Articles | Volume 22, issue 5
https://doi.org/10.5194/acp-22-3131-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-3131-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Secondary organic aerosol formation from camphene oxidation: measurements and modeling
Qi Li
Department of Chemical and Environmental Engineering, University of
California Riverside, Riverside, California 92521, United States
The Bourns College of Engineering, Center for Environmental Research
and Technology, University of California Riverside, Riverside, California
92507, United States
Jia Jiang
Department of Chemical and Environmental Engineering, University of
California Riverside, Riverside, California 92521, United States
The Bourns College of Engineering, Center for Environmental Research
and Technology, University of California Riverside, Riverside, California
92507, United States
Isaac K. Afreh
Department of Chemical and Environmental Engineering, University of
California Riverside, Riverside, California 92521, United States
The Bourns College of Engineering, Center for Environmental Research
and Technology, University of California Riverside, Riverside, California
92507, United States
Kelley C. Barsanti
CORRESPONDING AUTHOR
Department of Chemical and Environmental Engineering, University of
California Riverside, Riverside, California 92521, United States
The Bourns College of Engineering, Center for Environmental Research
and Technology, University of California Riverside, Riverside, California
92507, United States
David R. Cocker III
CORRESPONDING AUTHOR
Department of Chemical and Environmental Engineering, University of
California Riverside, Riverside, California 92521, United States
The Bourns College of Engineering, Center for Environmental Research
and Technology, University of California Riverside, Riverside, California
92507, United States
Related authors
Sophia M. Charan, Yuanlong Huang, Reina S. Buenconsejo, Qi Li, David R. Cocker III, and John H. Seinfeld
Atmos. Chem. Phys., 22, 917–928, https://doi.org/10.5194/acp-22-917-2022, https://doi.org/10.5194/acp-22-917-2022, 2022
Short summary
Short summary
In this study, we investigate the secondary organic aerosol formation potential of decamethylcyclopentasiloxane (D5), which is used as a tracer for volatile chemical products and measured in high concentrations both outdoors and indoors. By performing experiments in different types of reactors, we find that D5’s aerosol formation is highly dependent on OH, and, at low OH concentrations or exposures, D5 forms little aerosol. We also reconcile results from other studies.
James D. A. Butler, Afsara Tasnia, Deep Sengupta, Nathan Kreisberg, Kelley C. Barsanti, Allen H. Goldstein, Chelsea V. Preble, Rebecca A. Sugrue, and Thomas W. Kirchstetter
EGUsphere, https://doi.org/10.5194/egusphere-2025-2295, https://doi.org/10.5194/egusphere-2025-2295, 2025
Short summary
Short summary
Prescribed burns are controlled fires used to prevent wildfires. Smoke emissions were measured to characterize emission factors and optical properties of black and brown soot particles. Brown particles were emitted at 7–14 times that of black particles and contributed 82 % of atmospheric absorption by particles for ultraviolet light and 23 % for total solar radiation. These findings will improve inventories and climate models for prescribed burns.
William P. L. Carter, Jia Jiang, Zhizhao Wang, and Kelley C. Barsanti
EGUsphere, https://doi.org/10.5194/egusphere-2025-1183, https://doi.org/10.5194/egusphere-2025-1183, 2025
Short summary
Short summary
The SAPRC Atmospheric Chemical Mechanism Generation System (MechGen) generates explicit chemical reaction mechanisms for organic compounds. MechGen has been used for decades in the development of the widely-used SAPRC mechanisms. This manuscript, detailing the software system, and a companion manuscript, detailing the chemical basis, represent the first complete documentation of MechGen. This manuscript includes examples and instructions for generating explicit and reduced mechanisms.
William P. L. Carter, Jia Jiang, John J. Orlando, and Kelley C. Barsanti
Atmos. Chem. Phys., 25, 199–242, https://doi.org/10.5194/acp-25-199-2025, https://doi.org/10.5194/acp-25-199-2025, 2025
Short summary
Short summary
This paper describes the scientific basis for gas-phase atmospheric chemical mechanisms derived using the SAPRC mechanism generation system, MechGen. It can derive mechanisms for most organic compounds with C, H, O, or N atoms, including initial reactions of organics with OH, O3, NO3, and O3P or by photolysis, as well as the reactions of the various types of intermediates that are formed. The paper includes a description of areas of uncertainty where additional research and updates are needed.
Samiha Binte Shahid, Forrest G. Lacey, Christine Wiedinmyer, Robert J. Yokelson, and Kelley C. Barsanti
Geosci. Model Dev., 17, 7679–7711, https://doi.org/10.5194/gmd-17-7679-2024, https://doi.org/10.5194/gmd-17-7679-2024, 2024
Short summary
Short summary
The Next-generation Emissions InVentory expansion of Akagi (NEIVA) v.1.0 is a comprehensive biomass burning emissions database that allows integration of new data and flexible querying. Data are stored in connected datasets, including recommended averages of ~1500 constituents for 14 globally relevant fire types. Individual compounds were mapped to common model species to allow better attribution of emissions in modeling studies that predict the effects of fires on air quality and climate.
Vignesh Vasudevan-Geetha, Lee Tiszenkel, Zhizhao Wang, Robin Russo, Daniel Bryant, Julia Lee-Taylor, Kelley Barsanti, and Shan-Hu Lee
EGUsphere, https://doi.org/10.5194/egusphere-2024-2454, https://doi.org/10.5194/egusphere-2024-2454, 2024
Short summary
Short summary
Our laboratory experiments using two high-resolution mass spectrometers show that these OOMs can also form within the particle phase, in addition to gas-to-particle conversion processes. Our results demonstrate that particle-phase formation processes can contribute to the formation and growth of new particles in biogenic environments.
