Articles | Volume 22, issue 7
https://doi.org/10.5194/acp-22-4853-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-4853-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Insights into the significant increase in ozone during COVID-19 in a typical urban city of China
Kun Zhang
School of Environmental and Chemical Engineering, Shanghai
University, Shanghai, 200444, China
Key Laboratory of Organic Compound Pollution Control Engineering,
Shanghai University, Shanghai, 200444, China
Zhiqiang Liu
School of Environmental and Chemical Engineering, Shanghai
University, Shanghai, 200444, China
Changzhou Institute of Environmental Science, Changzhou, Jiangsu,
213022, China
Xiaojuan Zhang
School of Environmental and Chemical Engineering, Shanghai
University, Shanghai, 200444, China
Changzhou Institute of Environmental Science, Changzhou, Jiangsu,
213022, China
Qing Li
School of Environmental and Chemical Engineering, Shanghai
University, Shanghai, 200444, China
Key Laboratory of Organic Compound Pollution Control Engineering,
Shanghai University, Shanghai, 200444, China
Andrew Jensen
Cooperative Institute for Research in Environmental Sciences,
University of Colorado Boulder, Boulder, Colorado 80309, USA
Department of Chemistry, University of Colorado Boulder, Boulder, Colorado
80309, USA
Wen Tan
Tofwerk AG, Thun, Switzerland
Ling Huang
School of Environmental and Chemical Engineering, Shanghai
University, Shanghai, 200444, China
Key Laboratory of Organic Compound Pollution Control Engineering,
Shanghai University, Shanghai, 200444, China
Yangjun Wang
School of Environmental and Chemical Engineering, Shanghai
University, Shanghai, 200444, China
Key Laboratory of Organic Compound Pollution Control Engineering,
Shanghai University, Shanghai, 200444, China
Joost de Gouw
Cooperative Institute for Research in Environmental Sciences,
University of Colorado Boulder, Boulder, Colorado 80309, USA
Department of Chemistry, University of Colorado Boulder, Boulder, Colorado
80309, USA
School of Environmental and Chemical Engineering, Shanghai
University, Shanghai, 200444, China
Key Laboratory of Organic Compound Pollution Control Engineering,
Shanghai University, Shanghai, 200444, China
Model code and software
The Framework for 0-D Atmospheric Modeling (F0AM) v3.1 (https://github.com/AirChem/F0AM) Glenn M. Wolfe, Margaret R. Marvin, Sandra J. Roberts, Katherine R. Travis, and Jin Liao https://doi.org/10.5194/gmd-9-3309-2016
Short summary
A significant increase in O3 concentrations was found during the lockdown period of COVID-19 in most areas of China. By field measurements coupled with machine learning, an observation-based model (OBM) and sensitivity analysis, we found the changes in the NOx / VOC ratio were a key reason for the significant rise in O3. To restrain O3 pollution, more efforts should be devoted to the control of anthropogenic OVOCs, alkenes and aromatics.
A significant increase in O3 concentrations was found during the lockdown period of COVID-19 in...
Altmetrics
Final-revised paper
Preprint