Articles | Volume 22, issue 4
https://doi.org/10.5194/acp-22-2351-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-2351-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Enhanced summertime ozone and SOA from biogenic volatile organic compound (BVOC) emissions due to vegetation biomass variability during 1981–2018 in China
Jing Cao
College of Environmental Sciences and Engineering, Qingdao University,
Qingdao 266071, China
Shuping Situ
Foshan Ecological and Environmental Monitoring Station of Guangdong
Province, Foshan 528000, China
Yufang Hao
Laboratory of Atmospheric Chemistry, Energy and Environment Research
Division, Paul Scherrer Institute/ETH, Villigen 5232, Switzerland
Shaodong Xie
State Key Joint Laboratory of Environment Simulation and Pollution
Control, College of Environmental Sciences and Engineering, Peking
University, Beijing 100871, China
Lingyu Li
CORRESPONDING AUTHOR
College of Environmental Sciences and Engineering, Qingdao University,
Qingdao 266071, China
Related authors
No articles found.
Huijuan Han, Yanqi Jia, Rende Shi, Changliang Nie, Yoshizumi Kajii, Yan Wu, and Lingyu Li
EGUsphere, https://doi.org/10.5194/egusphere-2025-3354, https://doi.org/10.5194/egusphere-2025-3354, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Chinese biogenic volatile organic compound (BVOC) emission estimate mainly applies global emission rates, causing its high uncertainty. We established a localized plant species-specific BVOC emission rate library using a developed statistical approach, based on local measurements. The usage of library can improve the emission model performance by better catching the spatial variations of emissions.
Xudong Zheng and Shaodong Xie
Atmos. Chem. Phys., 25, 3807–3820, https://doi.org/10.5194/acp-25-3807-2025, https://doi.org/10.5194/acp-25-3807-2025, 2025
Short summary
Short summary
To reduce uncertainties in identifying the key volatile organic compounds (VOCs) in ozone (O3) formation from ambient concentrations, this study comprehensively calculates the emitted VOC concentrations during both nighttime and daytime using the nitrate radical, O3, and hydroxyl radical reaction rates and ambient VOC concentrations. Based on the emitted concentrations, isoprene is one of the top three species contributing to O3 formation, which may be overlooked in observed concentrations.
Marco Paglione, Yufang Hao, Stefano Decesari, Mara Russo, Karam Mansour, Mauro Mazzola, Diego Fellin, Andrea Mazzanti, Emilio Tagliavini, Manousos Ioannis Manousakas, Evangelia Diapouli, Elena Barbaro, Matteo Feltracco, Kaspar Rudolf Daellenbach, and Matteo Rinaldi
EGUsphere, https://doi.org/10.5194/egusphere-2025-760, https://doi.org/10.5194/egusphere-2025-760, 2025
Short summary
Short summary
A year-long set of PM1 samples from Ny-Ålesund, Svalbard, was analyzed by H-NMR and HR-TOF-AMS for the chemical characterization of the organic fraction. Positive Matrix Factorization allowed to identify five organic aerosol sources with specific seasonality. Winter-spring aerosol is dominated by Eurasian pollution, while summer is characterized by biogenic aerosols from marine sources; occasional summertime high OA loadings are associated with wildfire aerosols.
Xianzhong Duan, Ming Chang, Guotong Wu, Suping Situ, Shengjie Zhu, Qi Zhang, Yibo Huangfu, Weiwen Wang, Weihua Chen, Bin Yuan, and Xuemei Wang
Atmos. Meas. Tech., 17, 4065–4079, https://doi.org/10.5194/amt-17-4065-2024, https://doi.org/10.5194/amt-17-4065-2024, 2024
Short summary
Short summary
Accurately estimating biogenic volatile organic compound (BVOC) emissions in forest ecosystems has been challenging. This research presents a framework that utilizes drone-based lidar, photogrammetry, and image recognition technologies to identify plant species and estimate BVOC emissions. The largest cumulative isoprene emissions were found in the Myrtaceae family, while those of monoterpenes were from the Rubiaceae family.
