger, R., Hüglin, C., Jones, A .M., Kasper-Giebl, A., Kiss, G., Kousa, A., Kuhlbusch, T. A. J., Löschau, G., Maenhaut, W., Molnar, A., Moreno, T., Pekkanen, J., Perrino, C., Pitz, M., Puxbaum, H., Querol, X., Rodriguez, S., Salma, I., Schwarz, J., Smolik, J., Schneider, J., Spindler, G., ten Brink, H., Tursic, J., Viana, M., Wiedensohler, A., and Raes, F.: A European aerosol phenomenology – 3: physical and chemical characteristics of particulate matter from 60 rural, urban, and kerbside sites across Europe, Atmos. Environ. 44, 1308–1320,
https://doi.org/10.1016/j.atmosenv.2009.12.011, 2010.
Qiao, K., Wu, Z., Pei, X., Liu, Q., Shang, D., Zheng, J., Du, Z., Zhu, W., Wu, Y., Lou, S., Guo, S., Chan, C. K., Kant Pathak, R., Hallquist, M., and Hu, M.: Size-resolved effective density of submicron particles during summertime in the rural atmosphere of Beijing, China, J. Environ. Sci., 73, 69–77, https://doi.org/10.1016/j.jes.2018.01.012, 2018.
Querol, X., Alastuey, A., Puicercus, J. A., Mantilla, E., Ruiz, C. R.,
Lopez-Soler, A., Plana, F., and Juan, R.: Seasonal evolution of suspended
particles around a large coal-fired power station: chemical
characterization, Atmos. Environ., 32, 719–731,
https://doi.org/10.1016/S1352-2310(97)00340-3, 1998.
R Core Team: R: A Language and Environment for Statistical Computing,
https://cran.microsoft.com/snapshot/2014-09-08/web/packages/dplR/vignettes/xdate-dplR.pdf
(last access: 10 June 2020), 2019.
Rissler, J., Nordin, E. Z., Eriksson, A. C., Nilsson, P. T., Frosch, M.,
Sporre, M. K., Wierzbicka, A., Svenningsson, B., Löndahl, J., Messing,
M. E., Sjogren, S., Hemmingsen, J. G., Loft, S., Pagels, J. H., and Swietlicki,
E.: Effective Density and Mixing State of Aerosol Particles in a
Near-Traffic Urban Environment, Environ. Sci. Technol., 48, 6300–6308,
https://doi.org/10.1021/es5000353, 2014.
Rolph, G., Stein, A., and Stunder, B.: Real-time environmental applications and
display sYstem: READY, Environ. Modell. Softw., 95, 210–228,
https://doi.org/10.1016/j.envsoft.2017.06.025, 2017.
Salcedo, D., Onasch, T. B., Dzepina, K., Canagaratna, M. R., Zhang, Q., Huffman, J. A., DeCarlo, P. F., Jayne, J. T., Mortimer, P., Worsnop, D. R., Kolb, C. E., Johnson, K. S., Zuberi, B., Marr, L. C., Volkamer, R., Molina, L. T., Molina, M. J., Cardenas, B., Bernabé, R. M., Márquez, C., Gaffney, J. S., Marley, N. A., Laskin, A., Shutthanandan, V., Xie, Y., Brune, W., Lesher, R., Shirley, T., and Jimenez, J. L.: Characterization of ambient aerosols in Mexico City during the MCMA-2003 campaign with Aerosol Mass Spectrometry: results from the CENICA Supersite, Atmos. Chem. Phys., 6, 925–946, https://doi.org/10.5194/acp-6-925-2006, 2006.
Salimi, F., Crilley, L. R., Stevanovic, S., Ristovski, Z., Mazaheri, M., He, C., Johnson, G., Ayoko, G., and Morawska, L.: Insights into the growth of newly formed particles in a subtropical urban environment, Atmos. Chem. Phys., 15, 13475–13485, https://doi.org/10.5194/acp-15-13475-2015, 2015.
Schwarz, J., Chi, X., Maenhaut, W., Civis, M., Hovorka, J., and Smolík, J.:
Elemental and organic carbon in atmospheric aerosols at downtown and
suburban sites in Prague, Atmos. Res., 90, 287–302,
https://doi.org/10.1016/j.atmosres.2008.05.006, 2008.
Schwarz, J., Štefancová, L., Maenhaut, W., Smolík, J.,
and Ždímal, V.: Mass and chemically speciated size distribution of
Prague aerosol using an aerosol dryer – The influence of air mass origin,
Sci. Total Environ., 437, 348–362, https://doi.org/10.1016/j.scitotenv.2012.07.050,
2012.
Schwarz, J., Cusack, M., Karban, J., Chalupníčková, E.,
Havránek, V., Smolk., J., and Ždímal., V.: PM2.5 chemical
composition at a rural background site in Central Europe, including
correlation and air mass back trajectory analysis, Atmos. Res., 176–177,
108–20, https://doi.org/10.1016/j.atmosres.2016.02.017, 2016.
Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics, John Wiley & Sons, New York, ISBN 978-1-118-94740-1, 2006.
