Articles | Volume 22, issue 2
https://doi.org/10.5194/acp-22-1575-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-1575-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Weakening of Antarctic stratospheric planetary wave activities in early austral spring since the early 2000s: a response to sea surface temperature trends
Yihang Hu
Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, China
Wenshou Tian
CORRESPONDING AUTHOR
Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, China
Jiankai Zhang
Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, China
Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
Tao Wang
Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, China
Mian Xu
Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, China
Related authors
No articles found.
Zhe Wang, Jiankai Zhang, Siyi Zhao, and Douwang Li
Atmos. Chem. Phys., 25, 3465–3480, https://doi.org/10.5194/acp-25-3465-2025, https://doi.org/10.5194/acp-25-3465-2025, 2025
Short summary
Short summary
Mid-latitude wind in the upper stratosphere is indispensable in establishing quasi-biennial oscillation (QBO)–vortex coupling in the Southern Hemisphere. During the westerly QBO, positive zonal wind anomalies at 20−40° S in the upper stratosphere in July, named the positive extratropical mode, lead to a stronger polar vortex in November, with a correlation of 0.75, suggesting that the Antarctic stratospheric polar vortex and ozone concentration in spring can be predicted up to 5 months in advance.
Douwang Li, Zhe Wang, Siyi Zhao, Jiankai Zhang, Wuhu Feng, and Martyn P. Chipperfield
EGUsphere, https://doi.org/10.5194/egusphere-2025-955, https://doi.org/10.5194/egusphere-2025-955, 2025
Short summary
Short summary
We find that wind variations at the equator (QBO) modulate the occurrence of Arctic polar stratospheric clouds (PSCs), which are key contributors to ozone depletion. During westerly QBO, the PSC occurrence is significantly greater than during easterly QBO. The QBO affects PSC mainly through temperature, while H2O and HNO3 have less effect. This suggests that future climate change may affect ozone recovery if it alters the QBO pattern. This study provides a new perspective on ozone prediction.
Siyi Zhao, Jiankai Zhang, Chongyang Zhang, and Zhe Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2740, https://doi.org/10.5194/egusphere-2024-2740, 2024
Short summary
Short summary
By isolating the ozone-cycle coupling process, the study discusses how ozone-climate interaction affects the long-term change of the Arctic stratospheric temperature (AST). From 1980 to 1999, ozone-climate interactions increased AST by promoting upwave propagation and Brewer-Dobson circulation in early winter and reduced AST by reducing ozone shortwave heating in late winter and spring. Our results highlight the effect of ozone-climate interactions on intra-seasonal reversals of AST trends.
Kai Qie, Wuke Wang, Wenshou Tian, Rui Huang, Mian Xu, Tao Wang, and Yifeng Peng
Atmos. Chem. Phys., 22, 4393–4411, https://doi.org/10.5194/acp-22-4393-2022, https://doi.org/10.5194/acp-22-4393-2022, 2022
Short summary
Short summary
We identify a significantly intensified upward motion over the tropical western Pacific (TWP) and an enhanced tropical upwelling in boreal winter during 1958–2017 due to the warming of global sea surface temperatures (SSTs). Our results suggest that more tropospheric trace gases over the TWP could be elevated to the lower stratosphere, which implies that the emission from the maritime continent plays a more important role in the stratospheric processes and the global climate.
Zhiting Wang, Nils Hase, Wenshou Tian, and Mengchu Tao
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-1096, https://doi.org/10.5194/acp-2021-1096, 2022
Publication in ACP not foreseen
Short summary
Short summary
The distribution of trace gases in the stratosphere impacts the thermal and dynamical structures of the atmosphere. The spatial structure of the trace gases is determined by the residual circulation and stirring and mixing processes. Currently the stirring is purely constrained due to lack of observation. Here we develop a diagnosis for stirring mainly based on the trace gas contour. The method is applied for estimating stirring and mixing effects on methane concentration in a polar vortex.
