Articles | Volume 22, issue 20
https://doi.org/10.5194/acp-22-13581-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-13581-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Circular polarization in atmospheric aerosols
ESSIC, University of Maryland, College Park, MD 20740, USA
Code 613, Climate and Radiation Laboratory, GSFC/NASA, Greenbelt, MD 20771, USA
Kirk D. Knobelspiesse
Code 616, Ocean Ecology Laboratory, GSFC/NASA, Greenbelt, MD 20771, USA
Related authors
Sampa Das, Peter R. Colarco, Huisheng Bian, and Santiago Gassó
Atmos. Chem. Phys., 24, 4421–4449, https://doi.org/10.5194/acp-24-4421-2024, https://doi.org/10.5194/acp-24-4421-2024, 2024
Short summary
Short summary
The smoke aerosols emitted from vegetation burning can alter the regional energy budget via multiple pathways. We utilized detailed observations from the NASA ORACLES airborne campaign based in Namibia during September 2016 to improve the representation of smoke aerosol properties and lifetimes in our GEOS Earth system model. The improved model simulations are for the first time able to capture the observed changes in the smoke absorption during long-range plume transport.
Outi Meinander, Pavla Dagsson-Waldhauserova, Pavel Amosov, Elena Aseyeva, Cliff Atkins, Alexander Baklanov, Clarissa Baldo, Sarah L. Barr, Barbara Barzycka, Liane G. Benning, Bojan Cvetkovic, Polina Enchilik, Denis Frolov, Santiago Gassó, Konrad Kandler, Nikolay Kasimov, Jan Kavan, James King, Tatyana Koroleva, Viktoria Krupskaya, Markku Kulmala, Monika Kusiak, Hanna K. Lappalainen, Michał Laska, Jerome Lasne, Marek Lewandowski, Bartłomiej Luks, James B. McQuaid, Beatrice Moroni, Benjamin Murray, Ottmar Möhler, Adam Nawrot, Slobodan Nickovic, Norman T. O’Neill, Goran Pejanovic, Olga Popovicheva, Keyvan Ranjbar, Manolis Romanias, Olga Samonova, Alberto Sanchez-Marroquin, Kerstin Schepanski, Ivan Semenkov, Anna Sharapova, Elena Shevnina, Zongbo Shi, Mikhail Sofiev, Frédéric Thevenet, Throstur Thorsteinsson, Mikhail Timofeev, Nsikanabasi Silas Umo, Andreas Uppstu, Darya Urupina, György Varga, Tomasz Werner, Olafur Arnalds, and Ana Vukovic Vimic
Atmos. Chem. Phys., 22, 11889–11930, https://doi.org/10.5194/acp-22-11889-2022, https://doi.org/10.5194/acp-22-11889-2022, 2022
Short summary
Short summary
High-latitude dust (HLD) is a short-lived climate forcer, air pollutant, and nutrient source. Our results suggest a northern HLD belt at 50–58° N in Eurasia and 50–55° N in Canada and at >60° N in Eurasia and >58° N in Canada. Our addition to the previously identified global dust belt (GDB) provides crucially needed information on the extent of active HLD sources with both direct and indirect impacts on climate and environment in remote regions, which are often poorly understood and predicted.
Peter R. Colarco, Santiago Gassó, Changwoo Ahn, Virginie Buchard, Arlindo M. da Silva, and Omar Torres
Atmos. Meas. Tech., 10, 4121–4134, https://doi.org/10.5194/amt-10-4121-2017, https://doi.org/10.5194/amt-10-4121-2017, 2017
Short summary
Short summary
We need satellite observations to characterize the properties of atmospheric aerosols. Those observations have uncertainties associated with them because of assumptions made in their algorithms. We test the assumptions on a part of the aerosol algorithms used with the Ozone Monitoring Instrument (OMI) flying on the NASA Aura spacecraft. We simulate the OMI observations using a global aerosol model, and then compare what OMI tells us about the simulated aerosols with the model results directly.