Ningjin Xu, Chen Le, David R. Cocker, Kunpeng Chen, Ying-Hsuan Lin, and Don R. Collins
Atmos. Meas. Tech., 17, 4227–4243, https://doi.org/10.5194/amt-17-4227-2024, https://doi.org/10.5194/amt-17-4227-2024, 2024
Short summary
Short summary
A flow-through reactor was developed that exposes known mixtures of gases or ambient air to very high concentrations of the oxidants that are responsible for much of the chemistry that takes place in the atmosphere. Like other reactors of its type, it is primarily used to study the formation of particulate matter from the oxidation of common gases. Unlike other reactors of its type, it can simulate the chemical reactions that occur in liquid water that is present in particles or cloud droplets.
Christine Wiedinmyer, Yosuke Kimura, Elena C. McDonald-Buller, Louisa K. Emmons, Rebecca R. Buchholz, Wenfu Tang, Keenan Seto, Maxwell B. Joseph, Kelley C. Barsanti, Annmarie G. Carlton, and Robert Yokelson
Geosci. Model Dev., 16, 3873–3891, https://doi.org/10.5194/gmd-16-3873-2023, https://doi.org/10.5194/gmd-16-3873-2023, 2023
Short summary
Short summary
The Fire INventory from NCAR (FINN) provides daily global estimates of emissions from open fires based on satellite detections of hot spots. This version has been updated to apply MODIS and VIIRS satellite fire detection and better represents both large and small fires. FINNv2.5 generates more emissions than FINNv1 and is in general agreement with other fire emissions inventories. The new estimates are consistent with satellite observations, but uncertainties remain regionally and by pollutant.
Yutong Liang, Christos Stamatis, Edward C. Fortner, Rebecca A. Wernis, Paul Van Rooy, Francesca Majluf, Tara I. Yacovitch, Conner Daube, Scott C. Herndon, Nathan M. Kreisberg, Kelley C. Barsanti, and Allen H. Goldstein
Atmos. Chem. Phys., 22, 9877–9893, https://doi.org/10.5194/acp-22-9877-2022, https://doi.org/10.5194/acp-22-9877-2022, 2022
Short summary
Short summary
This article reports the measurements of organic compounds emitted from western US wildfires. We identified and quantified 240 particle-phase compounds and 72 gas-phase compounds emitted in wildfire and related the emissions to the modified combustion efficiency. Higher emissions of diterpenoids and monoterpenes were observed, likely due to distillation from unburned heated vegetation. Our results can benefit future source apportionment and modeling studies as well as exposure assessments.
Christos Stamatis and Kelley Claire Barsanti
Atmos. Meas. Tech., 15, 2591–2606, https://doi.org/10.5194/amt-15-2591-2022, https://doi.org/10.5194/amt-15-2591-2022, 2022
Short summary
Short summary
Building on the identification of hundreds of gas-phase chemicals in smoke samples from laboratory and field studies, an algorithm was developed that successfully identified chemical patterns that were consistent among types of trees and unique between types of trees that are common fuels in western coniferous forests. The algorithm is a promising approach for selecting chemical speciation profiles for air quality modeling using a highly reduced suite of measured compounds.
Sophia M. Charan, Yuanlong Huang, Reina S. Buenconsejo, Qi Li, David R. Cocker III, and John H. Seinfeld
Atmos. Chem. Phys., 22, 917–928, https://doi.org/10.5194/acp-22-917-2022, https://doi.org/10.5194/acp-22-917-2022, 2022
Short summary
Short summary
In this study, we investigate the secondary organic aerosol formation potential of decamethylcyclopentasiloxane (D5), which is used as a tracer for volatile chemical products and measured in high concentrations both outdoors and indoors. By performing experiments in different types of reactors, we find that D5’s aerosol formation is highly dependent on OH, and, at low OH concentrations or exposures, D5 forms little aerosol. We also reconcile results from other studies.
Zachary C. J. Decker, Michael A. Robinson, Kelley C. Barsanti, Ilann Bourgeois, Matthew M. Coggon, Joshua P. DiGangi, Glenn S. Diskin, Frank M. Flocke, Alessandro Franchin, Carley D. Fredrickson, Georgios I. Gkatzelis, Samuel R. Hall, Hannah Halliday, Christopher D. Holmes, L. Gregory Huey, Young Ro Lee, Jakob Lindaas, Ann M. Middlebrook, Denise D. Montzka, Richard Moore, J. Andrew Neuman, John B. Nowak, Brett B. Palm, Jeff Peischl, Felix Piel, Pamela S. Rickly, Andrew W. Rollins, Thomas B. Ryerson, Rebecca H. Schwantes, Kanako Sekimoto, Lee Thornhill, Joel A. Thornton, Geoffrey S. Tyndall, Kirk Ullmann, Paul Van Rooy, Patrick R. Veres, Carsten Warneke, Rebecca A. Washenfelder, Andrew J. Weinheimer, Elizabeth Wiggins, Edward Winstead, Armin Wisthaler, Caroline Womack, and Steven S. Brown
Atmos. Chem. Phys., 21, 16293–16317, https://doi.org/10.5194/acp-21-16293-2021, https://doi.org/10.5194/acp-21-16293-2021, 2021
Short summary
Short summary
To understand air quality impacts from wildfires, we need an accurate picture of how wildfire smoke changes chemically both day and night as sunlight changes the chemistry of smoke. We present a chemical analysis of wildfire smoke as it changes from midday through the night. We use aircraft observations from the FIREX-AQ field campaign with a chemical box model. We find that even under sunlight typical
nighttimechemistry thrives and controls the fate of key smoke plume chemical processes.
