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Abstract. The outbreak of COVID-19 promoted strict restrictions to human activities in China, which led to
a dramatic decrease in most air pollutant concentrations (e.g., PM2.5, PM10, NOx , SO2 and CO). However, an
obvious increase in ozone (O3) concentrations was found during the lockdown period in most urban areas of
China. In this study, we conducted field measurements targeting ozone and its key precursors by utilizing a novel
proton transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS) in Changzhou, which is representative
of the Yangtze River Delta (YRD) city cluster of China. We further applied the integrated methodology including
machine learning, an observation-based model (OBM) and sensitivity analysis to obtain insights into the reasons
causing the obvious increase in ozone. Major findings include the following: (1) by deweathered calculation, we
found changes in precursor emissions contributed 1.46 ppbv to the increase in the observed O3 during the full-
lockdown period in 2020, while meteorology constrained 3.0 ppbv of O3 in the full-lockdown period of 2019.
(2) By using an OBM, we found that although a significant reduction in O3 precursors was observed during
the full-lockdown period, the photochemical formation of O3 was stronger than that during the pre-lockdown
period. (3) The NOx/VOC ratio dropped dramatically from 1.84 during the pre-lockdown to 0.79 in the full-
lockdown period, which switched O3 formation from a VOC-limited regime to the boundary of a NOx- and
VOC-limited regime. Additionally, box model results suggested that the decrease in the NOx/VOC ratio during
the full-lockdown period could increase the mean O3 by 2.4 ppbv. Results of this study give insights into the
relationship between O3 and its precursors in urban area and demonstrate reasons for the obvious increase in O3
in most urban areas of China during the COVID-19 lockdown period. This study also underlines the necessity
of controlling anthropogenic oxygenated volatile organic compounds (OVOCs), alkenes and aromatics in the
sustained campaign of reducing O3 pollution in China.

Published by Copernicus Publications on behalf of the European Geosciences Union.



4854 K. Zhang et al.: Insights into the significant increase in ozone during COVID-19

1 Introduction

At the end of 2019, a tragic coronavirus (COVID-19) oc-
curred, which has caused over 271 million global infec-
tions and over 4.51 million deaths as of this writing (12
February 2022). To protect people’s health, China adopted
strict measures to control the spread of this pandemic. Thirty
provinces, autonomous regions and municipalities launched
full-lockdown responses (also known as Level-I responses,
roughly from 24 January to 25 February 2020) as early as
24 January 2020 (Shen et al., 2021; Li et al., 2020; Huang
et al., 2020). With the effective control of COVID-19 in
China, the emergency response level in most provinces (ex-
cept Hubei Province, the hardest-hit region) was gradually
downgraded to a partial lockdown (Level-II and Level-III re-
sponse, roughly after 25 February 2020) (Li et al., 2020),
and work resumption started. During the full-lockdown pe-
riod, all the social events that may cause crowds (excluding
transportation and industries that maintained the basic op-
eration of society) were severely restricted. Affected by the
pandemic, many factories were shut down, and the on-road
traffic volume and construction activities were reduced sig-
nificantly (Zheng et al., 2020). During the full-lockdown pe-
riod, dramatic decreases in air pollutants (e.g., PM2.5, NO2,
black carbon (BC)) were found in China, especially in urban
areas (Fan et al., 2021; Gao et al., 2021; Li et al., 2020; Xu
et al., 2020; Venter et al., 2020). Surprisingly, marginal in-
creases in O3 were observed during the lockdown period in
the Yangtze River Delta (YRD) region, and this seems to be
contradictory to the decrease in most air pollutants (Li et al.,
2020). However, as suggested by previous studies, the forma-
tion of O3 is significantly influenced by the NOx/VOC ratio
and meteorological conditions (temperature, relative humid-
ity and actinic flux) (Zhang et al., 2020a, b). Therefore, it
is essential to investigate the changes in meteorological and
emissions conditions to figure out reasons for the increase in
O3 during this pandemic.

Previous studies on the O3 pollution in the YRD region
have often focused on the more populated metropolitan ar-
eas, such as Shanghai and Nanjing, which are considerably
far away from the industrial zones that are essentially respon-
sible for the sources of O3 precursors (Li et al., 2019; Zhang
et al., 2020b). Changzhou, located in the center of the YRD
region, is a typical city with fast urbanization, heavy indus-
trial structure, huge energy consumption, increasing vehicle
stocks and frequent air pollution. Therefore, it provides a
more representative environment to fully elucidate the mech-
anism underlying the O3 pollution in the YRD region (Shi et
al., 2020). In a companion paper (Jensen et al., 2021), we
also demonstrated that Changzhou is representative of the
region by analyzing both surface observations and satellite
data. According to previous studies, the anthropogenic VOC
emissions in Changzhou were around 9–12.6× 104 t yr−1, of
which industries was the dominant source, accounting for
27 %–47 % of the total VOC emissions (Cheng et al., 2016;

Fu et al., 2013). It is notable that industrial sources together
contributed over 80 % of anthropogenic VOC emissions (Sun
et al., 2019). Apart from industrial sources, vehicle exhaust
accounted for 9 %–14 % of total VOC emissions (Sun et al.,
2019). However, observations regarding VOC characteristics
during COVID-19 in Changzhou have rarely been conducted.