James Keeble, Birgit Hassler, Antara Banerjee, Ramiro Checa-Garcia, Gabriel Chiodo, Sean Davis, Veronika Eyring, Paul T. Griffiths, Olaf Morgenstern, Peer Nowack, Guang Zeng, Jiankai Zhang, Greg Bodeker, Susannah Burrows, Philip Cameron-Smith, David Cugnet, Christopher Danek, Makoto Deushi, Larry W. Horowitz, Anne Kubin, Lijuan Li, Gerrit Lohmann, Martine Michou, Michael J. Mills, Pierre Nabat, Dirk Olivié, Sungsu Park, Øyvind Seland, Jens Stoll, Karl-Hermann Wieners, and Tongwen Wu
Atmos. Chem. Phys., 21, 5015–5061, https://doi.org/10.5194/acp-21-5015-2021, https://doi.org/10.5194/acp-21-5015-2021, 2021
Short summary
Short summary
Stratospheric ozone and water vapour are key components of the Earth system; changes to both have important impacts on global and regional climate. We evaluate changes to these species from 1850 to 2100 in the new generation of CMIP6 models. There is good agreement between the multi-model mean and observations, although there is substantial variation between the individual models. The future evolution of both ozone and water vapour is strongly dependent on the assumed future emissions scenario.
Cited articles
Andrews, D. G., Holton, J. R., and Leovy, C. B.: Middle atmosphere
dynamics, edited by: Dmowska, R., and Holton, J. R.,
San Diego, Calif., Academic Press Inc, 1st Edn., vol. 40, p. 489, ISBN: 9780120585762, 1987.
Angell, J. K. and Free, M.: Ground-based observations of the slowdown in
ozone decline and onset of ozone increase, J. Geophys. Res., 114,
D07303, https://doi.org/10.1029/2008JD010860, 2009.
Baldwin, M. P. and Dunkerton, T. J.: Stratospheric harbingers of anomalous
weather regimes, Science, 294, 581–584, https://doi.org/10.1126/science.1063315, 2001.
Baldwin, M. P. and Dunkerton, T. J.: The solar cycle and
stratosphere-troposphere dynamical coupling, J. Atmos. Sol.-Terr. Phys.,
67, 71–82, https://doi.org/10.1016/j.jastp.2004.07.018, 2005.
Baldwin, M., Hirooka, T., O'Neill, A., Yoden, S., Charlton, A. J., Hio, Y.,
and Yoden, S.: Major stratospheric warming in the Southern Hemisphere in
2002: Dynamical aspects of the ozone hole split, SPARC Newsletter, 20,
24–26, 2003.
Banerjee, A., Fyfe, J. C., Polvani, L. M., Waugh, D., and Chang, K. L.: A pause in
Southern Hemisphere circulation trends due to the Montreal
Protocol, Nature, 579, 544–548,
https://doi.org/10.1038/s41586-020-2120-4, 2020.
Barnes, E. A., Barnes, N. W., Polvani, L. M.: Delayed southern hemisphere climate change induced by stratospheric ozone recovery, as projected by the cmip5 models, J. Climate, 27, 852–867, https://doi.org/10.1175/JCLI-D-13-00246.1, 2014.
Birner, T. and Bönisch, H.: Residual circulation trajectories and transit times into the extratropical lowermost stratosphere, Atmos. Chem. Phys., 11, 817–827, https://doi.org/10.5194/acp-11-817-2011, 2011.
Bosilovich, M. G., Akella, S., Coy, L., Cullather, R., Draper, C., Gelaro, R. K., Liu, Q., Molod, A., Norris, P., Wargan, K., Chao, W., Reichle, R., Takacs, L., Vikhliaev, Y., Bloom, S., Collow, A., Firth, S., Labow, G., Partyka, G., Pawson, S., Reale, O., Schubert, S. D., and Suarez, M.: MERRA-2: Initial Evaluation of the Climate, NASA Technical Report Series on Global Modeling and Data Assimilation, 43, p. 139, 2015.
Charney, J. G. and Drazin, P. G.: Propagation of planetary-scale
disturbances from the lower into the upper atmosphere, J. Geophys.
Res., 66, 83–109, https://doi.org/10.1029/JZ066i001p00083, 1961.