Sabrina Chee, Kelley Barsanti, James N. Smith, and Nanna Myllys
Atmos. Chem. Phys., 21, 11637–11654, https://doi.org/10.5194/acp-21-11637-2021, https://doi.org/10.5194/acp-21-11637-2021, 2021
Short summary
Short summary
We explored molecular properties affecting atmospheric particle formation efficiency and derived a parameterization between particle formation rate and heterodimer concentration, which showed good agreement to previously reported experimental data. Considering the simplicity of calculating heterodimer concentration, this approach has potential to improve estimates of global cloud condensation nuclei in models that are limited by the computational expense of calculating particle formation rate.
Isaac Kwadjo Afreh, Bernard Aumont, Marie Camredon, and Kelley Claire Barsanti
Atmos. Chem. Phys., 21, 11467–11487, https://doi.org/10.5194/acp-21-11467-2021, https://doi.org/10.5194/acp-21-11467-2021, 2021
Short summary
Short summary
This is the first mechanistic modeling study of secondary organic aerosol (SOA) from the understudied monoterpene, camphene. The semi-explicit chemical model GECKO-A predicted camphene SOA yields that were ~2 times α-pinene. Using 50/50 α-pinene + limonene as a surrogate for camphene increased predicted SOA mass from biomass burning fuels by up to ~100 %. The accurate representation of camphene in air quality models can improve predictions of SOA when camphene is a dominant monoterpene.
Cited articles
Afreh, I. K., Aumont, B., Camredon, M., and Barsanti, K. C.: Using GECKO-A to derive mechanistic understanding of secondary organic aerosol formation from the ubiquitous but understudied camphene, Atmos. Chem. Phys., 21, 11467–11487, https://doi.org/10.5194/acp-21-11467-2021, 2021.
Akagi, S. K., Yokelson, R. J., Burling, I. R., Meinardi, S., Simpson, I., Blake, D. R., McMeeking, G. R., Sullivan, A., Lee, T., Kreidenweis, S., Urbanski, S., Reardon, J., Griffith, D. W. T., Johnson, T. J., and Weise, D. R.: Measurements of reactive trace gases and variable O3 formation rates in some South Carolina biomass burning plumes, Atmos. Chem. Phys., 13, 1141–1165, https://doi.org/10.5194/acp-13-1141-2013, 2013.
Atkinson, R. and Arey, J.: Gas-phase tropospheric chemistry of biogenic
volatile organic compounds: A review, Atmos. Environ., 37, 197–219,
https://doi.org/10.1016/S1352-2310(03)00391-1, 2003.
Atkinson, R., Aschmann, S. M., and Arey, J.: Rate constants for the
gas-phase reactions of OH and NO3 radicals and O3 with sabinene and camphene
at 296±2 K, Atmos. Environ. A-Gen., 24, 2647–2654,
https://doi.org/10.1016/0960-1686(90)90144-C, 1990.
Aumont, B., Szopa, S., and Madronich, S.: Modelling the evolution of organic carbon during its gas-phase tropospheric oxidation: development of an explicit model based on a self generating approach, Atmos. Chem. Phys., 5, 2497–2517, https://doi.org/10.5194/acp-5-2497-2005, 2005.
Aumont, B., Valorso, R., Mouchel-Vallon, C., Camredon, M., Lee-Taylor, J., and Madronich, S.: Modeling SOA formation from the oxidation of intermediate volatility n-alkanes, Atmos. Chem. Phys., 12, 7577–7589, https://doi.org/10.5194/acp-12-7577-2012, 2012.
Baruah, S. D., Gour, N. K., Sarma, P. J., and Deka, R. C.: OH-initiated
mechanistic pathways and kinetics of camphene and fate of product radical: a
DFT approach, Environ. Sci. Pollut. Res., 25, 2147–2156,
https://doi.org/10.1007/s11356-017-0646-2, 2018.
Benelli, G., Govindarajan, M., Rajeswary, M., Vaseeharan, B., Alyahya, S.
A., Alharbi, N. S., Kadaikunnan, S., Khaled, J. M., and Maggi, F.:
Insecticidal activity of camphene, zerumbone and α-humulene from
Cheilocostus speciosus rhizome essential oil against the Old-World bollworm,
Helicoverpa armigera, Ecotox. Environ. Safe, 148, 781–786,
https://doi.org/10.1016/j.ecoenv.2017.11.044, 2018.
Bianchi, F., Kurtén, T., Riva, M., Mohr, C., Rissanen, M. P., Roldin,
P., Berndt, T., Crounse, J. D., Wennberg, P. O., Mentel, T. F., Wildt, J.,
Junninen, H., Jokinen, T., Kulmala, M., Worsnop, D. R., Thornton, J. A.,
Donahue, N., Kjaergaard, H. G., and Ehn, M.: Highly Oxygenated Organic
Molecules (HOM) from Gas-Phase Autoxidation Involving Peroxy Radicals: A Key
Contributor to Atmospheric Aerosol, 119, 3472–3509,
https://doi.org/10.1021/acs.chemrev.8b00395, 2019.
Camredon, M., Aumont, B., Lee-Taylor, J., and Madronich, S.: The SOA/VOC/NOx system: an explicit model of secondary organic aerosol formation, Atmos. Chem. Phys., 7, 5599–5610, https://doi.org/10.5194/acp-7-5599-2007, 2007.