Highly time-resolved measurements of VOCs are gen-
erally very sparse and could not be easily expanded dur-
ing the lockdowns. This limits our understanding of how
VOCs changed and how the formation of ozone was affected.
Here, we used a novel proton transfer reaction time-of-flight
mass spectrometer (PTR-TOF-MS, Tofwerk, model Vocus
Elf, Switzerland) to conduct online observation of VOCs
in Changzhou. The characteristics of VOCs and the varia-
tions in general air pollutants in each emergency response
period were analyzed. Additionally, ozone formation during
each period was investigated by an observation-based model
(OBM). Although COVID-19 has had terrifying impact, it
has provided an opportunity to conduct a rare experiment to
analyze the variations in VOCs and NOx due to changes in
anthropogenic activities in a typical city of China. Further-
more, results of this study offer theoretical support for for-
mulating refined ozone management policy in China.

2 Methodology

2.1 Field measurement

The field campaign was conducted from 8 January to
31 March 2020 at a sampling site located on the rooftop
of a building at Changzhou Environmental Monitoring Cen-
ter (CEMC; 31.76◦ N, 119.96◦ E), which was approximately
15 m above ground level. As a typical urban monitoring sta-
tion, this site is in the center of Changzhou, surrounded by
residential and commercial areas, and is also adjacent to the
main transportation junction in Changzhou (Fig. 1). Accord-
ing to local epidemic prevention policies, we roughly classi-
fied the measurement periods into three stages: pre-lockdown
(8 to 24 January 2020), full lockdown (25 January to 24
February 2020) and partial lockdown (25 February to 31
March 2020), as defined in a study of the Yangtze River Delta
(Li et al., 2020).

From 8 January to 27 March 2020, the concentrations of
traditional air pollutants (PM2.5, PM10, NOx , SO2, CO, O3)
as well as meteorological parameters were monitored by a
series of analyzers (Table 1). In particular, 87 VOC species
were quantified, 59 of which were identified, by a PTR-TOF-
MS with a time resolution of 1 min. Detailed measurement
techniques and quality assurance and control have been doc-
umented in detail in our companion paper (Jensen et al.,
2021). Here, we just briefly introduce the measurement. The
air samples were directly drawn into a 3 m long tube con-
nected to the instrument. A priming pump, with a flow rate
of 4 L min−1, was used to reduce the retention time of the gas
sample in the tube. To avoid blocking of the inlet tube caused
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Figure 1. Map of China (a); map of Changzhou (b); location of the sampling site (© Google Maps 2022).

by particles, a particulate filter was assembled at the front
of the inlet tube. The pressure of the ion source was set as
2 mbar, and the temperature of the reaction chamber was set
to 90 ◦C during the observation. VOCs are ionized by reac-
tions with H3O+ ions from a discharge, and the product ions
are detected by a time-of-flight mass analyzer (m/1m full
width at half maximum (FWHM) of 950 at m/Q 107). The
PTR-TOF-MS can detect most unsaturated hydrocarbons and
VOCs with functional groups but cannot detect species with
proton affinities lower than that of water, namely alkanes
and small alkenes. Eighteen standard gases (including ace-
tonitrile, acetaldehyde, acrolein, acetone, isoprene, butanone,
2-butanone, benzene, 2-pentanone, ethyl acetate, toluene,
methyl isobutyl ketone, styrene, xylene, trimethylbenzene,
naphthalene, α-pinene and 1,3-dichlorobenzene) with con-
centrations of 1 ppmv were used for the calibration of the
PTR-TOF-MS. In addition, a built-in calibration system was
used to control the zero and standard gases.

2.2 Observation-based model

An OBM coupled with MCM v3.3.1 was utilized to inves-
tigate the atmospheric oxidation capability and the radical
chemistry. Detailed information about the chemistry mech-
anism is available on the MCM website (http://mcm.york.
ac.uk/home.htt, last access: 8 July 2021). More than 5800
chemical species and 17 000 reactions are included in this

Table 1. Measurements performed during the field campaign.

Species/parameter Experimental technique

T , RH, WS, WD and P 2000WX, Airmar, USA
O3 400E, API, USA
NOx (NO and NO2) T200, API, USA
SO2 T100, API, USA
CO T300, API, USA
PM2.5 5030, Thermo Fisher, USA
PM10 5030, Thermo Fisher, USA
VOCs Vocus Elf, Tofwerk, Switzerland

T denotes temperature; RH denotes relative humidity; WS denotes wind speed;
WD denotes wind direction; P denotes pressure.

mechanism. The photolysis frequencies (J values) were cal-
culated as a function of solar zenith angle and altitude using
lookup tables, calculated using the Tropospheric Ultraviolet
and Visible (TUV) model (Wolfe et al., 2016). Dilution mix-
ing within the boundary layer is considered. However, as a
0-D model, vertical or horizonal transport of air masses is
not involved. The observed meteorological parameters (T ,
RH, P ) and trace gases (NO, NO2, CO, SO2 and VOCs)
were used to constrain the model. Before each simulation,
the model was run for 3 d as spin-up to reach a stable state.
The atmospheric oxidation capability (AOC) is quantified by
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Eq. (1) (Geyer et al., 2001).

AOC=
∑
i=1
kYi−X [Yi] [X], (1)

where Yi denotes the primary pollutants (e.g., VOCs, CH4
and CO), X denotes atmospheric oxidants (OH, O3, NO3),
and kYi denotes the bimolecular rate constants for the reac-
tions of Yi and X. A high value of AOC indicates fast scav-
enging of primary air pollutants. Additionally, OH reactivity
(kOH), defined as the reaction rate coefficients multiplied by
the concentrations of the reactants with OH, is also widely
used as an indicator of AOC. The value of kOH depends on
both the abundances and the compositions of primary pollu-
tants and can be calculated by Eq. (2).

kOH =
∑
i

kOH+Xi × [Xi] , (2)

where kOH+Xi denotes the reaction rate coefficients of re-
action OH+Xi and Xi are the concentrations of pollutants
(VOC, NO2, CO, oxygenated volatile organic compound
(OVOC), etc.) (Zhu et al., 2020).