Santiago Gassó and Omar Torres
Atmos. Meas. Tech., 9, 3031–3052, https://doi.org/10.5194/amt-9-3031-2016, https://doi.org/10.5194/amt-9-3031-2016, 2016
Short summary
Short summary
Aerosol optical depths derived by the OMI near-UV algorithm are evaluated against independent observations over the ocean. The comparison resulted in differences within the expected levels of uncertainty. In addition, in clear sky conditions, the retrieved AODs compare well with independent measurements but they are biased high in partially cloud-contaminated pixels. Additional sources of discrepancies are documented and will be corrected in future versions of the algorithm.
K. W. Dawson, N. Meskhidze, D. Josset, and S. Gassó
Atmos. Chem. Phys., 15, 3241–3255, https://doi.org/10.5194/acp-15-3241-2015, https://doi.org/10.5194/acp-15-3241-2015, 2015
Sampa Das, Peter R. Colarco, Huisheng Bian, and Santiago Gassó
Atmos. Chem. Phys., 24, 4421–4449, https://doi.org/10.5194/acp-24-4421-2024, https://doi.org/10.5194/acp-24-4421-2024, 2024
Short summary
Short summary
The smoke aerosols emitted from vegetation burning can alter the regional energy budget via multiple pathways. We utilized detailed observations from the NASA ORACLES airborne campaign based in Namibia during September 2016 to improve the representation of smoke aerosol properties and lifetimes in our GEOS Earth system model. The improved model simulations are for the first time able to capture the observed changes in the smoke absorption during long-range plume transport.
Sean R. Foley, Kirk D. Knobelspiesse, Andrew M. Sayer, Meng Gao, James Hays, and Judy Hoffman
EGUsphere, https://doi.org/10.5194/egusphere-2023-2392, https://doi.org/10.5194/egusphere-2023-2392, 2024
Short summary
Short summary
Measuring the shape of clouds helps scientists understand how the Earth will continue to respond to climate change. Satellites measure clouds in different ways. One way is to take pictures of clouds from multiple angles, and to use the differences between the pictures to measure cloud structure. However, doing this accurately can be challenging. We propose a way to use machine learning to recover the shape of clouds from multi-angle satellite data.
Meng Gao, Bryan A. Franz, Peng-Wang Zhai, Kirk Knobelspiesse, Andrew M. Sayer, Xiaoguang Xu, J. Vanderlei Martins, Brian Cairns, Patricia Castellanos, Guangliang Fu, Neranga Hannadige, Otto Hasekamp, Yongxiang Hu, Amir Ibrahim, Frederick Patt, Anin Puthukkudy, and P. Jeremy Werdell
Atmos. Meas. Tech., 16, 5863–5881, https://doi.org/10.5194/amt-16-5863-2023, https://doi.org/10.5194/amt-16-5863-2023, 2023
Short summary
Short summary
This study evaluated the retrievability and uncertainty of aerosol and ocean properties from PACE's HARP2 instrument using enhanced neural network models with the FastMAPOL algorithm. A cascading retrieval method is developed to improve retrieval performance. A global set of simulated HARP2 data is generated and used for uncertainty evaluations. The performance assessment demonstrates that the FastMAPOL algorithm is a viable approach for operational application to HARP2 data after PACE launch.
Neranga K. Hannadige, Peng-Wang Zhai, Meng Gao, Yongxiang Hu, P. Jeremy Werdell, Kirk Knobelspiesse, and Brian Cairns
Atmos. Meas. Tech., 16, 5749–5770, https://doi.org/10.5194/amt-16-5749-2023, https://doi.org/10.5194/amt-16-5749-2023, 2023
Short summary
Short summary
We evaluated the impact of three ocean optical models with different numbers of free parameters on the performance of an aerosol and ocean color remote sensing algorithm using the multi-angle polarimeter (MAP) measurements. It was demonstrated that the three- and seven-parameter bio-optical models can be used to accurately represent both open and coastal waters, whereas the one-parameter model has smaller retrieval uncertainty over open water.