Canagaratna, M. R., Jimenez, J. L., Kroll, J. H., Chen, Q., Kessler, S. H., Massoli, P., Hildebrandt Ruiz, L., Fortner, E., Williams, L. R., Wilson, K. R., Surratt, J. D., Donahue, N. M., Jayne, J. T., and Worsnop, D. R.: Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications, Atmos. Chem. Phys., 15, 253–272, https://doi.org/10.5194/acp-15-253-2015, 2015.
Carter, W. P. L.: A detailed mechanism for the gas-phase atmospheric
reactions of organic compounds, Atmos. Environ. A-Gen., 24,
481–518, https://doi.org/10.1016/0960-1686(90)90005-8, 1990.
Carter, W. P. L.: Development of ozone reactivity scales for volatile
organic compounds, J. Air Waste Manage., 44, 881–899,
https://doi.org/10.1080/1073161x.1994.10467290, 1994.
Carter, W. P. L.: Documentation of the SAPRC-99 chemical mechanism for VOC reactivity
assessment. Final Report to California Air Resources Board, Contract 92-329 and Contract
95–308, https://intra.engr.ucr.edu/~carter/pubs/s99txt.pdf (last access: December 2021), 2000.
Carter, W. P. L.: Development of the SAPRC-07 chemical mechanism and updated ozone
reactivity scales, Final report to the California Air Resources Board, Contract No. 03-318,
06-408, and 07-730, https://intra.engr.ucr.edu/~carter/SAPRC/saprc07.pdf (last access:
December 2021), 2007.
Carter, W. P. L.: Development of a condensed SAPRC-07 chemical mechanism,
Atmos. Environ., 44, 5336–5345,
https://doi.org/10.1016/j.atmosenv.2010.01.024, 2010a.
Carter, W. P. L.: Development of the SAPRC-07 chemical mechanism, Atmos. Environ., 44, 5324–5335, https://doi.org/10.1016/j.atmosenv.2010.01.026, 2010b.
Carter, W. P. L.: Documentation of the SAPRC-18 Mechanism; Report to
California Air Resources Board Contract No. 11-761, May 2020,
https://intra.engr.ucr.edu/~carter/SAPRC/18/ (last access: December 2021),
2020a.
Carter, W. P. L.: Estimates and Assignments used in the SAPRC-18 Mechanism
Generation System; Report to California Air Resources Board Contract No. 11-761, http://intra.engr.ucr.edu/~carter/SAPRC/18 (last access: December 2021), 2020b.
Carter, W. P. L.: Gateway to the SAPRC Mechanism Generation System,
http://mechgen.cert.ucr.edu/, last access: 30 March 2021.
Carter, W. P. L. and Lurmann, F. W.: Evaluation of the RADM Gas-phase Chemical Mechanism. U.S. Environmental Protection Agency Cooperative Agreement CR-814558-01-0, Statewide Air Pollution Research Center, University of California, Riverside, 1989.
Carter, W. P. L., Cocker, D. R., Fitz, D. R., Malkina, I. L., Bumiller, K.,
Sauer, C. G., Pisano, J. T., Bufalino, C., and Song, C.: A new environmental
chamber for evaluation of gas-phase chemical mechanisms and secondary
aerosol formation, Atmos. Environ., 39, 7768–7788,
https://doi.org/10.1016/j.atmosenv.2005.08.040, 2005.
Clark, C. H., Kacarab, M., Nakao, S., Asa-Awuku, A., Sato, K., and Cocker,
D. R.: Temperature Effects on Secondary Organic Aerosol (SOA) from the Dark
Ozonolysis and Photo-Oxidation of Isoprene, Environ. Sci. Technol., 50,
5564–5571, https://doi.org/10.1021/acs.est.5b05524, 2016.
Cocker, D. R., Flagan, R. C., and Seinfeld, J. H.: State-of-the-art chamber
facility for studying atmospheric aerosol chemistry, Environ. Sci. Technol.,
35, 2594–2601, https://doi.org/10.1021/es0019169, 2001.
Crounse, J. D., Nielsen, L. B., Jørgensen, S., Kjaergaard, H. G., and
Wennberg, P. O.: Autoxidation of Organic Compounds in the Atmosphere, J.
Phys. Chem. Lett., 4, 3513–3520, https://doi.org/10.1021/JZ4019207, 2013.
DeCarlo, P. F., Kimmel, J. R., Trimborn, A., Northway, M. J., Jayne, J. T.,
Aiken, A. C., Gonin, M., Fuhrer, K., Horvath, T., Docherty, K. S., Worsnop,
D. R., and Jimenez, J. L.: Field-deployable, high-resolution, time-of-flight
aerosol mass spectrometer, Anal. Chem., 78, 8281–8289,
https://doi.org/10.1021/ac061249n, 2006.
Donahue, N. M., Robinson, A. L., Stanier, C. O., and Pandis, S. N.: Coupled
partitioning, dilution, and chemical aging of semivolatile organics,
Environ. Sci. Technol., 40, 2635–2643, https://doi.org/10.1021/es052297c,
2006.
Donahue, N. M., Robinson, A. L., and Pandis, S. N.: Atmospheric organic
particulate matter: From smoke to secondary organic aerosol, Atmos.
Environ., 43, 94–106, https://doi.org/10.1016/j.atmosenv.2008.09.055, 2009.