Zhier Bao, Xinyi Zhang, Qing Li, Jiawei Zhou, Guangming Shi, Li Zhou, Fumo Yang, Shaodong Xie, Dan Zhang, Chongzhi Zhai, Zhenliang Li, Chao Peng, and Yang Chen
Atmos. Chem. Phys., 23, 1147–1167, https://doi.org/10.5194/acp-23-1147-2023, https://doi.org/10.5194/acp-23-1147-2023, 2023
Short summary
Short summary
We characterised non-refractory fine particulate matter (PM2.5) during winter in the Sichuan Basin (SCB), Southwest China. The factors driving severe aerosol pollution were revealed, highlighting the importance of rapid nitrate formation and intensive biomass burning. Nitrate was primarily formed through gas-phase oxidation during daytime and aqueous-phase oxidation during nighttime. Controlling nitrate and biomass burning will benefit the mitigation of haze formation in the SCB.
Jie Ren, Fangfang Guo, and Shaodong Xie
Atmos. Chem. Phys., 22, 15035–15047, https://doi.org/10.5194/acp-22-15035-2022, https://doi.org/10.5194/acp-22-15035-2022, 2022
Short summary
Short summary
O3–NOx–VOC sensitivity in China is diagnosed by deriving regional satellite HCHO / NO2 thresholds between O3 production regimes. VOC-limited regimes are found widely over megacity clusters and developed cities. VOCs and NOx emissions are tracked with satellite HCHO and NO2 to evaluate O3 responses to precursors changes. The significant reduction in NOx emissions without effective VOC control since the Clean Air Action Plan in 2013 is responsible for the increase in O3 concentrations in China.
Bingqing Zhang, Huizhong Shen, Pengfei Liu, Hongyu Guo, Yongtao Hu, Yilin Chen, Shaodong Xie, Ziyan Xi, T. Nash Skipper, and Armistead G. Russell
Atmos. Chem. Phys., 21, 8341–8356, https://doi.org/10.5194/acp-21-8341-2021, https://doi.org/10.5194/acp-21-8341-2021, 2021
Short summary
Short summary
Extended ground-level measurements are coupled with model simulations to comprehensively compare the aerosol acidity in China and the United States. Aerosols in China are significantly less acidic than those in the United States, with pH values 1–2 units higher. Higher aerosol mass concentrations and the abundance of ammonia and ammonium in China, compared to the United States, are leading causes of the pH difference between these two countries.
Cited articles
Bai, J., Guenther, A., Turnipseed, A., and Duhl, T.: Seasonal and
interannual variations in whole-ecosystem isoprene and monoterpene emissions
from a temperate mixed forest in Northern China, Atmos. Pollut. Res., 6,
696–707, https://doi.org/10.5094/APR.2015.078, 2015.
Bai, J., Guenther, A., Turnipseed, A., Duhl, T., Yu, S., and Wang, B.:
Seasonal variations in whole-ecosystem BVOC emissions from a subtropical
bamboo plantation in China, Atmos. Environ., 124, 12–21,
https://doi.org/10.1016/j.atmosenv.2015.11.008, 2016.
Bai, J., Guenther, A., Turnipseed, A., Duhl, T., and Greenberg, J.: Seasonal
and interannual variations in whole-ecosystem BVOC emissions from a
subtropical plantation in China, Atmos. Environ., 161, 176–190,
https://doi.org/10.1016/j.atmosenv.2017.05.002, 2017.
Bai, J. H. and Hao, N.: The relationships between biogenic volatile organic
compound (BVOC) emissions and atmospheric formaldehyde in a subtropical
Pinus plantation in China, Ecol. Environ. Sci., 27, 991–999, https://doi.org/10.16258/j.cnki.1674-5906.2018.06.001, 2018.
Cao, T. W., Wu, K., Kang, P., Wen, X. H., Li, H., Wang, Y., Lu, X. Y., Li,
A. Q., Pan, W. H., Fan, W. B., Yi, R., Bao, X. B., and He, M. Q.: Study on
ozone pollution characteristics and meteorological cause of
Chengdu-Chongqing urban agglomeration, Acta Sci. Circum., 38,
1275–1284, https://doi.org/10.13671/j.hjkxxb.2017.0460, 2018.