2.3 Trend analysis

The Mann–Kendall (MK) trend test is a widely used non-
parametric test method (Pathakoti et al., 2021; Zhang et al.,
2013). It is applicable to all distributions (that is, the data
do not need to meet the assumption of a normal distribution),
but the data should have no serial correlation. If the data have
serial correlation, this will have an impact on the significance
level (p value). In this study, the MK trend analysis was per-
formed for individual VOC concentrations during the pre-
lockdown and full-lockdown period. By using the “feasts” R
package, no obvious serial correlation of individual VOCs is
found. Therefore, the observed VOC data are suitable for the
MK test. Detailed description and the calculation formula of
the MK trend test can be found in the studies of Pathakoti et
al. (2021) and Alhathloul et al. (2021). A positive Z value
from the MK test indicates an increasing trend of the target
compound. On the contrary, a negative Z value suggests the
target compound was decreasing.

Sen’s slope, a non-parametric test proposed by Sen (1968),
is used in this study to assess the rate of change in individual
VOC concentrations. Sen’s slope is selected since it is insen-
sitive to outliers and does not require a normal distribution of
residuals. Sen’s slope (Q) is mathematically represented by
the following equations.

Q=median(SSij ), (3)

SSij =
xj − xi

j − i
, 1≤ i ≤ j ≤ n, (4)

where xj and xi are concentrations of VOC species x at time
j and i (1≤ i ≤ j ≤ n), respectively. SSij is the linear slope

between time i and j , and Q is the median of SSij . Positive
and negative Q values indicate an increasing or decreasing
trend of VOC species x, respectively.

2.4 Deweathered model

The observed concentrations of O3 could be influenced by
meteorological conditions, emissions and/or chemistry. The
emissions and chemistry are treated together and separated
from meteorology by the deweathered approach based on
random forests (RFs). Hourly data of the Unix date (num-
ber of seconds since 1 January 1970), Julian day, weekday,
hour of day, wind speed (WS), wind direction (WD), tem-
perature (T ), relative humidity (RH) and pressure (P ), which
are available during the whole observation, were used for the
deweathered calculation of O3. The missing data were re-
placed by linear interpolation. Training of the models was
conducted on 80 % of the input data, and the other 20 %
were withheld from training. To avoid the disadvantage of
overfitting during the training of RFs, a process called bag-
ging (or bootstrap aggregation) was adopted. Bagging results
in a new sampled set called out-of-bag (OOB) data. A de-
cision tree is then grown on the OOB data. Therefore, all
the decision trees are grown on different observations and
avoid the overfitting (Grange and Carslaw, 2019). To de-
termine the value of the number of trees (ntree), number of
samples (nsample) and the minimal node size, a series of ran-
dom forests were performed under different choices of ntree,
nsample and minimal node size. The results suggest that the
highest coefficient of determination (R2, 0.84) was obtained
when ntree, nsample and the minimal node size were set as
300, 300 and 5, respectively (Tables S1 and S2 in the Supple-
ment). More details of this model can be found in the study of
Grange and Carslaw (2019). The uncertainty in the deweath-
ered model is obtained by growing 50 random forest mod-
els with the hyperparameters described above, which is the
same method as in Grange and Carslaw (2019). The mean
and standard error of the predicted O3 concentrations are
shown in Fig. S1 in the Supplement, and results of the model
are stable during the 50 runs. The differences in observed O3
concentrations (O3,Obs) and deweathered O3 concentrations
(O3,Normal) were regarded as the concentrations contributed
by meteorology (O3,Met), which is consistent with the defi-
nition in Li et al. (2021). Correspondingly, the differences in
O3,Normal concentrations in different periods represent the in-
fluence of emissions since the O3,Normal has already removed
the influence of meteorological conditions.

3 Results and discussion

3.1 Overview of the field campaign

Figure 2 shows the meteorological conditions during the
observation. During the whole experiment, the prevail-
ing WD was southeasterly. The average T and RH were
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9.9± 5.1◦C and 58.9± 17.1 %, respectively. Compared to
the pre-lockdown period, the concentrations of PM2.5, PM10,
SO2, NO, NO2, total VOCs (TVOCs) and CO during the full-
lockdown period decreased by 48 %, 42 %, 11 %, 65 %, 58 %,
33 % and 39 %, respectively. It should be noted that the de-
creasing ratio of NOx/VOC is around 1.75, suggesting that
the lockdown policy had a stronger influence on NOx emis-
sions than VOC emissions. The O3 concentrations during the
same period in 2020 and 2019 are summarized in Table 2.
Considering the influence of the Chinese New Year, the cor-
responding period in 2019 was decided according to the lu-
nar calendar. It should be noted that, compared to the full-
lockdown period in 2019, the mean O3 concentration in 2020
is obviously higher (5.5 ppbv, Fig. 2). Meanwhile, the aver-
age O3 concentrations in the full-lockdown period in 2020
were 67 % higher than those during the pre-lockdown period
in 2020. To roughly analyze the cause of the obvious increase
in O3 during the full-lockdown period in 2020, we summa-
rized the temperature (T ) and relative humidity (RH) in Ta-
ble 2. The T and RH in the full-lockdown period were 2020
were ∼ 1.6 ◦C higher and 6.1 % lower than those in the same
period in 2019, while the P and WS were comparable during
the same period in 2020 and 2019 (Table 2). The higher T
was in favor of O3 formation during the full-lockdown pe-
riod in 2020. As for RH, the influence on O3 is nonlinear
(Zhang et al., 2020), and based on our sensitivity test, lower
RH could lead to a decrease or increase in O3 concentra-
tion (Fig. S2). Overall, changes in O3 concentrations could
be a result of the joint effect of meteorological conditions
and emissions/chemistry; the following sections will discuss
these influences separately.