Meng Gao, Kirk Knobelspiesse, Bryan A. Franz, Peng-Wang Zhai, Brian Cairns, Xiaoguang Xu, and J. Vanderlei Martins
Atmos. Meas. Tech., 16, 2067–2087, https://doi.org/10.5194/amt-16-2067-2023, https://doi.org/10.5194/amt-16-2067-2023, 2023
Short summary
Short summary
Multi-angle polarimetric measurements have been shown to greatly improve the remote sensing capability of aerosols and help atmospheric correction for ocean color retrievals. However, the uncertainty correlations among different measurement angles have not been well characterized. In this work, we provided a practical framework to evaluate the impact of the angular uncertainty correlation in retrieval results and a method to directly estimate correlation strength from retrieval residuals.
Andrew M. Sayer, Luca Lelli, Brian Cairns, Bastiaan van Diedenhoven, Amir Ibrahim, Kirk D. Knobelspiesse, Sergey Korkin, and P. Jeremy Werdell
Atmos. Meas. Tech., 16, 969–996, https://doi.org/10.5194/amt-16-969-2023, https://doi.org/10.5194/amt-16-969-2023, 2023
Short summary
Short summary
This paper presents a method to estimate the height of the top of clouds above Earth's surface using satellite measurements. It is based on light absorption by oxygen in Earth's atmosphere, which darkens the signal that a satellite will see at certain wavelengths of light. Clouds "shield" the satellite from some of this darkening, dependent on cloud height (and other factors), because clouds scatter light at these wavelengths. The method will be applied to the future NASA PACE mission.
Outi Meinander, Pavla Dagsson-Waldhauserova, Pavel Amosov, Elena Aseyeva, Cliff Atkins, Alexander Baklanov, Clarissa Baldo, Sarah L. Barr, Barbara Barzycka, Liane G. Benning, Bojan Cvetkovic, Polina Enchilik, Denis Frolov, Santiago Gassó, Konrad Kandler, Nikolay Kasimov, Jan Kavan, James King, Tatyana Koroleva, Viktoria Krupskaya, Markku Kulmala, Monika Kusiak, Hanna K. Lappalainen, Michał Laska, Jerome Lasne, Marek Lewandowski, Bartłomiej Luks, James B. McQuaid, Beatrice Moroni, Benjamin Murray, Ottmar Möhler, Adam Nawrot, Slobodan Nickovic, Norman T. O’Neill, Goran Pejanovic, Olga Popovicheva, Keyvan Ranjbar, Manolis Romanias, Olga Samonova, Alberto Sanchez-Marroquin, Kerstin Schepanski, Ivan Semenkov, Anna Sharapova, Elena Shevnina, Zongbo Shi, Mikhail Sofiev, Frédéric Thevenet, Throstur Thorsteinsson, Mikhail Timofeev, Nsikanabasi Silas Umo, Andreas Uppstu, Darya Urupina, György Varga, Tomasz Werner, Olafur Arnalds, and Ana Vukovic Vimic
Atmos. Chem. Phys., 22, 11889–11930, https://doi.org/10.5194/acp-22-11889-2022, https://doi.org/10.5194/acp-22-11889-2022, 2022
Short summary
Short summary
High-latitude dust (HLD) is a short-lived climate forcer, air pollutant, and nutrient source. Our results suggest a northern HLD belt at 50–58° N in Eurasia and 50–55° N in Canada and at >60° N in Eurasia and >58° N in Canada. Our addition to the previously identified global dust belt (GDB) provides crucially needed information on the extent of active HLD sources with both direct and indirect impacts on climate and environment in remote regions, which are often poorly understood and predicted.