Chen, P., and Robinson, W. A.: Propagation of planetary waves between the troposphere and stratosphere, J. Atmos. Sci., 49, 2533–2545, https://doi.org/10.1175/1520-0469(1992)049<533:POPWBT>2.0.CO;2, 1992.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., Berg, L. van D., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, P., Rosnay, D., Tavoloto, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: Configuration and
performance of the data assimilation system, Q. J. Roy. Meteor. Soc.,
137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Gabriel, A., Körnich, H., Lossow, S., Peters, D. H. W., Urban, J., and Murtagh, D.: Zonal asymmetries in middle atmospheric ozone and water vapour derived from Odin satellite data 2001–2010, Atmos. Chem. Phys., 11, 9865–9885, https://doi.org/10.5194/acp-11-9865-2011, 2011.
Garcia, R. R. and Randel, W. J.: Acceleration of the brewer-dobson
circulation due to increases in greenhouse gases, J. Atmos. Sci., 65,
2731–2739, https://doi.org/10.1175/2008JAS2712.1, 2008.
Haigh, J. D., Blackburn, M., and Day, R.: The response of tropospheric
circulation to perturbations in lower-stratospheric temperature, J.
Climate, 18, 3672–3685, https://doi.org/10.1175/JCLI3472.1, 2005.
Haynes, P. H., McIntyre, M. E., Shepherd, T. G., Marks, C. J., and
Shine, K. P.: On the “Downward Control” of Extratropical Diabatic Circulations
by Eddy-Induced Mean Zonal Forces, J. Atmos. Sci., 48,
651–678, https://doi.org/10.1175/1520-0469(1991)048<0651:OTCOED>2.0.CO;2, 1991.
Henley, B. J., Gergis, J., Karoly, D. J., Power, S., Kennedy, J., and Folland, C. K.: A Tripole Index for the Interdecadal Pacific Oscillation, Clim. Dynam., 45, 3077–3090, https://doi.org/10.1007/s00382-015-2525-1, 2015.
Holton, J.: An introduction to dynamic meteorology, edited by: Dmowska, R., Holton, J., and Rossby, H. T., Elsevier
Academic Pr., 4th Edn., Vol. 88 p. 535, ISBN: 9780123540157, 2004.
Hu, D., Tian, W., Xie, F., Shu, J., and Dhomse, S.: Effects of meridional sea
surface temperature changes on stratospheric temperature and
circulation, Adv. Atmos. Sci., 31, 888–900,
https://doi.org/10.1007/s00376-013-3152-6, 2014.
Hu, D., Tian, W., Xie, F., Wang, C., and Zhang, J.: Impacts of stratospheric
ozone depletion and recovery on wave propagation in the boreal winter
stratosphere, J. Geophys. Res.-Atmos., 120, 8299–8317,
https://doi.org/10.1002/2014JD022855, 2015.
Hu, D., Guan, Z., Tian, W., and Ren, R.: Recent strengthening of the
stratospheric Arctic vortex response to warming in the central North
Pacific, Nat. Commun., 9, 1697,
https://doi.org/10.1038/s41467-018-04138-3, 2018.
Hu, D., Guo, Y., and Guan, Z.: Recent weakening in the stratospheric
planetary wave intensity in early winter, Geophys. Res. Lett., 46,
3953–3962, https://doi.org/10.1029/2019GL082113, 2019.
Hu, Y. and Fu, Q.: Stratospheric warming in Southern Hemisphere high latitudes since 1979, Atmos. Chem. Phys., 9, 4329–4340, https://doi.org/10.5194/acp-9-4329-2009, 2009.
Huang, B., Thorne, P., W., Banzon, V. F., Boyer, T., Chepurin, G., Lawrimore, J., H., Menne, M. J., Smith, T. M., Vose, R. S., and Zhang, H.: Extended Reconstructed Sea Surface
Temperature version 5 (ERSSTv5), Upgrades, validations, and
intercomparisons, J. Climate, 30,
8179–8205, https://doi.org/10.1175/JCLI-D-16-0836.1, 2017.