3.2 Mechanism affecting the obvious O3 increase

3.2.1 Meteorological perspective

Deweathered O3 concentrations were calculated based on
the model described in Sect. 2.4. The difference between
O3,Obs and O3,Normal can be regarded as the meteorologi-
cal influence (O3,Met). In addition, the difference between
O3,Normal concentrations in different years could be consid-
ered the influence of emissions (O3,Emi). Figure 3 exhibits
the average O3,Obs, O3,Normal and O3,Met during the same pe-
riods in 2019 and 2020. It is obvious that the O3,Obs dur-
ing the pre-lockdown period is much lower than that during
the full-lockdown period in both years, which was partly at-
tributed to the negative influence of meteorological condi-
tions during the pre-lockdown period (Fig. 3). This is con-
sistent with the increasing temperature and solar radiation,
which could significantly contribute to the increase in ozone
concentration, from the pre-lockdown to full-lockdown pe-
riod. It should be noted that meteorology constrained O3
concentrations by 3.9 ppbv during the full-lockdown period
in 2019. Apart from the influence of meteorological condi-
tions, the O3,Normal in the full-lockdown period in 2020 is

still 1.46 ppbv and 0.64 ppb higher than that during the full-
lockdown period in 2019 and that during the pre-lockdown
period in 2020, indicating that the inapposite decline in pre-
cursor emissions was possibly the key reason for the obvious
increase in O3 during the full-lockdown period in 2020.

3.2.2 Ambient VOCs

As mentioned above, the changes in O3 precursor emis-
sions strongly affected O3,Obs, and the changes in VOCs
and NOx emissions would eventually be reflected by the ob-
served concentrations of individual VOCs and NOx . There-
fore, the concentrations of each VOC group in different pe-
riods were summarized (Fig. 4). OVOCs dominated the total
VOC (TVOC) concentrations during the whole observation,
with a daily average concentration of 21.44± 10.27 ppbv.
During the full-lockdown period, the TVOC dropped
to 22.19± 7.9 ppbv from 32.78± 13.81 ppbv, which was
mainly affected by the decrease in industrial activities and
traffic volume. This is proved by the trend of traffic vol-
ume, VOC emissions and traffic-/industrial-derived VOCs
(Text S1 and Fig. S3). In addition, Jensen et al. (2021) found
the VOC emissions from most industries in Changzhou share
the same “U-shape” trend as our study. The most obvious
drop was found in aromatics (∼ 54 %), followed by OVOCs
(∼ 27 %), alkenes (∼ 26 %), nitrogen hydrocarbon (∼ 25 %)
and other VOCs (∼ 21 %). Additionally, the discrepancy of
daytime and nighttime VOC concentrations during different
periods was compared (Fig. 4a). The concentration of each
VOC group exhibited higher values during the nighttime,
which was caused by the low-atmospheric-oxidation condi-
tion and the low atmospheric boundary layer height (Maji et
al., 2020; Valach et al., 2015).

Furthermore, the average concentrations of individual
VOCs during different periods are summarized in Fig. 5.
A total of 42 VOC species exhibited a U-shape trend dur-
ing the whole observation, while formaldehyde (HCHO) and
methanol showed an obvious increasing pattern. It should be
noted that the measurement of HCHO could be strongly in-
fluenced by humidity. Since within the drift tube, the back
reaction, which reverses the protonated HCHO back into
HCHO, is highly humidity dependent (Inomata et al., 2008;
Warneke et al., 2011).

To quantitatively evaluate the changes in individual VOC
concentrations from the pre-lockdown to full-lockdown pe-
riod, when the variations in each VOC are obvious, we ap-
plied the MK trend test and Sen’s slope analysis based on
the hourly average VOC concentration data (Table S3). Ta-
ble 3 lists the top 10 VOC species with a decreasing pat-
tern (with a negative Q value) from the pre-lockdown to
full-lockdown period. Toluene, benzene and xylene exhib-
ited the most significant decreasing pattern, with a slope of
7.73× 10−4, 7.36× 10−4 and 7.20× 10−4 ppbv h−1, respec-
tively. As for NOx and TVOC, the slope was −1.62× 10−2

and 5.48× 10−3 ppb h−1 (Table S3). This result is consistent
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Figure 2. Time series of meteorological parameters and air pollutants during the whole observation. The date is given in the format month/-
day/year.

Table 2. Comparison of average meteorological conditions during the pre-lockdown, full lockdown and partial lockdown in 2020 and the
same period in 2019.