Carslaw, K. S., Boucher, O., Spracklen, D. V., Mann, G. W., Rae, J. G. L., Woodward, S., and Kulmala, M.: A review of natural aerosol interactions and feedbacks within the Earth system, Atmos. Chem. Phys., 10, 1701–1737, https://doi.org/10.5194/acp-10-1701-2010, 2010.
Chen, C., Park, T., Wang, X., Piao, S., Xu, B., Chaturvedi, R. K., Fuchs,
R., Brovkin, V., Ciais, P ., Fensholt, R., Tømmervik, H., Bala, G., Zhu,
Z., Nemani, R. R., and Myneni, R. B.: China and India lead in greening of
the world through land-use management, Nat. Sustain., 2, 122–129,
https://doi.org/10.1038/s41893-019-0220-7, 2019.
Claeys, M., Graham, B., Vas, G., Wang, W., Vermeylen, R., Pashynska, V.,
Cafmeyer, J., Guyon, P., Andreae, M. O., and Artaxo, P.: Formation of
secondary organic aerosols through photooxidation of isoprene, Science, 303,
1173–1176, https://doi.org/10.1126/science.1092805, 2004.
Donahue, N. M., Robinson, A. L., Stanier, C. O., and Pandis, S. N.: Coupled
partitioning, dilution, and chemical aging of semivolatile organics,
Environ. Sci. Technol., 40, 2635–2643, https://doi.org/10.1021/es052297c,
2006.
Emanuelsson, E. U., Hallquist, M., Kristensen, K., Glasius, M., Bohn, B., Fuchs, H., Kammer, B., Kiendler-Scharr, A., Nehr, S., Rubach, F., Tillmann, R., Wahner, A., Wu, H.-C., and Mentel, Th. F.: Formation of anthropogenic secondary organic aerosol (SOA) and its influence on biogenic SOA properties, Atmos. Chem. Phys., 13, 2837–2855, https://doi.org/10.5194/acp-13-2837-2013, 2013.
Fan, H., Zhao, C. F., and Yang, Y. K.: A comprehensive anal ysis of the
spatio-temporal variation of urban air pollution in China during 2014–2018,
Atmos. Environ., 220, 1–12, https://doi.org/10.1016/j.atmosenv.2019.117066,
2020.
Fu, Y. and Liao, H.: Simulation of the interannual variations of biogenic
emissions of volatile organic compounds in China: Impacts on tropospheric
ozone and secondary organic aerosol, Atmos. Environ., 59, 170–185,
https://doi.org/10.1016/j.atmosenv.2012.05.053, 2012.
Gao, C., Zhang, X. L., Xiu, A. J., Huang, L., and Zhao, H. M., Wang, K.,
Tong, Q. Q.: Spatiotemporal distribution of biogenic volatile organic
compounds emissions in China, Acta Sci. Circum., 39, 4140–4151,
https://doi.org/10.13671/j.hjkxxb.2019.0243, 2019.
Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G.,
Skamarock, W. C., and Eder, B.: Fully coupled “online” chemistry within
the WRF model, Atmos. Environ., 39, 6957–6975,
https://doi.org/10.1016/j.atmosenv.2005.04.027, 2005.
Guenther, A., Zimmerman, P., and Wildermuth, M.: Natural volatile organic
compound emission rate estimates for U.S. woodland landscapes, Atmos.
Environ., 28, 1197–1210, https://doi.org/10.1016/1352-2310(94)90297-6,
1994.
Guenther, A., Hewitt, C. N., Erickson, D., Fall, R., Geron, C., Graedel, T.,
Harley, P ., Klinger, L., Lerdau, M., McKay, W. A., Pierce, T., Scholes, B.,
Steinbrecher, R., Tallamraju, R., Taylor, J., and Zimmerman, P.: A global
model of natural volatile organic compound emissions, J. Geophys. Res., 100,
8873, https://doi.org/10.1029/94jd02950, 1995.
Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., and Wang, X.: The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions, Geosci. Model Dev., 5, 1471–1492, https://doi.org/10.5194/gmd-5-1471-2012, 2012.
Gupta, M. and Mohan, M.: Validation of WRF/Chem model and sensitivity of
chemical mechanisms to ozone simulation over megacity Delhi, Atmos.
Environ., 122, 220–229, 2015.
Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen, J., Donahue, N. M., George, C., Goldstein, A. H., Hamilton, J. F., Herrmann, H., Hoffmann, T., Iinuma, Y., Jang, M., Jenkin, M. E., Jimenez, J. L., Kiendler-Scharr, A., Maenhaut, W., McFiggans, G., Mentel, Th. F., Monod, A., Prévôt, A. S. H., Seinfeld, J. H., Surratt, J. D., Szmigielski, R., and Wildt, J.: The formation, properties and impact of secondary organic aerosol: current and emerging issues, Atmos. Chem. Phys., 9, 5155–5236, https://doi.org/10.5194/acp-9-5155-2009, 2009.
Henze, D. K. and Seinfeld, J. H.: Global secondary organic aerosol from
isoprene oxidation, Geophys. Res. Lett., 33, 6–9,
https://doi.org/10.1029/2006GL025976, 2006.
Hoffmann, T., Odum, J. R., Bowman, F., Collins, D., Klockow, D., Flagan, R.
C., and Seinfeld, J. H.: Formation of organic aerosols from the oxidation of
biogenic hydrocarbons, J. Atmos. Chem., 26, 189–222,
https://doi.org/10.1023/A:1005734301837, 1997.
Hoshyaripour, G., Brasseur, G., Andrade, M. F., Gavidia-Calder, M., Bouarar,
I., and Ynoue, R. Y.: Prediction of ground-level ozone concentration in Sao
Paulo, Brazil: deterministic versus statistic models, Atmos. Environ., 145,
365–375, https://doi.org/10.1016/j.atmosenv.2016.09.061, 2016.
Hu, J., Wang, P., Ying, Q., Zhang, H., Chen, J., Ge, X., Li, X., Jiang, J., Wang, S., Zhang, J., Zhao, Y., and Zhang, Y.: Modeling biogenic and anthropogenic secondary organic aerosol in China, Atmos. Chem. Phys., 17, 77–92, https://doi.org/10.5194/acp-17-77-2017, 2017.
Jin, X. and Holloway, T.: Spatial and temporal variability of ozone
sensitivity over China observed from the ozone monitoring instrument, J.
Geophys. Res.-Atmos., 120, 7229–7246,
https://doi.org/10.1002/2015jd023250, 2015.
Kelly, J. M., Doherty, R. M., O'Connor, F. M., and Mann, G. W.: The impact of biogenic, anthropogenic, and biomass burning volatile organic compound emissions on regional and seasonal variations in secondary organic aerosol, Atmos. Chem. Phys., 18, 7393–7422, https://doi.org/10.5194/acp-18-7393-2018, 2018.
Klinger, L. F., Li, Q. J., Guenther, A. B., Greenberg, J. P., Baker, B., and
Bai, J. H.: Assessment of volatile organic compound emissions from
ecosystems of China, J. Geophys. Res.-Atmos., 107, 16–21,
https://doi.org/10.1029/2001jd001076, 2002.
Kota, S. H., Schade, G., Estes, M., Boyer, D., and Ying, Q.: Evaluation of
MEGAN predicted biogenic isoprene emissions at urban locations in Southeast
Texas, Atmos. Environ., 110, 54–64,
https://doi.org/10.1016/j.atmosenv.2015.03.027, 2015.
Li, J., Li, L. Y., Wu, R. R., Li, Y. Q., Bo, Y., and Xie, S. D.: Inventory
of highly resolved temporal and spatial volatile organic compounds emission
in China, Air. Pollut., 207, 79–86, https://doi.org/10.2495/AIR160081, 2016.
Li, K., Jacob, D. J., Liao, H., Shen, L., Zhang, Q., and Bates, K. H.:
Anthropogenic drivers of 2013–2017 trends in summer surface ozone in China,
P. Natl. Acad. Sci. USA, 116, 422–427,
https://doi.org/10.1073/pnas.1812168116, 2019a.
Li, K., Jacob, D. J., Liao, H., Zhu, J., Shah, V., Shen, L., Bates, K. H.,
Zhang, Q., and Zhai, S.: A two-pollutant strategy for improving ozone and
particulate air quality in China, Nat. Geosci., 12, 906–910,
https://doi.org/10.1038/s41561-019-0464-x, 2019b.