Eddingsaas, N. C., Loza, C. L., Yee, L. D., Chan, M., Schilling, K. A., Chhabra, P. S., Seinfeld, J. H., and Wennberg, P. O.: α-pinene photooxidation under controlled chemical conditions – Part 2: SOA yield and composition in low- and high-NOx environments, Atmos. Chem. Phys., 12, 7413–7427, https://doi.org/10.5194/acp-12-7413-2012, 2012.
Ehn, M., Berndt, T., Wildt, J., and Mentel, T.: Highly Oxygenated Molecules
from Atmospheric Autoxidation of Hydrocarbons: A Prominent Challenge for
Chemical Kinetics Studies, Int. J. Chem. Kinet., 49, 821–831,
https://doi.org/10.1002/KIN.21130, 2017.
Fry, J. L., Draper, D. C., Barsanti, K. C., Smith, J. N., Ortega, J.,
Winkler, P. M., Lawler, M. J., Brown, S. S., Edwards, P. M., Cohen, R. C.,
and Lee, L.: Secondary Organic Aerosol Formation and Organic Nitrate Yield
from NO3 Oxidation of Biogenic Hydrocarbons Terms of Use CC-BY, Environ.
Sci. Technol, 48, 11944–11953, https://doi.org/10.1021/es502204x, 2014.
Gaona-Colmán, E., Blanco, M. B., Barnes, I., Wiesen, P., and Teruel, M.
A.: OH- and O3-initiated atmospheric degradation of camphene: temperature
dependent rate coefficients, product yields and mechanisms, RSC Adv., 7,
2733–2744, https://doi.org/10.1039/c6ra26656h, 2017.
Geron, C., Rasmussen, R., Arnts, R. R., and Guenther, A.: A review and
synthesis of monoterpene speciation from forests in the United States,
Atmos. Environ., 34, 1761–1781, https://doi.org/10.1016/S1352-2310(99)00364-7, 2000.
Gilman, J. B., Lerner, B. M., Kuster, W. C., Goldan, P. D., Warneke, C., Veres, P. R., Roberts, J. M., de Gouw, J. A., Burling, I. R., and Yokelson, R. J.: Biomass burning emissions and potential air quality impacts of volatile organic compounds and other trace gases from fuels common in the US, Atmos. Chem. Phys., 15, 13915–13938, https://doi.org/10.5194/acp-15-13915-2015, 2015.
Griffin, R. J., Cocker, D. R., Flagan, R. C., and Seinfeld, J. H.: Organic
aerosol formation from the oxidation of biogenic hydrocarbons, J. Geophys.
Res., 104, 3555–3567, https://doi.org/10.1029/1998JD100049, 1999.
Guenther, A.: A global model of natural volatile organic compound emissions,
J. Geophys. Res., 100, 8873–8892, https://doi.org/10.1029/94JD02950, 1995.
Hakola, H., Arey, J., Aschmann, S. M., and Atkinson, R.: Product formation
from the gas-phase reactions of OH radicals and O3 with a series of
monoterpenes, J. Atmos. Chem., 18, 75–102, https://doi.org/10.1007/BF00694375, 1994.
Hatch, L. E., Luo, W., Pankow, J. F., Yokelson, R. J., Stockwell, C. E., and Barsanti, K. C.: Identification and quantification of gaseous organic compounds emitted from biomass burning using two-dimensional gas chromatography–time-of-flight mass spectrometry, Atmos. Chem. Phys., 15, 1865–1899, https://doi.org/10.5194/acp-15-1865-2015, 2015.
Hatch, L. E., Jen, C. N., Kreisberg, N. M., Selimovic, V., Yokelson, R. J.,
Stamatis, C., York, R. A., Foster, D., Stephens, S. L., Goldstein, A. H.,
and Barsanti, K. C.: Highly Speciated Measurements of Terpenoids Emitted
from Laboratory and Mixed-Conifer Forest Prescribed Fires, Environ. Sci.
Technol., 53, 9418–9428, https://doi.org/10.1021/acs.est.9b02612, 2019.
Hatfield, M. L. and Huff Hartz, K. E.: Secondary organic aerosol from
biogenic volatile organic compound mixtures, Atmos. Environ., 45,
2211–2219, https://doi.org/10.1016/j.atmosenv.2011.01.065, 2011.
Hayward, S., Muncey, R. J., James, A. E., Halsall, C. J., and Hewitt, C. N.:
Monoterpene emissions from soil in a Sitka spruce forest, Atmos. Environ., 35, 4081–4087,
https://doi.org/10.1016/S1352-2310(01)00213-8, 2001.
Henze, D. K., Seinfeld, J. H., Ng, N. L., Kroll, J. H., Fu, T.-M., Jacob, D. J., and Heald, C. L.: Global modeling of secondary organic aerosol formation from aromatic hydrocarbons: high- vs. low-yield pathways, Atmos. Chem. Phys., 8, 2405–2420, https://doi.org/10.5194/acp-8-2405-2008, 2008.
Hurley, M. D., Sokolov, O., and Wallington, T. J.: Organic aerosol formation
during the atmospheric degradation of toluene, Environ. Sci. Technol., 35,
1358–1366, https://doi.org/10.1021/es0013733, 2001.
Odum, J. R., Hoffmann, T., Bowman, F., Collins, D.,
Flagan, R. C., and Seinfeld, J. H.: Gas/Particle Partitioning and Secondary
Organic Aerosol Yields, Environ. Sci. Technol., 30, 2580–2585 https://doi.org/10.1021/ES950943,
1996.