Periods Date P (hPa) RH (%) T (◦C) Precipitation (mm) WS (m s−1)

Pre-lockdown (8–24 Jan 2020) 1025.4 84.9 4.8 0.13 1.8
Same period in 2019 (19 Jan–4 Feb 2019) 1025.6 72.7 5.2 0.05 1.9
Full lockdown (25 Jan–24 Feb 2020) 1025.6 73.0 7.3 0.09 2.1
Same period in 2019 (5 Feb–7 Mar 2019) 1024.1 79.1 5.7 0.15 2.1
Partial lockdown (25 Feb–31 Mar 2020) 1018.9 69.5 12.1 0.11 2.4
Same period in 2019 (8 Mar–12 Apr 2019) 1017.6 64.0 13.8 0.02 2.0

with the drastic drop in industrial activities and traffic vol-
umes, which are key sources of aromatics and NOx , from
the pre-lockdown to full-lockdown period. Other VOCs, such
as ethyl acetate, acetic acid, acetaldehyde, diethyl sulfide,
ethanol, butanol and acrolein, are also tightly associated with
industrial processes and thereby showed a decreasing trend
from the pre-lockdown to full-lockdown period. Addition-
ally, the average diurnal variations in acetonitrile, dimethyl
formamide (DMF) and styrene, which are tracers of biomass
burning and industrial emissions, exhibited significant reduc-
tion during the full-lockdown period (Fig. S4), also indicat-
ing a strong decrease in these emissions. However, formalde-
hyde and methanol exhibited an increasing trend, with a
slope of 12.78× 10−4 and 6.35× 10−4 ppbv h−1, respec-

tively. This could be explained by the secondary formation
of HCHO and methanol, which was promoted under better
oxidation conditions in the full-lockdown period.

3.2.3 Chemistry perspective

The reactivities of different VOCs vary significantly; hence,
ozone formation potential (OFP) is used in this study to
assess the potential contribution of active VOCs (including
alkenes, aromatics and OVOCs) to O3 formation on the same
basis, and it can be calculated by Eq. (5):

OFPi =MIRi × [VOCi] , (5)

where MIRi is the ozone formation potential coefficient for
a given VOC species i in the maximum increment reaction

Atmos. Chem. Phys., 22, 4853–4866, 2022 https://doi.org/10.5194/acp-22-4853-2022
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Table 3. Top 10 VOCs with decreasing trend from pre-lockdown to full lockdown.

VOC Z value Q · 10000 (ppbv h−1) VOC Z value Q · 10000 (ppbv h−1)

Toluene −14.02 −7.73 Acetaldehyde −10.31 −3.95
Benzene −9.65 −7.36 Diethyl sulfide −9.15 −3.16
Xylene −12.38 −7.20 Ethanol −5.48 −3.09
Ethyl acetate −18.53 −5.20 Butanol −10.42 −2.83
Acetic acid −6.79 −4.12 Acrolein −15.48 −2.76

Figure 3. Comparison of observed (Obs), weather-normalized
(Normal) and meteorological-factor-impacted (Met) O3 concentra-
tions during the same period in 2019 and 2020.

of O3, acquired from Carter (2009); [VOCi] is the concen-
tration of VOC species i (in µg m−3). It should be noted that
OFP does not indicate O3 concentration but only serves as a
reference for the potential O3 produced via the degradation
of VOCs. The time series of total OFP is shown in Fig. 6.
The average OFP in the pre-lockdown, full-lockdown and
partial-lockdown period was 269.4± 146.0, 147.2± 72.4
and 279.3± 168.6 µg m−3, respectively. The trend of the to-
tal OFP indicates the drastic decrease in VOC reactivities
from the pre-lockdown to full-lockdown period. During the
pre-lockdown period, aromatics were the dominant OFP con-
tributor (49 %), followed by OVOCs (38 %) and alkenes
(13 %) (Fig. 4). Among VOCs, xylene exhibited the maxi-
mum OFP value (68.6± 59.3 µg m−3), followed by acetalde-
hyde (28.8± 6.4 µg m−3), toluene (25.7± 20.1 µg m−3),
trimethylbenzene (25.4± 15.8 µg m−3) and formaldehyde
(22.7± 9.1 µg m−3) (Fig. S5). Compared to the pre-
lockdown period, the OFP of aromatics decreased dra-
matically (−91.2 µg m−3) during the full-lockdown period
(Fig. 4b), which was mainly attributed to the rapid de-
cline in human activities (e.g., transportation and indus-

try). However, the OFP of alkenes and OVOCs only de-
creased by 8.9 and 22.5 µg m−3, respectively. During the ob-
servation, the most abundant alkenes measured by the PTR-
TOF-MS are 1-hexene and isoprene, with a kOH of 37 and
100× 10−12 cm3 molec.−1 s−1 (Atkinson and Arey, 2003),
respectively, which are much higher than that of the most
abundant aromatics (1.22, 5.63 and 17 cm3 molec.−1 s−1 for
benzene, toluene and xylene, respectively). The fast degra-
dation of these alkenes could be attributed to the relatively
small change in OFP from alkenes. As for OVOCs, the sec-
ondary formation could compensate for the decrease in pri-
mary emissions. The OFP values of aromatics and alkenes
during the pre-lockdown and partial-lockdown period are
comparable, but OVOCs exhibited higher OFP contribution
(∼ 46 %) in the partial-lockdown period, which could be at-
tributed to the higher AOC and enhanced solar radiation and
temperature during the partial-lockdown period. To compare
the average reactivity of VOCs during different periods, we
calculated the mean maximum incremental reactivity (MIR),
derived by dividing the total OFP by total VOC concentra-
tion, in each period. A higher MIR means stronger capability
of VOCs to produce ozone. As shown in Fig. 7, the average
MIR during the pre-lockdown, full-lockdown and partial-
lockdown period was 3.85, 3.53 and 3.68 (grams of O3 per
gram of VOC), respectively. This result suggests that VOC
species composition in full lockdown is more conducive to
ozone formation than that in the pre-lockdown and partial-
lockdown period. However, the formation of O3 was sensi-
tive to the ratio of NOx/VOCs and meteorological condi-
tions, which can be significantly different in each period. As
shown in Fig. 7, the average NOx/VOC ratio in the three pe-
riods (shown in) was 1.84, 0.79, and 0.84, respectively, sug-
gesting more NOx was reduced than VOCs during the full-
lockdown period, which could further influence the sensitiv-
ity of O3 formation.