Meng Gao, Kirk Knobelspiesse, Bryan A. Franz, Peng-Wang Zhai, Andrew M. Sayer, Amir Ibrahim, Brian Cairns, Otto Hasekamp, Yongxiang Hu, Vanderlei Martins, P. Jeremy Werdell, and Xiaoguang Xu
Atmos. Meas. Tech., 15, 4859–4879, https://doi.org/10.5194/amt-15-4859-2022, https://doi.org/10.5194/amt-15-4859-2022, 2022
Short summary
Short summary
In this work, we assessed the pixel-wise retrieval uncertainties on aerosol and ocean color derived from multi-angle polarimetric measurements. Standard error propagation methods are used to compute the uncertainties. A flexible framework is proposed to evaluate how representative these uncertainties are compared with real retrieval errors. Meanwhile, to assist operational data processing, we optimized the computational speed to evaluate the retrieval uncertainties based on neural networks.
Meng Gao, Bryan A. Franz, Kirk Knobelspiesse, Peng-Wang Zhai, Vanderlei Martins, Sharon Burton, Brian Cairns, Richard Ferrare, Joel Gales, Otto Hasekamp, Yongxiang Hu, Amir Ibrahim, Brent McBride, Anin Puthukkudy, P. Jeremy Werdell, and Xiaoguang Xu
Atmos. Meas. Tech., 14, 4083–4110, https://doi.org/10.5194/amt-14-4083-2021, https://doi.org/10.5194/amt-14-4083-2021, 2021
Short summary
Short summary
Multi-angle polarimetric measurements can retrieve accurate aerosol properties over complex atmosphere and ocean systems; however, most retrieval algorithms require high computational costs. We propose a deep neural network (NN) forward model to represent the radiative transfer simulation of coupled atmosphere and ocean systems and then conduct simultaneous aerosol and ocean color retrievals on AirHARP measurements. The computational acceleration is 103 times with CPU or 104 times with GPU.
Kirk Knobelspiesse, Amir Ibrahim, Bryan Franz, Sean Bailey, Robert Levy, Ziauddin Ahmad, Joel Gales, Meng Gao, Michael Garay, Samuel Anderson, and Olga Kalashnikova
Atmos. Meas. Tech., 14, 3233–3252, https://doi.org/10.5194/amt-14-3233-2021, https://doi.org/10.5194/amt-14-3233-2021, 2021
Short summary
Short summary
We assessed atmospheric aerosol and ocean surface wind speed remote sensing capability with NASA's Multi-angle Imaging SpectroRadiometer (MISR), using synthetic data and a Bayesian inference technique called generalized nonlinear retrieval analysis (GENRA). We found success using three aerosol parameters plus wind speed. This shows that MISR can perform an atmospheric correction for the Moderate Resolution Imaging Spectroradiometer (MODIS) on the same spacecraft (Terra).
Jens Redemann, Robert Wood, Paquita Zuidema, Sarah J. Doherty, Bernadette Luna, Samuel E. LeBlanc, Michael S. Diamond, Yohei Shinozuka, Ian Y. Chang, Rei Ueyama, Leonhard Pfister, Ju-Mee Ryoo, Amie N. Dobracki, Arlindo M. da Silva, Karla M. Longo, Meloë S. Kacenelenbogen, Connor J. Flynn, Kristina Pistone, Nichola M. Knox, Stuart J. Piketh, James M. Haywood, Paola Formenti, Marc Mallet, Philip Stier, Andrew S. Ackerman, Susanne E. Bauer, Ann M. Fridlind, Gregory R. Carmichael, Pablo E. Saide, Gonzalo A. Ferrada, Steven G. Howell, Steffen Freitag, Brian Cairns, Brent N. Holben, Kirk D. Knobelspiesse, Simone Tanelli, Tristan S. L'Ecuyer, Andrew M. Dzambo, Ousmane O. Sy, Greg M. McFarquhar, Michael R. Poellot, Siddhant Gupta, Joseph R. O'Brien, Athanasios Nenes, Mary Kacarab, Jenny P. S. Wong, Jennifer D. Small-Griswold, Kenneth L. Thornhill, David Noone, James R. Podolske, K. Sebastian Schmidt, Peter Pilewskie, Hong Chen, Sabrina P. Cochrane, Arthur J. Sedlacek, Timothy J. Lang, Eric Stith, Michal Segal-Rozenhaimer, Richard A. Ferrare, Sharon P. Burton, Chris A. Hostetler, David J. Diner, Felix C. Seidel, Steven E. Platnick, Jeffrey S. Myers, Kerry G. Meyer, Douglas A. Spangenberg, Hal Maring, and Lan Gao
Atmos. Chem. Phys., 21, 1507–1563, https://doi.org/10.5194/acp-21-1507-2021, https://doi.org/10.5194/acp-21-1507-2021, 2021
Short summary
Short summary
Southern Africa produces significant biomass burning emissions whose impacts on regional and global climate are poorly understood. ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) is a 5-year NASA investigation designed to study the key processes that determine these climate impacts. The main purpose of this paper is to familiarize the broader scientific community with the ORACLES project, the dataset it produced, and the most important initial findings.