Jiang, J., Carter, W. P. L., Cocker, D. R., and Barsanti, K. C.: Development
and Evaluation of a Detailed Mechanism for Gas-Phase Atmospheric Reactions
of Furans, ACS Earth Sp. Chem., 4, 1254–1268,
https://doi.org/10.1021/acsearthspacechem.0c00058, 2020.
Jokinen, T., Sipilä, M., Richters, S., Kerminen, V.-M., Paasonen, P.,
Stratmann, F., Worsnop, D., Kulmala, M., Ehn, M., Herrmann, H., and Berndt,
T.: Rapid Autoxidation Forms Highly Oxidized RO2 Radicals in the Atmosphere,
Angew. Chem. Int. Edit., 53, 14596–14600,
https://doi.org/10.1002/ANIE.201408566, 2014.
Komenda, M.: Monoterpene emissions from Scots pine (Pinus sylvestris): Field studies of
emission rate variabilities, J. Geophys. Res., 107, 4161,
https://doi.org/10.1029/2001JD000691, 2002.
Krechmer, J. E., Day, D. A., and Jimenez, J. L.: Always Lost but Never
Forgotten: Gas-Phase Wall Losses Are Important in All Teflon Environmental
Chambers, Environ. Sci. Technol., 54, 12890–12897, https://doi.org/10.1021/acs.est.0c03381,
2020.
Kroll, J. H. and Seinfeld, J. H.: Chemistry of secondary organic aerosol: Formation and evolution of low-volatility organics in the atmosphere, Atmos. Environ., 42, 3593–3624,
https://doi.org/10.1016/j.atmosenv.2008.01.003, 2008.
Kroll, J. H., Ng, N. L., Murphy, S. M., Flagan, R. C., and Seinfeld, J. H.:
Secondary organic aerosol formation from isoprene photooxidation, Environ.
Sci. Technol., 40, 1869–1877, https://doi.org/10.1021/es0524301, 2006.
Kuwata, M., Zorn, S. R., and Martin, S. T.: Using elemental ratios to
predict the density of organic material composed of carbon, hydrogen, and
oxygen, Environ. Sci. Technol., 46, 787–794,
https://doi.org/10.1021/es202525q, 2012.
La, Y. S., Camredon, M., Ziemann, P. J., Valorso, R., Matsunaga, A., Lannuque, V., Lee-Taylor, J., Hodzic, A., Madronich, S., and Aumont, B.: Impact of chamber wall loss of gaseous organic compounds on secondary organic aerosol formation: explicit modeling of SOA formation from alkane and alkene oxidation, Atmos. Chem. Phys., 16, 1417–1431, https://doi.org/10.5194/acp-16-1417-2016, 2016.
Lannuque, V., Camredon, M., Couvidat, F., Hodzic, A., Valorso, R., Madronich, S., Bessagnet, B., and Aumont, B.: Exploration of the influence of environmental conditions on secondary organic aerosol formation and organic species properties using explicit simulations: development of the VBS-GECKO parameterization, Atmos. Chem. Phys., 18, 13411–13428, https://doi.org/10.5194/acp-18-13411-2018, 2018.
Li, L., Tang, P., and Cocker, D. R.: Instantaneous nitric oxide effect on
secondary organic aerosol formation from m-xylene photooxidation, Atmos.
Environ., 119, 144–155, https://doi.org/10.1016/j.atmosenv.2015.08.010,
2015.
Li, L., Tang, P., Nakao, S., and Cocker III, D. R.: Impact of molecular structure on secondary organic aerosol formation from aromatic hydrocarbon photooxidation under low-NOx conditions, Atmos. Chem. Phys., 16, 10793–10808, https://doi.org/10.5194/acp-16-10793-2016, 2016.
Ludley, K. E., Jickells, S. M., Chamberlain, P. M., Whitaker, J., and
Robinson, C. H.: Distribution of monoterpenes between organic resources in
upper soil horizons under monocultures of Picea abies, Picea sitchensis and
Pinus sylvestris, Soil Biol. Biochem., 41, 1050–1059,
https://doi.org/10.1016/j.soilbio.2009.02.002, 2009.
Maleknia, S. D., Bell, T. L., and Adams, M. A.: PTR-MS analysis of reference
and plant-emitted volatile organic compounds, Int. J. Mass Spectrom., 262, 203–210,
https://doi.org/10.1016/j.ijms.2006.11.010, 2007.
Malloy, Q. G. J., Nakao, S., Qi, L., Austin, R., Stothers, C., Hagino, H.,
and Cocker, D. R.: Real-Time aerosol density determination utilizing a
modified scanning mobility particle sizer aerosol particle mass analyzer
system, Aerosol Sci. Tech., 43, 673–678,
https://doi.org/10.1080/02786820902832960, 2009.
Mazza, G. and Cottrell, T.: Volatile components of roots, stems, leaves, and
flowers of Echinacea species, J. Agr. Food Chem., 47, 3081–3085,
https://doi.org/10.1021/jf981117y, 1999.
McVay, R. C., Zhang, X., Aumont, B., Valorso, R., Camredon, M., La, Y. S., Wennberg, P. O., and Seinfeld, J. H.: SOA formation from the photooxidation of α-pinene: systematic exploration of the simulation of chamber data, Atmos. Chem. Phys., 16, 2785–2802, https://doi.org/10.5194/acp-16-2785-2016, 2016.
Mehra, A., Krechmer, J. E., Lambe, A., Sarkar, C., Williams, L., Khalaj, F., Guenther, A., Jayne, J., Coe, H., Worsnop, D., Faiola, C., and Canagaratna, M.: Oligomer and highly oxygenated organic molecule formation from oxidation of oxygenated monoterpenes emitted by California sage plants, Atmos. Chem. Phys., 20, 10953–10965, https://doi.org/10.5194/acp-20-10953-2020, 2020.