To investigate the detailed formation mechanism of O3
in each period, three cases (19 January, 1 February, 14
March) with stagnant meteorological conditions were cho-
sen. The index of agreement (IOA) of O3 is 0.80, indi-
cating that the model can capture the daytime variation
in O3. The simulated daytime OH concentrations exhib-
ited an increasing trend from 19 January to 14 March, with
an average value of 0.36± 0.27× 106, 0.75± 0.54× 106

and 1.18± 0.78× 106 molec. cm−3, respectively. This could
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Figure 4. Comparison of daytime and nighttime VOCs concentrations (a), average ozone formation potential (OFP) (b), and contribution to
total OFP (c) during different periods.

be attributed to the increasing solar radiation and tem-
perature from January to March. To analyze the atmo-
spheric oxidation, we calculated the AOC according to
Eq. (1). The average daytime AOC on 19 January, 1
February and 14 March was 0.26± 0.35, 0.23± 0.33 and
0.31± 0.38 molec. cm−3 s−1, respectively (Fig. 9). Compar-
atively, these values are much lower than those simulated
for Shanghai and Beijing (Liu et al., 2012; Zhu et al., 2020;
Zhang et al., 2021) in summer, mainly due to the meteoro-
logical conditions in the winter season. It is notable that the
simulated OH on 19 January was significantly lower than that
on 1 February, but the AOC on 19 January was comparable to
that on 1 February. This should be ascribed to the abundant
primary pollutants, which efficiently react with OH, during
the pre-lockdown period.

The daytime variations in OH reactivity calculated by the
OBM are exhibited in Fig. 10, including the contribution
from measured pollutants (e.g., VOCs, NOx and CO) and
model-simulated species (OVOCs). Generally, the kOH as-
sessed at Changzhou was in the range of 9–32 s−1, which
was comparable to that calculated for other cities in China
(e.g., Shanghai 4.6–25 s−1 – Zhu et al., 2020; Chongqing 15–
25 s−1 – Tan et al., 2019; and Beijing 15–25 s−1 – Tan et al.,
2019). It is obvious that OH reactivity peaked in the morn-
ing, with maximum values of 31.76, 17.98 and 17.30 s−1 on
19 January, 1 February and 14 March, respectively. The OH
reactivity from NO2 exhibited obvious daytime variation,
especially during the morning rush hour, which led to the
peak kOH value during the morning. The OH reactivity (kOH)
on 1 February was much lower than that in the other two
cases, which was mainly due to the abundance of emissions
during the pre-lockdown and partial-lockdown period. Com-
pared to 19 January, the kOH from NO2 on 1 February and
14 March showed lower levels, with an average value of 2.62
and 3.35 s−1, respectively. This corresponds with the dra-
matic drop in traffic volume during lockdown periods. Sim-
ilarly, compared to 19 January, the kOH values from alkenes
and aromatics were lower on 1 February and 14 March. The
kOH from OVOCs shared the same trend as OVOC concen-

tration, which reached a minimum value (5.56 s−1) during
the full-lockdown period.

To investigate the variation in O3 during different peri-
ods, the formation and loss pathways of O3 were calcu-
lated (Fig. 11). The formation of O3 (P (O3)) was domi-
nated by HO2+NO and RO2+NO pathways. Although the
average MIR during the full-lockdown period was the mini-
mum among the three periods, the P (O3) on 1 February was
higher than that on 19 January. This could be attributed to
the higher AOC and better photochemical conditions during
the full-lockdown period. Similarly, much higher P (O3) was
found on 14 March. To avoid the influence of meteorological
conditions and test the potential mean O3 concentrations un-
der different NOx/VOC ratios, a series of scenario analyses
were performed based on the average conditions during the
whole observation, and the isopleths of mean O3 concentra-
tions are exhibited in Fig. 12. Note that the values of temper-
ature and photolysis frequencies (J values) in the scenario
analyses could be higher than the actual values during the
pre-lockdown period and could further lead to overestimation
of simulated mean O3 during the pre-lockdown period. Ad-
ditionally, the VOC concentrations mentioned in this section
only represent the VOC species in the MCM. By connecting
the inflection points in each O3 isopleth, we obtain the ridge
line, which divides the whole regime into NOx-sensitive and
VOC-sensitive regimes (Fig. 12). During the pre-lockdown
period, the O3 formation was in a VOC-limited regime (trian-
gles in Fig. 12), with an average NOx/VOC ratio of 1.84. As
for the full-lockdown period, a significant decrease in NOx
and VOC emissions was observed, and the NOx/VOC ratio
dropped to 0.79, which gradually switched the O3 formation
to the junction of VOC-limited and NOx-limited regimes, es-
pecially on 16 and 17 February (circles in the red rectangle
in Fig. 12), when the O3 formation went into NOx-limited
regime. During the partial-lockdown period, increasing of
VOCs and NOx emission again dragged the formation of O3
back into VOC-limited regime (triangles in Fig. 12). Inter-
estingly, although a great deal of NOx and VOC emissions
were diminished during the full-lockdown period, the aver-