Kirk Knobelspiesse, Henrique M. J. Barbosa, Christine Bradley, Carol Bruegge, Brian Cairns, Gao Chen, Jacek Chowdhary, Anthony Cook, Antonio Di Noia, Bastiaan van Diedenhoven, David J. Diner, Richard Ferrare, Guangliang Fu, Meng Gao, Michael Garay, Johnathan Hair, David Harper, Gerard van Harten, Otto Hasekamp, Mark Helmlinger, Chris Hostetler, Olga Kalashnikova, Andrew Kupchock, Karla Longo De Freitas, Hal Maring, J. Vanderlei Martins, Brent McBride, Matthew McGill, Ken Norlin, Anin Puthukkudy, Brian Rheingans, Jeroen Rietjens, Felix C. Seidel, Arlindo da Silva, Martijn Smit, Snorre Stamnes, Qian Tan, Sebastian Val, Andrzej Wasilewski, Feng Xu, Xiaoguang Xu, and John Yorks
Earth Syst. Sci. Data, 12, 2183–2208, https://doi.org/10.5194/essd-12-2183-2020, https://doi.org/10.5194/essd-12-2183-2020, 2020
Short summary
Short summary
The Aerosol Characterization from Polarimeter and Lidar (ACEPOL) field campaign is a resource for the next generation of spaceborne multi-angle polarimeter (MAP) and lidar missions. Conducted in the fall of 2017 from the Armstrong Flight Research Center in Palmdale, California, four MAP instruments and two lidars were flown on the high-altitude ER-2 aircraft over a variety of scene types and ground assets. Data are freely available to the public and useful for algorithm development and testing.
Meng Gao, Peng-Wang Zhai, Bryan A. Franz, Kirk Knobelspiesse, Amir Ibrahim, Brian Cairns, Susanne E. Craig, Guangliang Fu, Otto Hasekamp, Yongxiang Hu, and P. Jeremy Werdell
Atmos. Meas. Tech., 13, 3939–3956, https://doi.org/10.5194/amt-13-3939-2020, https://doi.org/10.5194/amt-13-3939-2020, 2020
Daniel J. Miller, Michal Segal-Rozenhaimer, Kirk Knobelspiesse, Jens Redemann, Brian Cairns, Mikhail Alexandrov, Bastiaan van Diedenhoven, and Andrzej Wasilewski
Atmos. Meas. Tech., 13, 3447–3470, https://doi.org/10.5194/amt-13-3447-2020, https://doi.org/10.5194/amt-13-3447-2020, 2020
Short summary
Short summary
A neural network (NN) is developed and used to retrieve cloud microphysical properties from multiangular and multispectral polarimetric remote sensing observations. The NN is applied to research scanning polarimeter (RSP) observations obtained during the ORACLES field campaign and compared to other co-located remote sensing retrievals of cloud effective radius and optical thickness. A NN approach can advance more complex iterative search retrieval algorithms by providing a quick initial guess.