Li, L., Yang, W., Xie, S., and Wu, Y.: Estimations and uncertainty of
biogenic volatile organic compound emission inventory in China for
2008–2018, Sci. Total. Environ., 733, 139301,
https://doi.org/10.1016/j.scitotenv.2020.139301, 2020.
Li, L. Y. and Xie, S. D.: Historical variations of biogenic volatile organic
compound emission inventories in China, 1981–2003, Atmos. Environ., 95,
185–196, https://doi.org/10.1016/j.atmosenv.2014.06.033, 2014.
Li, L. Y., Chen, Y., and Xie, S. D.: Spatio-temporal variation of biogenic
volatile organic compounds emissions in China, Environ. Pollut., 182,
157–168, https://doi.org/10.1016/j.envpol.2013.06.042, 2013.
Li, L. Y., Zhang, B. W., Cao, J., Xie, S. D., and Wu, Y.: Isoprenoid
emissions from natural vegetation increased rapidly in eastern China,
Environ. Res., 200, 111462, https://doi.org/10.1016/j.envres.2021.111462,
2021.
Li, M., Song, Y., Liu, M., Yao, H., Huang, X., Wang, X., and Zhang, Y.:
Impacts of decadal variations in natural emissions due to land-cover changes
on ozone production in southern China, Tellus B., 67, 27676,
https://doi.org/10.3402/tellusb.v67.27676, 2015.
Li, M., Zhang, Q., Kurokawa, J.-I., Woo, J.-H., He, K., Lu, Z., Ohara, T., Song, Y., Streets, D. G., Carmichael, G. R., Cheng, Y., Hong, C., Huo, H., Jiang, X., Kang, S., Liu, F., Su, H., and Zheng, B.: MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP, Atmos. Chem. Phys., 17, 935–963, https://doi.org/10.5194/acp-17-935-2017, 2017.
Li, N., He, Q., Greenberg, J., Guenther, A., Li, J., Cao, J., Wang, J., Liao, H., Wang, Q., and Zhang, Q.: Impacts of biogenic and anthropogenic emissions on summertime ozone formation in the Guanzhong Basin, China, Atmos. Chem. Phys., 18, 7489–7507, https://doi.org/10.5194/acp-18-7489-2018, 2018.
Liu, H., Liu, S., Xue, B., Lv, Z., Meng, Z., Yang, X., Xue, T., Yu, Q., and
He, K.: Ground-level ozone pollution and its health impacts in China, Atmos.
Environ., 173, 223–230, https://doi.org/10.1016/j.atmosenv.2017.11.014,
2018.
Liu, S., Xing, J., Zhang, H., Ding, D., Zhang, F., Zhao, B., Sahu, S. K.,
and Wang, S.: Climate-driven trends of biogenic volatile organic compound
emissions and their impacts on summertime ozone and secondary organic
aerosol in China in the 2050s, Atmos. Environ., 218, 117020,
https://doi.org/10.1016/j.atmosenv.2019.117020, 2019.
Liu, Y. and Wang, T.: Worsening urban ozone pollution in China from 2013 to 2017 – Part 1: The complex and varying roles of meteorology, Atmos. Chem. Phys., 20, 6305–6321, https://doi.org/10.5194/acp-20-6305-2020, 2020.
Liu, Y., Li, L., An, J. Y., Huang, L., Yan, R. S., Huang, C., Wang, H. L.,
Wang, Q., Wang, M., and Zhang, W.: Estimation of biogenic VOC emissions and
its impact on ozone formation over the Yangtze River Delta region, China,
Atmos. Environ., 186, 113–128,
https://doi.org/10.1016/j.atmosenv.2018.05.027, 2018.
Lu, H., Lyu, X., Cheng, H., Ling, Z., and Guo, H.: Overview on the
spatial-temporal characteristics of the ozone formation regime in China,
Environ. Sci., 21, 916–929,
https://doi.org/10.1039/C9EM00098D, 2019.
Lyu, X. P., Chen, N., Guo, H., Zhang, W. H., Wang, N., Wang, Y., and Liu,
M.: Ambient volatile organic compounds and their effect on ozone production
in Wuhan, central China, Sci. Total Environ., 541, 200–209,
https://doi.org/10.1016/j.scitotenv.2015.09.093, 2016.