Atmos. Chem. Phys., 22, 4853–4866, 2022 https://doi.org/10.5194/acp-22-4853-2022



K. Zhang et al.: Insights into the significant increase in ozone during COVID-19 4861

Figure 5. Concentrations of individual VOC species during different periods. MEK and DMF are abbreviations of methyl ethyl ketone and
dimethylformamide, respectively. IQR denotes interquartile range.

age mean O3 in full lockdown was supposed to be 2.4 ppbv
higher than that in the pre-lockdown period. This result is
consistent with the trend of the observed maximum daily 8 h
average (MDA8) O3 and the results of the deweathered cal-
culation. Therefore, except for the influence of meteorology,
the inapposite NOx/VOC reduction ratio and further influ-
ence on chemistry were the key reasons for the obvious in-
crease in O3 during the full-lockdown period in Changzhou
in 2020.

The scenario analyses raise a question: how much O3
would change as a function of the reduction in NOx and
VOCs? Therefore, the reduction percentage of O3 (1O3/O3)

during the pre-lockdown period as a function of the re-
duction in VOCs and NOx was calculated, and the result
could be regarded as a potential to control O3 pollution.
Based on the VOC species in MCM v3.3.1, we classified the
measured VOCs into four groups: alkenes (n-butene), aro-
matics (including benzene, toluene, phenol, xylene, styrene,
cresol and trimethylbenzene), OVOCs (including methanol,
ethanol, formaldehyde, aldehyde, acrolein, methyl vinyl ke-
tone, methyl ethyl ketone, ethyl acetate, methyl isobutyl ke-
tone, hexanol and heptanal) and biogenic VOCs (BVOCs, in-
cluding isoprene, pinene and caryophyllene). The results in
Fig. 13a indicate that more reduction potential of O3 could
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Figure 6. Time series of OFP during the whole observation period
(dashed lines represent the average OFP value during each period).
The date is given in the format month/day/year.

be achieved by diminishing aromatics, followed by BVOCs,
OVOCs and alkenes. It should be noted that many light alka-
nes and active alkenes, such as ethene and propene, could
not be measured by the PTR-TOF-MS and might further
lead to the underestimation of ozone production from alka-
nes and alkenes. Additionally, this comparison has a draw-
back of being influenced by the concentrations of VOCs. To
normalize the influence of concentrations of VOCs, the de-
scent rate of O3 (1O3 (ppbv) /1VOCs (ppbv)) as a func-
tion of the reduction percentage of VOCs was calculated
(Fig. 13b). O3 exhibited the highest dependence on BVOCs,
with an average descent rate of 3.74± 0.09 ppbv ppbv−1.
Differing from the result in Fig. 13a, diminishing alkenes
could lead to a decrease in O3 by an average declining rate
of 1.69± 0.01 ppbv ppbv−1. On the contrary, a reduction in
NOx would lead to an increase in O3, with an average rate
of 1.29± 0.21 ppbv ppbv−1 (Fig. S6). Although the descent
rate of O3 started to decrease and the sensitivity of O3 forma-
tion entered a NOx-limited regime when over 70 % of NOx
was eliminated, it still caused a net increase in O3.

Although diminishing BVOCs seems to the most efficient
way to restrain O3 pollution, most BVOCs were emitted di-
rectly from plants and could not be easily controlled. Be-
sides, a huge number of OVOCs (such as formaldehyde, alde-
hyde, methanol, ethanol, methyl vinyl ketone, methyl ethyl
ketone) could be directly emitted from anthropogenic pro-
cesses or secondarily generated from the oxidation of pre-
cursors (such as alkenes and aromatics), which complicates
the control of OVOCs. Therefore, considering the reduction
potential and descent rate of O3, more efforts are needed for
the control of alkenes and aromatics.

3.3 Uncertainty analysis

Due to limitations in the observations, several issues should
be noted in the application of the OBM to evaluate the lo-
cal chemistry in the present study. Firstly, deficiency of the
observation of C2–C5 alkenes and alkanes could lead to un-