Guangliang Fu, Otto Hasekamp, Jeroen Rietjens, Martijn Smit, Antonio Di Noia, Brian Cairns, Andrzej Wasilewski, David Diner, Felix Seidel, Feng Xu, Kirk Knobelspiesse, Meng Gao, Arlindo da Silva, Sharon Burton, Chris Hostetler, John Hair, and Richard Ferrare
Atmos. Meas. Tech., 13, 553–573, https://doi.org/10.5194/amt-13-553-2020, https://doi.org/10.5194/amt-13-553-2020, 2020
Short summary
Short summary
In this paper, we present aerosol retrieval results from the ACEPOL (Aerosol Characterization from Polarimeter and Lidar) campaign, which was a joint initiative between NASA and SRON (the Netherlands Institute for Space Research). We perform aerosol retrievals from different multi-angle polarimeters employed during the ACEPOL campaign and evaluate them against ground-based AERONET measurements and High Spectral Resolution Lidar-2 (HSRL-2) measurements.
Andrew M. Sayer and Kirk D. Knobelspiesse
Atmos. Chem. Phys., 19, 15023–15048, https://doi.org/10.5194/acp-19-15023-2019, https://doi.org/10.5194/acp-19-15023-2019, 2019
Short summary
Short summary
Data about the Earth are routinely obtained from satellite observations, model simulations, and ground-based or other measurements. These are at different space and timescales, and it is common to average them to reduce gaps and increase ease of use. The question of how the data should be averaged depends on the underlying distribution of the quantity. This study presents a method for determining how to appropriately aggregate data and applies it to data sets about atmospheric aerosol levels.
Meng Gao, Peng-Wang Zhai, Bryan A. Franz, Yongxiang Hu, Kirk Knobelspiesse, P. Jeremy Werdell, Amir Ibrahim, Brian Cairns, and Alison Chase
Atmos. Meas. Tech., 12, 3921–3941, https://doi.org/10.5194/amt-12-3921-2019, https://doi.org/10.5194/amt-12-3921-2019, 2019
Kirk Knobelspiesse and Sreeja Nag
Atmos. Meas. Tech., 11, 3935–3954, https://doi.org/10.5194/amt-11-3935-2018, https://doi.org/10.5194/amt-11-3935-2018, 2018
Short summary
Short summary
We test if small satellites flying in formation can be used for multi-angle aerosol remote sensing. So far, this has only been done with multiple views on one satellite. Single-view angle satellites flying in formation are a technically feasible alternative, although with different geometries. Using Bayesian information content analysis, we find such satellites equally capable. For aerosol remote sensing, the number of viewing angles is the most important.
Daniel J. Miller, Zhibo Zhang, Steven Platnick, Andrew S. Ackerman, Frank Werner, Celine Cornet, and Kirk Knobelspiesse
Atmos. Meas. Tech., 11, 3689–3715, https://doi.org/10.5194/amt-11-3689-2018, https://doi.org/10.5194/amt-11-3689-2018, 2018
Short summary
Short summary
Prior satellite comparisons of bispectral and polarimetric cloud droplet size retrievals exhibited systematic biases. However, similar airborne instrument retrievals have been found to be quite similar to one another. This study explains this discrepancy in terms of differing sensitivity to vertical profile, as well as spatial and angular resolution. This is accomplished by using a satellite retrieval simulator – an LES cloud model coupled to radiative transfer and cloud retrieval algorithms.