Ma, M., Gao, Y., Wang, Y., Zhang, S., Leung, L. R., Liu, C., Wang, S., Zhao, B., Chang, X., Su, H., Zhang, T., Sheng, L., Yao, X., and Gao, H.: Substantial ozone enhancement over the North China Plain from increased biogenic emissions due to heat waves and land cover in summer 2017, Atmos. Chem. Phys., 19, 12195–12207, https://doi.org/10.5194/acp-19-12195-2019, 2019.
Milford, J. B., Russell, A. G., and Mcrae, G. J.: A new approach to
photochemical pollution-control: Implications of spatial patterns in
pollutant responses to reductions in nitrogen-oxides and reactive organic
gas emissions, Environ. Sci. Technol., 23, 1290–1301,
https://doi.org/10.1021/es00068a017, 1989.
Mutzel, A., Rodigast, M., Iinuma, Y., Böge, O., and Herrmann, H.:
Monoterpene SOA – Contribution of first-generation oxidation products to
formation and chemical composition, Atmos. Environ., 130, 136–144,
https://doi.org/10.1016/j.atmosenv.2015.10.080, 2016.
Ng, N. L., Kwan, A. J., Surratt, J. D., Chan, A. W. H., Chhabra, P. S., Sorooshian, A., Pye, H. O. T., Crounse, J. D., Wennberg, P. O., Flagan, R. C., and Seinfeld, J. H.: Secondary organic aerosol (SOA) formation from reaction of isoprene with nitrate radicals (NO3), Atmos. Chem. Phys., 8, 4117–4140, https://doi.org/10.5194/acp-8-4117-2008, 2008.
Opacka, B., Müller, J.-F., Stavrakou, T., Bauwens, M., Sindelarova, K., Markova, J., and Guenther, A. B.: Global and regional impacts of land cover changes on isoprene emissions derived from spaceborne data and the MEGAN model, Atmos. Chem. Phys., 21, 8413–8436, https://doi.org/10.5194/acp-21-8413-2021, 2021.
Orlando, J. J., Nozière, B., Tyndall, G. S., Orzechowska, G. E.,
Grazyna, E., Paulson, S. E., and Rudich, Y.: Product studies of the OH- and
ozone-initiated oxidation of some monoterpenes, J. Geophys. Res., 105,
11561–11572, https://doi.org/10.1029/2000JD900005, 2000.
Palmer, P. I., Jacob, D. J., Fiore, A. M., Martin, R. V., Chance, K., and
Kurosu, T. P.: Mapping isoprene emissions over North America using
formaldehyde column observations from space, J. Geophys. Res.-Atmos., 108,
4180, https://doi.org/10.1029/2002JD002153, 2003.
Piao, S., Yin, G., Tan, J., Cheng, L., Huang, M., Li, Y., Liu, R., Mao, J.,
Myneni, R. B., Peng, S., Poulter, B., Shi, X., Xiao, Z., Zeng, N., Zeng, Z.,
and Wang, Y.: Detection and attribution of vegetation greening trend in
China over the last 30 years, Glob. Change Biol., 21, 1601–1609,
https://doi.org/10.1111/gcb.12795, 2015.
Ruppert, L. and Becker, K. H.: A product study of the OH radical-initiated
oxidation of isoprene: formation of C5-unsaturated diols, Atmos. Environ.,
34, 1529–1542, https://doi.org/10.1016/S1352-2310(99)00408-2, 2000.
Silver, B., Reddington, C. L., Arnold, S. R., and Spracklen, D. V.:
Substantial changes in air pollution across China during 2015–2017,
Environ. Res. Lett., 13, 114012, https://doi.org/10.1088/1748-9326/aae718,
2018.
Simpson, D., Winiwarter, W., Börjesson, G., Cinderby, S., Ferreiro, A.,
Guenther, A., Hewitt, C. N., Janson, R., Aslam, K., Khalil, M., Owen, S.,
Pierce, T. E., Puxbaum, H., Shearer, M., Skiba, U., Steinbrecher, R.,
Tarrasón, L., and Öquist, M. G.: Inventorying emissions from Nature
in Europe, J. Geophys. Res., 104, 8113–8152,
https://doi.org/10.1029/98JD02747, 1999.