derestimation of the simulated O3. We can only obtain the
C2–C5 alkene and alkane concentrations from the observa-
tion during the autumn of 2018 at the same site. To analyze
the uncertainties from this disadvantage, we have performed
simulation by including assumed diurnal variation in ethene,
propene, butene, ethane, propane and butane, which are key
C2–C5 alkenes and alkanes at this site, in the model. On av-
erage, adding 0.5–2 times more alkenes and alkanes could
lead to a 1.65 %–9.49 % or 1.37 %–5.36 % increase in simu-
lated daytime O3, respectively (Figs. S7 and S8). In addition,
the deficiency of C2–C5 has potential to cause uncertainty in
O3 formation potential. To quantify this impact, the empir-
ical kinetics modeling approach (EKMA) analysis with the
hypothetical diurnal variation in C2–C5 was also performed.
Generally, adding C2–C5 alkenes and alkanes in the model
would lead to an increase in the simulated O3 and could
slightly shift the O3 isopleth to the right without changing the
isopleth shape (Fig. S9). Therefore, the deficiency of C2–C5
alkenes and alkanes could result in additional uncertainties
in O3 simulation (both time series and EKMA). It should be
noted that, this sensitivity analysis is based on the “hypothet-
ical” diurnal variation in C2–C5 alkenes and alkanes, which
would bring in uncertainty. We hope a wider range of VOCs
will be monitored simultaneously in future field campaigns
to avoid this deficiency. Secondly, the photolysis frequencies
(J values) were calculated as a function of solar zenith angle
and altitude using lookup tables, calculated using the Tropo-
spheric Ultraviolet and Visible (TUV) model, which could
lead to uncertainty in the simulation of O3. Hence, we anal-
ysis the influence of J values by increasing or decreasing
the photolysis rates by 10 % and 20 %. Results showed that
the simulated O3 could decrease or increase by 25.14 % or
21.73 %, respectively, when photolysis rates were decreased
or increased by 20 % (Fig. S10). In addition, the J values,
which directly or indirectly influence the recycling of ROx ,
could lead to uncertainty in the calculation of AOC and kOH.
Based on the above sensitivity analysis, we found the relative
changes in AOC and kOH by 1 % changes in J values were
1.07 % and 0.14 %, respectively. Therefore, the J values are
recommended to be measured during future observations.

4 Conclusions

After the outbreak of COVID-19, strict epidemic prevention
measures were adopted throughout China, leading to a dra-
matic decrease in traffic volume and industrial activities. Af-
fected by the decrease in the number of vehicles on the road,
non-essential industrial productivity and associated pollutant
emissions, most of the air pollutants (e.g., PM2.5, PM10, NO,
NO2, SO2 and VOCs) dropped to a lower level during the
lockdown period (especially during the full-lockdown pe-
riod). However, O3 increased compared to that during the
same period in 2019 in many urban areas of China. To fig-
ure out the reasons for this obvious increase in O3, the char-

Atmos. Chem. Phys., 22, 4853–4866, 2022 https://doi.org/10.5194/acp-22-4853-2022



K. Zhang et al.: Insights into the significant increase in ozone during COVID-19 4863

Figure 7. Plot of 1 h averaged MIR and NOx vs. VOCs during three periods.

Figure 8. Comparison of simulated and observed O3 (a) and simulated daytime OH concentrations (b) in three cases. IOA denotes the index
of agreement; NMB denotes normalized mean bias. The date is given in the format month/day/year. The local time zone is UTC+8.

Figure 9. Diurnal variation in AOC in three cases. The local time zone is UTC+8.

acteristics of O3 precursors (NOx , VOCs) during the pre-
lockdown, full-lockdown and partial-lockdown periods in
Changzhou were analyzed. Although this study was con-
ducted in a single city of China, the representativeness of
Changzhou guaranteed the applicability of the results to the
YRD region. Results suggested that the decrease in human
activities during the full-lockdown period significantly sup-
pressed the emissions of NOx and VOCs, which further led
to a dramatic drop in the concentrations of most VOCs, espe-
cially aromatics. As a result, the NOx/VOC ratios dropped
from 1.84 during the pre-lockdown period to 0.79 during the
full-lockdown period. By deweathered calculation, we found

that meteorology constrained O3 concentration by 3.9 ppbv
during the full-lockdown period in 2019 but exhibited neg-
ligible influence on that during the same period in 2020.
However, compared to the full-lockdown period in 2019,
changes in precursor emissions led to a 1.46 ppbv increase in
O3 concentrations during the same period in 2020. To ver-
ify this result, a box model was used to simulate the for-
mation of O3. Results show that the AOC level during full
lockdown was comparable to that during the pre-lockdown
period, but the formation rate of O3 was much higher dur-
ing the full-lockdown period. By scenario analysis, we found
the decrease in NOx and VOCs in the full-lockdown period
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Figure 10. Daytime variation in OH reactivity in three cases. The local time zone is UTC+8.

Figure 11. Daytime variation in P (O3) and L(O3) in three cases. The local time zone is UTC+8.

Figure 12. Mean O3 isopleth. The colored circles, triangles and
rectangles represent the daily average concentrations of NOx
and VOCs during the pre-lockdown, full-lockdown and partial-
lockdown period, respectively. The white circle, triangle and rect-
angle indicate the average NOx and VOC concentrations during the
pre-lockdown, full-lockdown and partial-lockdown period, respec-
tively.

dragged the formation of O3 from a VOC-sensitive regime to
the junction of a VOC- and NOx-limited regime, and the av-
erage simulated mean O3 in the full-lockdown period could
be 2.4 ppbv higher than that in the pre-lockdown period. Al-
though the deweathered model and OBM show differences in
the emission-derived change in O3, the results together point
out that the inapposite reduction in NOx and VOCs was the
key reason for the obvious increase in O3 during the full-

Figure 13. Reduction percentage of O3 as a function of the reduc-
tion percentage of VOCs (a); descent rate of O3 as a function of the
reduction percentage of VOCs (b).

lockdown period in 2020. Overall, the outbreak of COVID-
19 has caused devastation across the world. However, it pro-
vided an opportunity for an extreme experiment to investi-
gate the O3 formation under strict emission control policies
and provided insights into the policy formulation for dimin-
ishing O3 pollution in the YRD region. The data indicate that
the concentrations of VOCs and NOx have changed dramat-
ically during the pandemic, a common situation also found
in other Chinese cities, and led to a switch of O3 formation
sensitivity. These results have a clear indication that, in the
future, more efforts should be devoted to the reduction ratio
of anthropogenic VOCs and NOx .
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