Peter R. Colarco, Santiago Gassó, Changwoo Ahn, Virginie Buchard, Arlindo M. da Silva, and Omar Torres
Atmos. Meas. Tech., 10, 4121–4134, https://doi.org/10.5194/amt-10-4121-2017, https://doi.org/10.5194/amt-10-4121-2017, 2017
Short summary
Short summary
We need satellite observations to characterize the properties of atmospheric aerosols. Those observations have uncertainties associated with them because of assumptions made in their algorithms. We test the assumptions on a part of the aerosol algorithms used with the Ozone Monitoring Instrument (OMI) flying on the NASA Aura spacecraft. We simulate the OMI observations using a global aerosol model, and then compare what OMI tells us about the simulated aerosols with the model results directly.
Sharon P. Burton, Eduard Chemyakin, Xu Liu, Kirk Knobelspiesse, Snorre Stamnes, Patricia Sawamura, Richard H. Moore, Chris A. Hostetler, and Richard A. Ferrare
Atmos. Meas. Tech., 9, 5555–5574, https://doi.org/10.5194/amt-9-5555-2016, https://doi.org/10.5194/amt-9-5555-2016, 2016
Short summary
Short summary
Retrievals of aerosol microphysics exist for ground-based, airborne, and future space-borne lidar measurements. We investigate the information content of a lidar measurement system, using only a forward model but no explicit inversion. The simplified aerosol used here is applicable as a best case for all retrievals in the absence of additional constraints. We report (1) information content of the measurements; (2) uncertainties on the retrieved parameters; and (3) sources of compensating errors.
Santiago Gassó and Omar Torres
Atmos. Meas. Tech., 9, 3031–3052, https://doi.org/10.5194/amt-9-3031-2016, https://doi.org/10.5194/amt-9-3031-2016, 2016
Short summary
Short summary
Aerosol optical depths derived by the OMI near-UV algorithm are evaluated against independent observations over the ocean. The comparison resulted in differences within the expected levels of uncertainty. In addition, in clear sky conditions, the retrieved AODs compare well with independent measurements but they are biased high in partially cloud-contaminated pixels. Additional sources of discrepancies are documented and will be corrected in future versions of the algorithm.
K. W. Dawson, N. Meskhidze, D. Josset, and S. Gassó
Atmos. Chem. Phys., 15, 3241–3255, https://doi.org/10.5194/acp-15-3241-2015, https://doi.org/10.5194/acp-15-3241-2015, 2015
Related subject area
Subject: Aerosols | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Influence of covariance of aerosol and meteorology on co-located precipitating and non-precipitating clouds over the Indo-Gangetic Plain
Light-absorbing black carbon and brown carbon components of smoke aerosol from DSCOVR EPIC measurements over North America and central Africa
The emission, transport, and impacts of the extreme Saharan dust storm of 2015
California wildfire smoke contributes to a positive atmospheric temperature anomaly over the western United States
Remote Sensing detectability of airborne Arctic dust
Dust storms from the Taklamakan Desert significantly darken snow surface on surrounding mountains
Opposite effects of aerosols and meteorological parameters on warm clouds in two contrasting regions over eastern China
Effect of wind speed on marine aerosol optical properties over remote oceans with use of spaceborne lidar observations
The role of refractive indices in measuring mineral dust with high-spectral resolution infrared satellite sounders: Application to the Gobi Desert
Assessment of smoke plume height products derived from multisource satellite observations using lidar-derived height metrics for wildfires in the western US
A remote sensing algorithm for vertically resolved cloud condensation nuclei number concentrations from airborne and spaceborne lidar observations
Opinion: Aerosol remote sensing over the next 20 years
Monitoring biomass burning aerosol transport using CALIOP observations and reanalysis models: a Canadian wildfire event in 2019
Thermal infrared observations of a western United States biomass burning aerosol plume
A new look into the impacts of dust radiative effects on the energetics of tropical easterly waves
Wind-driven emissions of coarse-mode particles in an urban environment
Measurement report: Dust and anthropogenic aerosols' vertical distributions over northern China dense aerosols gathered at the top of the mixing layer