Slowik, J. G., Stainken, K., Davidovits, P., Williams, L. R., Jayne, J. T.,
Kolb, C. E., Worsnop, D. R., Rudich, Y., DeCarlo, P. F., and Jimenez, J. L.:
Particle Morphology and Density Characterization by Combined Mobility and
Aerodynamic Diameter Measurements. Part 2: Application to
Combustion-Generated Soot Aerosols as a Function of Fuel Equivalence Ratio,
Aerosol Sci. Tech., 38, 1206–1222,
https://doi.org/10.1080/027868290903916, 2004.
Sowlat, M. H., Hasheminassab, S., and Sioutas, C.: Source apportionment of ambient particle number concentrations in central Los Angeles using positive matrix factorization (PMF), Atmos. Chem. Phys., 16, 4849–4866, https://doi.org/10.5194/acp-16-4849-2016, 2016.
Takegawa, N., Miyazaki, Y., Kondo, Y., Komazaki, Y., Miyakawa, T., Jimenez,
J. L., Jayne, J. T., Worsnop, D. R., Allan, J. D., and Weber, R. J.:
Characterization of an Aerodyne Aerosol Mass Spectrometer (AMS):
Intercomparison with Other Aerosol Instruments, Aerosol Sci. Tech.,
39, 760–770, https://doi.org/10.1080/02786820500243404, 2005.
Tørseth, K., Aas, W., Breivik, K., Fjæraa, A. M., Fiebig, M., Hjellbrekke, A. G., Lund Myhre, C., Solberg, S., and Yttri, K. E.: Introduction to the European Monitoring and Evaluation Programme (EMEP) and observed atmospheric composition change during 1972–2009, Atmos. Chem. Phys., 12, 5447–5481, https://doi.org/10.5194/acp-12-5447-2012, 2012.
Turpin, B. J. and Lim, H.-J.: Species contributions to PM2.5 mass
concentrations: revisiting common assumptions for estimating organic mass,
Aerosol Sci. Tech., 35, 302–610, https://doi.org/10.1080/02786820119445,
2001.
Vodička, P., Kawamura, K., Schwarz, J., Kunwar, B., and Ždímal, V.: Seasonal study of stable carbon and nitrogen isotopic composition in fine aerosols at a Central European rural background station, Atmos. Chem. Phys., 19, 3463–3479, https://doi.org/10.5194/acp-19-3463-2019, 2019.
Vu, T. V., Delgado-Saborit, J. M., and Harrison, R. M.: Review: particle number
size distributions from seven major sources and implications for source
apportionment studies, Atmos. Environ., 122, 114–132,
https://doi.org/10.1016/j.atmosenv.2015.09.027, 2015.
Waked, A., Favez, O., Alleman, L. Y., Piot, C., Petit, J.-E., Delaunay, T., Verlinden, E., Golly, B., Besombes, J.-L., Jaffrezo, J.-L., and Leoz-Garziandia, E.: Source apportionment of PM10 in a north-western Europe regional urban background site (Lens, France) using positive matrix factorization and including primary biogenic emissions, Atmos. Chem. Phys., 14, 3325–3346, https://doi.org/10.5194/acp-14-3325-2014, 2014.
Wickham, H.: ggplot2: Elegant Graphics for Data Analysis, Springer-Verlag,
New York, ISBN 978-3-319-24277-4, 2016.
Wiedensohler, A., Wiesner, A., Weinhold, K., Birmili, W., Hermann, H.,
Merkel, M., Müller, T., Pfeifer, S., Schmidt, A., Tuch, T., Velarde, F.,
Quincey, P., Seeger, S., and Nowak, A.: Mobility particle size spectrometers:
Calibration procedures and measurement uncertainties, Aerosol Sci.
Tech., 52, 146–164, https://doi.org/10.1080/02786826.2017.1387229,
2017.
Zelenyuk, A., Cai, Y., and Imre, D.: From Agglomerates of Spheres to Irregularly
Shaped Particles: Determination of Dynamic Shape Factors from Measurements
of Mobility and Vacuum Aerodynamic Diameters, Aerosol Sci. Tech., 40,
197–217, https://doi.org/10.1080/02786820500529406, 2006.
Zíková, N. and Ždímal, V.: Long-Term Measurement of Aerosol
Number Size Distributions at Rural Background Station Košetice, Aerosol
Air Qual. Res., 13, 1464–1474,
https://doi.org/10.4209/aaqr.2013.02.0056, 2013.
Zíková, N. and Ždímal, V.: Precipitation scavenging of
aerosol particles at a rural site in the Czech Republic, Tellus B, 68, 27343,
https://doi.org/10.3402/tellusb.v68.27343, 2016.
Zíková, N., Pokorná, P., Makeš, O., Sedlák, P.,
Pešice, P., and Ždímal, V.: Activation of atmospheric aerosol
in fog and low clouds, Atmos. Environ., 230, 117490, 1–11, 2020.
Short summary
By examining individual episodes of high mass and number concentrations, we show that the seasonality in the physicochemical properties of aerosol particles was caused by the sources' diversity and was related to the different air masses and meteorology. We also confirmed the relation between particle size and age that is reflected in oxidation state and shape (difference in densities; effective vs. material). The results have general validity and thus transcend the study regional character.
By examining individual episodes of high mass and number concentrations, we show that the...
Altmetrics
Final-revised paper
Preprint