Hurwitz, M. M., Newman, P. A., Oman, L. D., and Molod, A. M.: Response of
the antarctic stratosphere to two types of El niño events, J. Atmos.
Sci., 68, 812–822, https://doi.org/10.1175/2011JAS3606.1, 2011.
Ialongo, I., Sofieva, V., Kalakoski, N., Tamminen, J., and Kyrölä, E.: Ozone zonal asymmetry and planetary wave characterization during Antarctic spring, Atmos. Chem. Phys., 12, 2603–2614, https://doi.org/10.5194/acp-12-2603-2012, 2012.
Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S. K., Hnilo, J. J.,
Fiorino, M., and Potter, G. L.: NCEP–DOE AMIP-II Reanalysis (R-2), B.
Am. Meteorol. Soc., 83, 1631–1644,
https://doi.org/10.1175/BAMS-83-11-1631, 2002.
Kang, S. M., Polvani, L. M., Fyfe, J. C., and Sigmond, M.: Impact of
polar ozone depletion on subtropical precipitation, Science, 332,
951–954, https://doi.org/10.1126/science.1202131, 2011.
Kim, B. M., Son, S. W., Min, S. K., Jeong, J. H., Kim, S. J., Zhang, X.,
Shim, T., and Yoon, J. H.: Weakening of the stratospheric polar vortex by Arctic
sea-ice loss, Nat. Commun., 5, 4646, https://doi.org/10.1038/ncomms5646,
2014.
Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi, K.,
Kamahori, H., Kobayashi, C., Endo, H., Miyaoka, K., and Takahashi, K.: The
JRA-55 Reanalysis: General specifications and basic characteristics, J.
Meteorol. Soc. Jpn., 93, 5–48, https://doi.org/10.2151/jmsj.2015-001,
2015.
Kravchenko, V. O., Evtushevsky, O. M., Grytsai, A. V., Klekociuk, A. R., Milinevsky, G. P., and Grytsai, Z. I.: Quasi-stationary planetary waves in late winter Antarctic stratosphere temperature as a possible indicator of spring total ozone, Atmos. Chem. Phys., 12, 2865–2879, https://doi.org/10.5194/acp-12-2865-2012, 2012.
Krzyścin, J. W.: Onset of the total ozone increase based on statistical
analyses of global ground-based data for the period 1964–2008, Int. J.
Climatol., 32, 240–246, https://doi.org/10.1002/joc.2264,
2012.
Labitzke, K.: On the solar cycle-QBO relationship: A summary, J. Atmos.
Sol.-Terr. Phys., 67, 45–54, https://doi.org/10.1016/j.jastp.2004.07.016, 2005.
Li, S.: The influence of tropical indian ocean warming on the southern
hemispheric stratospheric polar vortex, Sci. China. Ser. D.,
52, 323–332, https://doi.org/10.1007/s11430-009-0029-8, 2009.
Li, Y. and Tian, W.: Different impact of central pacific and eastern
pacific El ñino on the duration of sudden stratospheric warming, Adv.
Atmos. Sci., 34, 771–782, https://doi.org/10.1007/s00376-017-6286-0,
2017.
Li, Y., Tian, W., Xie, F., Wen, Z., Zhang, J., Hu, D., and Han, Y.: The
connection between the second leading mode of the winter North Pacific sea
surface temperature anomalies and stratospheric sudden warming events, Clim.
Dynam., 51, 581–595, https://doi.org/10.1007/s00382-017-3942-0,
2018.
Lim, E. P., Hendon, H. H., Boschat, G. Hudson, D., Thompson, D. J., Dowdy, A., J., and Arblaster, J. M.: Australian hot and dry extremes induced by weakenings of the stratospheric polar vortex, Nat. Geosci., 12, 896–901, https://doi.org/10.1038/s41561-019-0456-x, 2019.
Lin, P., Fu, Q., Solomon, S., and Wallace, J. M.: Temperature trend
patterns in southern hemisphere high latitudes: novel indicators of
stratospheric change, J. Climate, 22, 6325–6341,
https://doi.org/10.1175/2009JCLI2971.1, 2009.