Moukhtar, S., Couret, C., Rouil, L., and Simon, V.: Biogenic Volatile
Organic Compounds (BVOCs) emissions from Abies alba in a French forest, Sci.
Total Environ., 354, 232–245,
https://doi.org/10.1016/j.scitotenv.2005.01.044, 2006.
Mutzel, A., Rodigast, M., Iinuma, Y., Böge, O., and Herrmann, H.:
Monoterpene SOA – Contribution of first-generation oxidation products to
formation and chemical composition, Atmos. Environ., 130, 136–144,
https://doi.org/10.1016/j.atmosenv.2015.10.080, 2016.
Nakao, S., Tang, P., Tang, X., Clark, C. H., Qi, L., Seo, E., Asa-Awuku, A.,
and Cocker, D.: Density and elemental ratios of secondary organic aerosol:
Application of a density prediction method, Atmos. Environ., 68, 273–277,
https://doi.org/10.1016/j.atmosenv.2012.11.006, 2013.
Nannoolal, Y., Rarey, J., and Ramjugernath, D.: Estimation of pure component
properties part 3. Estimation of the vapor pressure of non-electrolyte
organic compounds via group contribution and group interactions, Fluid Phase
Equilibr., 269, 117–133, https://doi.org/10.1016/j.fluid.2008.04.020, 2008.
Ng, N. L., Kroll, J. H., Keywood, M. D., Bahreini, R., Varutbangkul, V.,
Flagan, R. C., Seinfeld, J. H., Lee, A., and Goldstein, A. H.: Contribution
of first- versus second-generation products to secondary organic aerosols
formed in the oxidation of biogenic hydrocarbons, Environ. Sci. Technol.,
40, 2283–2297, 2006.
Ng, N. L., Chhabra, P. S., Chan, A. W. H., Surratt, J. D., Kroll, J. H., Kwan, A. J., McCabe, D. C., Wennberg, P. O., Sorooshian, A., Murphy, S. M., Dalleska, N. F., Flagan, R. C., and Seinfeld, J. H.: Effect of NOx level on secondary organic aerosol (SOA) formation from the photooxidation of terpenes, Atmos. Chem. Phys., 7, 5159–5174, https://doi.org/10.5194/acp-7-5159-2007, 2007.
Nøjgaard, J. K., Bilde, M., Stenby, C., Nielsen, O. J., and Wolkoff, P.:
The effect of nitrogen dioxide on particle formation during ozonolysis of
two abundant monoterpenes indoors, Atmos. Environ., 40, 1030–1042,
https://doi.org/10.1016/j.atmosenv.2005.11.029, 2006.
Pankow, J. F.: An absorption model of the gas/aerosol partitioning involved
in the formation of secondary organic aerosol, Atmos. Environ., 41, 75–79,
https://doi.org/10.1016/j.atmosenv.2007.10.060, 1994.
Presto, A. A., Huff Hartz, K. E., and Donahue, N. M.: Secondary organic
aerosol production from terpene ozonolysis. 2. Effect of NOx concentration,
Environ. Sci. Technol., 39, 7046–7054, https://doi.org/10.1021/es050400s,
2005.
Pullinen, I., Schmitt, S., Kang, S., Sarrafzadeh, M., Schlag, P., Andres, S., Kleist, E., Mentel, T. F., Rohrer, F., Springer, M., Tillmann, R., Wildt, J., Wu, C., Zhao, D., Wahner, A., and Kiendler-Scharr, A.: Impact of NOx on secondary organic aerosol (SOA) formation from α-pinene and β-pinene photooxidation: the role of highly oxygenated organic nitrates, Atmos. Chem. Phys., 20, 10125–10147, https://doi.org/10.5194/acp-20-10125-2020, 2020.
Pye, H. O. T., Chan, A. W. H., Barkley, M. P., and Seinfeld, J. H.: Global modeling of organic aerosol: the importance of reactive nitrogen (NOx and NO3), Atmos. Chem. Phys., 10, 11261–11276, https://doi.org/10.5194/acp-10-11261-2010, 2010.
Pye, H. O. T., D'Ambro, E. L., Lee, B. H., Schobesberger, S., Takeuchi, M.,
Zhao, Y., Lopez-Hilfiker, F., Liu, J., Shilling, J. E., Xing, J., Mathur,
R., Middlebrook, A. M., Liao, J., Welti, A., Graus, M., Warneke, C., de
Gouw, J. A., Holloway, J. S., Ryerson, T. B., Pollack, I. B., and Thornton,
J. A.: Anthropogenic enhancements to production of highly oxygenated
molecules from autoxidation, P. Natl. Acad. Sci. USA, 116,
6641–6646, https://doi.org/10.1073/pnas.1810774116, 2019.
Quéléver, L. L. J., Kristensen, K., Normann Jensen, L., Rosati, B., Teiwes, R., Daellenbach, K. R., Peräkylä, O., Roldin, P., Bossi, R., Pedersen, H. B., Glasius, M., Bilde, M., and Ehn, M.: Effect of temperature on the formation of highly oxygenated organic molecules (HOMs) from alpha-pinene ozonolysis, Atmos. Chem. Phys., 19, 7609–7625, https://doi.org/10.5194/acp-19-7609-2019, 2019.