Situ, S., Guenther, A., Wang, X., Jiang, X., Turnipseed, A., Wu, Z., Bai, J., and Wang, X.: Impacts of seasonal and regional variability in biogenic VOC emissions on surface ozone in the Pearl River delta region, China, Atmos. Chem. Phys., 13, 11803–11817, https://doi.org/10.5194/acp-13-11803-2013, 2013.
Stavrakou, T., Müller, J.-F., Bauwens, M., De Smedt, I., Van Roozendael,
M., and Guenther, A.: Impact of Short-Term Climate Variability on Volatile
Organic Compounds Emissions Assessed Using OMI Satellite Formaldehyde
Observations, Geophys. Res. Lett., 45, 8681–8689, 2018.
Stockwell, W. R., Kirchner, F., Kuhn, M., and Seefeld, S.: A new mechanism
for regional atmospheric chemistry modeling, J. Geophys. Res.-Atmos., 102,
25847–25879, https://doi.org/10.1029/97JD00849, 1997.
Sun, L., Xue, L., Wang, Y., Li, L., Lin, J., Ni, R., Yan, Y., Chen, L., Li, J., Zhang, Q., and Wang, W.: Impacts of meteorology and emissions on summertime surface ozone increases over central eastern China between 2003 and 2015, Atmos. Chem. Phys., 19, 1455–1469, https://doi.org/10.5194/acp-19-1455-2019, 2019.
Tan, Z., Lu, K., Jiang, M., Su, R., Dong, H., Zeng, L., Xie, S., Tan, Q.,
and Zhang, Y.: Exploring ozone pollution in Chengdu, southwestern China: A
case study from radical chemistry to O3-VOC-NOx sensitivity, Sci.
Total Environ., 636, 775–786,
https://doi.org/10.1016/j.scitotenv.2018.04.286, 2018.
Tasoglou, A. and Pandis, S. N.: Formation and chemical aging of secondary organic aerosol during the β-caryophyllene oxidation, Atmos. Chem. Phys., 15, 6035–6046, https://doi.org/10.5194/acp-15-6035-2015, 2015.
Wang, C. and Zhang, X. Y.: Implementation pathway and policy system of
carbon neutrality vision, Chinese Journal of Environmental Management, 6,
58–64, https://doi.org/10.16868/j.cnki.1674-6252.2020.06.058, 2020.
Wang, H., Wu, Q., Guenther, A. B., Yang, X., Wang, L., Xiao, T., Li, J., Feng, J., Xu, Q., and Cheng, H.: A long-term estimation of biogenic volatile organic compound (BVOC) emission in China from 2001–2016: the roles of land cover change and climate variability, Atmos. Chem. Phys., 21, 4825–4848, https://doi.org/10.5194/acp-21-4825-2021, 2021.
Wang, P., Ying, Q., Zhang, H., Hu, J., Lin, Y., and Mao, H.: Source
apportionment of secondary organic aerosol in China using a regional
source-oriented chemical transport model and two emission inventories,
Environ. Pollut., 237, 756–766,
https://doi.org/10.1016/j.envpol.2017.10.122, 2018.
Wang, P., Chen, Y., Hu, J., Zhang, H., and Ying, Q.: Source apportionment of
summertime ozone in China using a sourceoriented chemical transport model,
Atmos. Environ., 211, 79–90,
https://doi.org/10.1016/j.atmosenv.2019.05.006, 2019.
Wang, Q., Han, Z., Wang, T., and Higano, Y.: An estimate of biogenic
emissions of volatile organic compounds during summertime in China, Environ.
Sci. Pollut. Res., 14, 69–75, https://doi.org/10.1065/espr2007.02.376,
2007.
Wang, Q. G., Han, Z. W., Wang, T. J., and Zhang, R. J.: Impacts of biogenic
emissions of VOC and NOx on tropospheric ozone during summertime in
eastern China, Sci. Total. Environ., 395, 41–49,
https://doi.org/10.1016/j.scitotenv.2008.01.059, 2008.
