Articles | Volume 22, issue 2
Atmos. Chem. Phys., 22, 1549–1573, 2022
Atmos. Chem. Phys., 22, 1549–1573, 2022

Research article 01 Feb 2022

Research article | 01 Feb 2022

Exploring dimethyl sulfide (DMS) oxidation and implications for global aerosol radiative forcing

Ka Ming Fung et al.

Data sets

Aerosol and Cloud Experiments in the Eastern North Atlantic (ACE-ENA) ( J. Wang, R. Wood, M. P. Jensen, J. C. Chiu, Y. Liu, K. Lamer, N. Desai, S. E. Giangrande, D. A. Knopf, P. Kollias, A. Laskin, X. Liu, C. Lu, D. Mechem, F. Mei, M. Starzec, J. Tomlinson, Y. Wang, S. S. Yum, G. Zheng, A. C. Aiken, E. B. Azevedo, Y. Blanchard, S. China, X. Dong, F. Gallo, S. Gao, V. P. Ghate, S. Glienke, L. Goldberger, J. C. Hardin, C. Kuang, E. P. Luke, A. A. Matthews, M. A. Miller, R. Moffet, M. Pekour, B. Schmid, A. J. Sedlacek, R. A. Shaw, J. E. Shilling, A. Sullivan, K. Suski, D. P. Veghte, R. Weber, M. Wyant, J. Yeom, M. Zawadowicz, and Z. Zhang

Short summary
Understanding the natural aerosol burden in the preindustrial era is crucial for us to assess how atmospheric aerosols affect the Earth's radiative budgets. Our study explores how a detailed description of dimethyl sulfide (DMS) oxidation (implemented in the Community Atmospheric Model version 6 with chemistry, CAM6-chem) could help us better estimate the present-day and preindustrial concentrations of sulfate and other relevant chemicals, as well as the resulting aerosol radiative impacts.
Final-revised paper