Sarrafzadeh, M., Wildt, J., Pullinen, I., Springer, M., Kleist, E., Tillmann, R., Schmitt, S. H., Wu, C., Mentel, T. F., Zhao, D., Hastie, D. R., and Kiendler-Scharr, A.: Impact of NOx and OH on secondary organic aerosol formation from β-pinene photooxidation, Atmos. Chem. Phys., 16, 11237–11248, https://doi.org/10.5194/acp-16-11237-2016, 2016.
Schervish, M. and Donahue, N. M.: Peroxy radical chemistry and the volatility basis set, Atmos. Chem. Phys., 20, 1183–1199, https://doi.org/10.5194/acp-20-1183-2020, 2020.
Schwantes, R. H., Charan, S. M., Bates, K. H., Huang, Y., Nguyen, T. B., Mai, H., Kong, W., Flagan, R. C., and Seinfeld, J. H.: Low-volatility compounds contribute significantly to isoprene secondary organic aerosol (SOA) under high-NOx conditions, Atmos. Chem. Phys., 19, 7255–7278, https://doi.org/10.5194/acp-19-7255-2019, 2019.
Song, C., Na, K., and Cocker, D. R.: Impact of the hydrocarbon to NOx ratio
on secondary organic aerosol formation, Environ. Sci. Technol., 39, 3143–3149,
https://doi.org/10.1021/es0493244, 2005.
White, M. L., Russo, R. S., Zhou, Y., Mao, H., Varner, R. K., Ambrose, J.,
Veres, P., Wingenter, O. W., Haase, K., Stutz, J., Talbot, R., and Sive, B.
C.: Volatile organic compounds in northern New England marine and
continental environments during the ICARTT 2004 campaign, J. Geophys. Res., 113, D08S90, https://doi.org/10.1029/2007JD009161, 2008.
Xavier, C., Rusanen, A., Zhou, P., Dean, C., Pichelstorfer, L., Roldin, P., and Boy, M.: Aerosol mass yields of selected biogenic volatile organic compounds – a theoretical study with nearly explicit gas-phase chemistry, Atmos. Chem. Phys., 19, 13741–13758, https://doi.org/10.5194/acp-19-13741-2019, 2019.
Ye, P., Ding, X., Hakala, J., Hofbauer, V., Robinson, E. S., and Donahue, N.
M.: Vapor wall loss of semi-volatile organic compounds in a Teflon chamber, Aerosol Sci. Tech.,
50, 822–834, https://doi.org/10.1080/02786826.2016.1195905, 2016.
Ye, Q., Wang, M., Hofbauer, V., Stolzenburg, D., Chen, D., Schervish, M.,
Vogel, A., Mauldin, R. L., Baalbaki, R., Brilke, S., and Dada, L.: Molecular
Composition and Volatility of Nucleated Particles from α-Pinene
Oxidation between −50 ∘C and +25 ∘C, Environ. Sci.
Technol., 53, 12357–12365, https://doi.org/10.1021/ACS.EST.9B03265, 2019.
Zhang, S.-H., Shaw, M., Seinfeld, J. H., and Flagan, R. C.: Photochemical aerosol formation from α-pinene- and β-pinene, J. Geophys. Res., 97, 20717–20729, https://doi.org/10.1029/92jd02156, 1992.
Zhang, X., Cappa, C. D., Jathar, S. H., McVay, R. C., Ensberg, J. J.,
Kleeman, M. J., and Seinfeld, J. H.: Influence of vapor wall loss in
laboratory chambers on yields of secondary organic aerosol, P. Natl.
Acad. Sci. USA, 111, 5802–5807, https://doi.org/10.1073/PNAS.1404727111, 2014.
Zhang, X., Schwantes, R. H., McVay, R. C., Lignell, H., Coggon, M. M., Flagan, R. C., and Seinfeld, J. H.: Vapor wall deposition in Teflon chambers, Atmos. Chem. Phys., 15, 4197–4214, https://doi.org/10.5194/acp-15-4197-2015, 2015.
Zhang, X., Lambe, A. T., Upshur, M. A., Brooks, W. A., Bé, A. G.,
Thomson, R. J., Geiger, F. M., Surratt, J. D., Zhang, Z., Gold, A., Graf,
S., Cubison, M. J., Groessl, M., Jayne, J. T., Worsnop, D. R., and
Canagaratna, M. R.: Highly Oxygenated Multifunctional Compounds in α-Pinene Secondary Organic Aerosol, Environ. Sci. Technol., 51, 5932–5940,
https://doi.org/10.1021/ACS.EST.6B06588, 2017.
Zhao, Y., Thornton, J. A., and Pye, H. O. T.: Quantitative constraints on
autoxidation and dimer formation from direct probing of monoterpene-derived
peroxy radical chemistry, P. Natl. Acad. Sci. USA, 115,
12142–12147, https://doi.org/10.1073/pnas.1812147115, 2018.
Ziemann, P. J. and Atkinson, R.: Kinetics, products, and mechanisms of
secondary organic aerosol formation, Chem. Soc. Rev., 41, 6582–6605,
https://doi.org/10.1039/c2cs35122f, 2012.
Short summary
Chamber-derived secondary organic aerosol (SOA) yields from camphene are reported for the first time. The role of peroxy radicals (RO2) was investigated using chemically detailed box models. We observed higher SOA yields (up to 64 %) in the experiments with added NOx than without due to the formation of highly oxygenated organic molecules (HOMs) when
NOx is present. This work can improve the representation of camphene in air quality models and provide insights into other monoterpene studies.
Chamber-derived secondary organic aerosol (SOA) yields from camphene are reported for the first...
Altmetrics
Final-revised paper
Preprint