Lin, P., Fu, Q., and Hartmann, D.: Impact of tropical SST on stratospheric
planetary waves in the southern hemisphere, J. Climate, 25, 5030–5046,
https://doi.org/10.1175/JCLI-D-11-00378.1, 2012.
Marsh, D. R., Mills, M. J., Kinnison, D. E., Lamarque, J. F., Calvo, N.,
and Polvani, L. M.: Climate change from 1850 to 2005 simulated in CESM1
(WACCM), J. Climate, 26, 7372–7391,
https://doi.org/10.1175/JCLI-D-12-00558.1, 2013.
McPeters, R. D., Bhartia, P. K., Haffner, D., Labow, G. J., and Flynn, L.: The version 8.6 SBUV ozone data record: An overview, J. Geophys. Res.-Atmos., 118, 8032–8039, https://doi.org/10.1002/jgrd.50597, 2013.
Neale, R. B., Richter, J., Park, S., Lauritzen, Lauritzen, P. H., Vavrus, S.
J., Rasch, P. J., and Zhang, M.:The mean climate of the community
atmosphere model (cam4) in forced sst and fully coupled experiments, J.
Climate, 26, 5150–5168, https://doi.org/10.1175/JCLI-D-12-00236.1, 2013.
Newman, P. A. and Nash, E. R.: The unusual Southern Hemisphere
stratosphere winter of 2002, J. Atmos. Sci., 62, 614–628,
https://doi.org/10.1175/JAS-3323.1, 2005.
Nishii, K. and Nakamura, H.: Tropospheric influence on the diminished
Antarctic ozone hole in September 2002, Geophys. Res. Lett., 31, L16103,
https://doi.org/10.1029/2004GL019532, 2004.
Polvani, L. M., Wang, L., Aquila, V., and Waugh, D. W.: The impact of ozone
depleting substances on tropical upwelling, as revealed by the absence of
lower stratospheric cooling since the late 1990s, J. Climate, 30,
2523–2534, https://doi.org/10.1175/JCLI-D-16-0532.1, 2017.
Polvani, L. M., Abalos, M., Garcia, R., Kinnison, D., and Randel, W. J.:
Significant weakening of Brewer-Dobson circulation trends over the 21st
century as a consequence of the Montreal Protocol, Geophys. Res. Lett.,
45, 401–409, https://doi.org/10.1002/2017GL075345, 2018.
Randel, W. J.: A study of planetary waves in the southern winter troposphere
and stratosphere. Part I: Wave structure and vertical propagation, J. Atmos.
Sci., 44, 917–935, 1987.
Randel, W. J. and Wu, F.: Cooling of the arctic and antarctic polar
stratospheres due to ozone depletion, J. Climate, 12, 1467–1479,
https://doi.org/10.1175/1520-0442(1999)012<1467:COTAAA>2.0.CO;2, 1999.
Shaman, J. and Tziperman, E.: An atmospheric teleconnection linking ENSO
and southwestern European precipitation, J. Climate., 24, 124–139,
https://doi.org/10.1175/2010JCLI3590.1, 2011.
Shaman, J. and Tziperman, E.: Summertime ENSO-North African-Asian Jet
teleconnection and implications for the Indian monsoons, Geophys. Res.
Lett., 34, L11702, https://doi.org/10.1029/2006GL029143, 2007.
Shen, X., Wang, L., and Osprey, S.: The southern hemisphere sudden
stratospheric warming of september 2019, Sci. Bull., 65, 1800–1802,
https://doi.org/10.1016/j.scib.2020.06.028, 2020a.
Shen, X., Wang, L., and Osprey, S.: Tropospheric forcing of the 2019
antarctic sudden stratospheric warming, Geophys. Res. Lett., 47,
e2020GLO89343, https://doi.org/10.1029/2020GL089343, 2020b.
Shindell, D. T., Miller, R. L., Schmidt, G. A., and Pandolfo, L.:
Simulation of recent northern winter climate trends by greenhouse-gas
forcing, Nature, 399, 452–455, https://doi.org/10.1038/20905, 1999.