Wang, T., Xue, L., Brimblecombe, P., Lam, Y. F., Li, L., and Zhang, L.:
Ozone pollution in China: A review of concentrations, meteorological
influences, chemical precursors, and effects, Sci. Total Environ., 575,
1582–1596, https://doi.org/10.1016/j.scitotenv.2016.10.081, 2017.
Watne, A. K., Westerlund, J., Hallquist, A. M., Brune, W. H., and Hallquist,
M.: Ozone and OH-induced oxidation of monoterpenes: Changes in the thermal
properties of secondary organic aerosol (SOA), J. Aerosol Sci., 114, 31–41,
https://doi.org/10.1016/j.jaerosci.2017.08.011, 2017.
Wennberg, P. O., Bates, K. H., Crounse, J. D., Dodson, L. G., McVay, R. C.,
Mertens, L. A., Nguyen, T. B., Praske, E., Schwantes, R. H., Smarte, M. D.,
St Clair, J. M., Teng, A. P., Zhang, X., and Seinfeld, J. H.: Gas-phase
reactions of isoprene and its major oxidation products, Chem. Rev., 118,
3337–3390, https://doi.org/10.1021/acs.chemrev.7b00439, 2018.
Wild, O., Zhu, X., and Prather, M. J.: Fast-J: Accurate simulation of in-
and below-cloud photolysis in tropospheric chemical models, J. Atmos. Chem.,
37, 245–282, https://doi.org/10.1029/2006JD008007, 2000.
Wu, J., Bei, N., Li, X., Cao, J., Feng, T., Wang, Y., Tie, X., and Li, G.: Widespread air pollutants of the North China Plain during the Asian summer monsoon season: a case study, Atmos. Chem. Phys., 18, 8491–8504, https://doi.org/10.5194/acp-18-8491-2018, 2018.
Wu, K., Yang, X., Chen, D., Gu, S., Lu, Y., Jiang, Q., Wang, K., Ou, Y.,
Qian, Y., Shao, P., and Lu, S.: Estimation of biogenic VOC emissions and
their corresponding impact on ozone and secondary organic aerosol formation
in China, Atmos. Res., 231, 104656,
https://doi.org/10.1016/j.atmosres.2019.104656, 2020.
Xie, S. Y., Huo, X. Q., Zeng, F. G., and Wang, S. J.: Analysis of ozone
pollution in Fenwei Plain from 2015 to 2019, Environmental Monitoring in
China, 37, 49–57, https://doi.org/10.19316/j.issn.1002-6002.2021.01.08,
2021.
Yang, W. Z., Cao, J., Wu, Y., Kong, F. L., and Li, L. Y.: Review on plant
terpenoid emissions worldwide and in China, Sci. Total. Environ., 787,
147454, https://doi.org/10.1016/j.scitotenv.2021.147454, 2021.
Zhai, S., Jacob, D. J., Wang, X., Shen, L., Li, K., Zhang, Y., Gui, K., Zhao, T., and Liao, H.: Fine particulate matter (PM2.5) trends in China, 2013–2018: separating contributions from anthropogenic emissions and meteorology, Atmos. Chem. Phys., 19, 11031–11041, https://doi.org/10.5194/acp-19-11031-2019, 2019.
Zhang, M., Zhao, C., Yang, Y., Du, Q., Shen, Y., Lin, S., Gu, D., Su, W., and Liu, C.: Modeling sensitivities of BVOCs to different versions of MEGAN emission schemes in WRF-Chem (v3.6) and its impacts over eastern China, Geosci. Model Dev., 14, 6155–6175, https://doi.org/10.5194/gmd-14-6155-2021, 2021.
Short summary
Based on localized emission factors and high-resolution vegetation data, we simulated the impacts of BVOC emissions on O3 and SOA during 1981–2018 in China. The interannual variation of BVOC emissions caused by increasing leaf biomass resulted in O3 and SOA concentrations increasing at average annual rates of 0.11 ppb and 0.008 μg m−3, respectively. The results show different variations which can be attributed to the different changing trends of leaf biomass by region and vegetation type.
Based on localized emission factors and high-resolution vegetation data, we simulated the...
Altmetrics
Final-revised paper
Preprint