Shirley, D., Stanley, W., and Daniel, C.: Statistics for Research, 3rd
Edn., John Wiley and Sons Inc., Hoboken, New Jersey, p. 627, 2004.
Shu, J., Tian, W., Hu, D., Zhang, J., Shang, L., Tian, H., and Xie, F.:
Effects of the quasi-biennial oscillation and stratospheric semi-annual
oscillation on tracer transport in the upper stratosphere, J. Atmos. Sci.,
70, 1370–1389, https://doi.org/10.1175/JAS-D-12-053.1, 2013.
Simpson, I. R., Blackburn, M., and Haigh, J. D.: The role of eddies in
driving the tropospheric response to stratospheric heating perturbations, J.
Atmos. Sci., 66, 1347-1365, https://doi.org/10.1175/2008JAS2758.1, 2009.
Solomon, S.: Stratospheric ozone depletion: a review of concepts and
history, Rev. Geophys., 37, 275–316,
https://doi.org/10.1029/1999RG900008, 1999.
Solomon, S., Ivy, D. J., Kinnison, D., Mills, M. J., Neely, R. R., and
Schmidt, A.: Emergence of healing in the antarctic ozone
layer, Science, 353, 269–274, https://doi.org/10.1126/science.aae0061, 2016.
Son, S. W., Edwin, P. G., and Seo, K. H.: The impact of stratospheric ozone
recovery on the Southern Hemisphere westerly jet, Science, 320,
1486–1489, https://doi.org/10.1126/science.1155939, 2008.
Son, S., Han, B. R., Garfinkel, C., I., Kim, S., Park, R., Abraham, N. L., Akiyoshi, H., Archibald, A. T., Butchart, N., Chipperfield, M. P., Dameris, M., Deushi, M., Dhomse, S. S., Hardiman, S. C., Jöckel, P., Kinnison, D., Michou, M., Morgenstern, O., O’Connor, F. M., Oman, L. D., Plummer, D. A., Pozzer, A., Revell, L. E., Rozanov, E., Stenke, A., Stone, K., Tilmes, S., Yamashita, Y., and Zeng, G.: Tropospheric jet response to antarctic ozone depletion:
an update with chemistry-climate model initiative (CCMI) models, Environ.
Res. Lett., 13, 054024, https://doi.org/10.1088/1748-9326/aabf21, 2018.
Susan, E., S., Douglass, A. R., and Damon, M. R.: Why do antarctic ozone
recovery trends vary?, J. Geophys. Res.-Atmos., 124, 8837–8850,
https://doi.org/10.1029/2019JD030996, 2019.
Swart, N. C. and Fyfe, J. C.: Observed and simulated changes in the
Southern Hemisphere surface westerly wind-stress, Geophys. Res. Lett.,
39, L16711, https://doi.org/10.1029/2012GL052810, 2012.
Thompson, D., Solomon, S., Kushner, P., England, M., Grise, K. M., and Karoly, D.
J.: Signatures of the Antarctic ozone hole in Southern Hemisphere surface
climate change, Nat. Geosci., 4, 741–749, https://doi.org/10.1038/ngeo1296,
2011.
Tian, W., Li, Y., Xie, F., Zhang, J., Chipperfield, M. P., Feng, W., Hu, Y., Zhao, S., Zhou, X., Yang, Y., and Ma, X.: The relationship between lower-stratospheric ozone at southern high latitudes and sea surface temperature in the East Asian marginal seas in austral spring, Atmos. Chem. Phys., 17, 6705–6722, https://doi.org/10.5194/acp-17-6705-2017, 2017.
Trenberth, K. E. and Fasullo, J. T.: An apparent hiatus in global
warming?, Earth's Future, 1, 19–32,
https://doi.org/10.1002/2013EF000165, 2013.
Wang, L. and Waugh, D. W.: Chemistry-climate model simulations of recent trends in lower stratospheric temperature and stratospheric residual circulation, J. Geophys. Res.-Atmos., 117, D09109, https://doi.org/10.1029/2011JD017130, 2012.
Wang, T., Tian, W., Zhang, J., Xie, F., Zhang, R., Huang, J., and Hu, D.:
Connections between Spring Arctic Ozone and the Summer Circulation and Sea
Surface Temperatures over the Western North Pacific, J. Climate, 33,
2907–2923, https://doi.org/10.1175/JCLI-D-19-0292.1, 2020.
WMO: Scientific assessment of ozone depletion: 2010, World Meteorological
Organization/United Nations Environment Programme Rep. 52, 516 pp., 2011.
WMO: Antarctic ozone hole is smallest on record, World Meteorological
Organization,
available at: https://public.wmo.int/en/media/news/antarctic-ozone-hole-smallest-record (last access: October 2019),
2019.
Xia, Y., Xu, W., Hu, Y., and Xie, F.: Southern-hemisphere high-latitude
stratospheric warming revisit, Clim. Dynam., 54, 1671–1682,
https://doi.org/10.1007/s00382-019-05083-7, 2020.
Xie, F., Tian, W., and Chipperfield, M., P.: Radiative effect of ozone
change on stratosphere-troposphere exchange, J. Geophys. Res., 113, D00B09,
https://doi.org/10.1029/2008JD009829, 2008.
Xie, F., Zhang, J., Huang, Z., Lu, J., and Sun, C.: An estimate of the
relative contributions of sea surface temperature variations in various
regions to stratospheric change, J. Climate, 33, 4994–5011,
https://doi.org/10.1175/JCLI-D-19-0743.1, 2020.
Yamazaki, Y., Matthias, V., Miyoshi, Y., Stolle, C., Siddiqui, T., Kervalishvili, G., Laštovičk, J., Kozubek, M., Ward, W., Themens, D., R., Kristoffersen, S., and Alken, P.: September 2019 Antarctic sudden stratospheric
warming: Quasi-6-day wave burst and ionospheric effects, Geophys. Res.
Lett., 47, e2019GL086577, https://doi.org/10.1029/2019GL086577, 2020.
Zhang, J., Tian, W., Xie, F., Tian, H., Luo, J., Zhang, J., Liu, W., and Dhomse,
S.: Climate warming and decreasing total column ozone over the tibetan
plateau during winter and spring, Tellus B., 66, 23415,
https://doi.org/10.3402/tellusb.v66.23415, 2014.
Zhang, J., Tian, W., Chipperfield, M. P., Xie, F., and Huang, J.:
Persistent shift of the arctic polar vortex towards the eurasian continent
in recent decades, Nat. Clim. Change, 6, 1094–1099,
https://doi.org/10.1038/nclimate3136, 2016.
Zhang, J., Tian, W., Xie, F., Sang, W., Guo, D., Chipperfield, M., Feng, W., and
Hu, D.: Zonally asymmetric trends of winter total column ozone in the
northern middle latitudes, Clim. Dynam., 52, 4483–4500,
https://doi.org/10.1007/s00382-018-4393-y, 2019.
Zhang, P., Wu, Y., and Smith, K. L.: Prolonged effect of the stratospheric
pathway in linking Barents–Kara Sea sea ice variability to the midlatitude
circulation in a simplified model, Clim. Dynam. 50, 527–539,
https://doi.org/10.1007/s00382-017-3624-y, 2018.
Zhang, R., Tian, W., Zhang, J., Huang, J., and Xu, M.: The corresponding
tropospheric environments during downward-extending and
nondownward-extending events of stratospheric northern annular mode
anomalies, J. Climate, 32, 1857–1873,
https://doi.org/10.1175/JCLI-D-18-0574.1, 2019.
Short summary
Antarctic stratospheric wave activities in September have been weakening significantly since the 2000s. Further analysis supports the finding that sea surface temperature (SST) trends over 20° N–70° S lead to the weakening of stratospheric wave activities, while the response of stratospheric wave activities to ozone recovery is weak. Thus, the SST trend should be taken into consideration when exploring the mechanism for the climate transition in the southern hemispheric stratosphere around 2000.
Antarctic stratospheric wave activities in September have been weakening significantly since the...
Altmetrics
Final-revised paper
Preprint