Climatological assessment of the vertically resolved optical and microphysical aerosol properties by lidar measurements, sun photometer, and in situ observations over 17 years at Universitat Politècnica de Catalunya (UPC) Barcelona
Aerosol optical depth climatology from the high-resolution MAIAC product over Europe: differences between major European cities and their surrounding environments
Impact of assimilating NOAA VIIRS aerosol optical depth (AOD) observations on global AOD analysis from the Copernicus Atmosphere Monitoring Service (CAMS)
Spectral dependence of birch and pine pollen optical properties using a synergy of lidar instruments
Validation activities of Aeolus wind products on the southeastern Iberian Peninsula
Thermal infrared dust optical depth and coarse-mode effective diameter over oceans retrieved from collocated MODIS and CALIOP observations
A comprehensive reappraisal of long-term aerosol characteristics, trends, and variability in Asia
Satellite (GOSAT-2 CAI-2) retrieval and surface (ARFINET) observations of aerosol black carbon over India
Spatiotemporal variation characteristics of global fires and their emissions
The (mis)identification of high-latitude dust events using remote sensing methods in the Yukon, Canada: a sub-daily variability analysis
Comparison of dust optical depth from multi-sensor products and MONARCH (Multiscale Online Non-hydrostatic AtmospheRe CHemistry) dust reanalysis over North Africa, the Middle East, and Europe
Understanding day–night differences in dust aerosols over the dust belt of North Africa, the Middle East, and Asia
Satellite observations of smoke–cloud–radiation interactions over the Amazon rainforest
Single-scattering properties of ellipsoidal dust aerosols constrained by measured dust shape distributions
Validation of the TROPOMI/S5P aerosol layer height using EARLINET lidars
Vertical characterization of fine and coarse dust particles during an intense Saharan dust outbreak over the Iberian Peninsula in springtime 2021
Aerosol optical depth regime over megacities of the world
South American 2020 regional smoke plume: intercomparison with previous years, impact on solar radiation, and the role of Pantanal biomass burning season
Spatiotemporal continuous estimates of daily 1 km PM2.5 from 2000 to present under the Tracking Air Pollution in China (TAP) framework
Robust evidence for reversal of the trend in aerosol effective climate forcing
Simultaneous retrievals of biomass burning aerosols and trace gases from the ultraviolet to near-infrared over northern Thailand during the 2019 pre-monsoon season
A decadal assessment of the climatology of aerosol and cloud properties over South Africa
Aerosol characterisation in the subtropical eastern North Atlantic region using long-term AERONET measurements
Long-range transport of Asian dust to the Arctic: identification of transport pathways, evolution of aerosol optical properties, and impact assessment on surface albedo changes
Canadian and Alaskan wildfire smoke particle properties, their evolution, and controlling factors, from satellite observations
Evaluation of aerosol optical depths and clear-sky radiative fluxes of the CERES Edition 4.1 SYN1deg data product
Arctic spring and summertime aerosol optical depth baseline from long-term observations and model reanalyses – Part 1: Climatology and trend
Vertical structure of biomass burning aerosol transported over the southeast Atlantic Ocean
Arctic spring and summertime aerosol optical depth baseline from long-term observations and model reanalyses – Part 2: Statistics of extreme AOD events, and implications for the impact of regional biomass burning processes
Aerosol atmospheric rivers: climatology, event characteristics, and detection algorithm sensitivities
Dust transport and advection measurement with spaceborne lidars ALADIN and CALIOP and model reanalysis data
Record-breaking dust loading during two mega dust storm events over northern China in March 2021: aerosol optical and radiative properties and meteorological drivers
Wintertime Saharan dust transport towards the Caribbean: an airborne lidar case study during EUREC4A
Nabia Gulistan, Khan Alam, and Yangang Liu
Atmos. Chem. Phys., 24, 11333–11349, https://doi.org/10.5194/acp-24-11333-2024, https://doi.org/10.5194/acp-24-11333-2024, 2024
Short summary
Short summary
This study looks at the influence of aerosol and meteorology on precipitating and non-precipitating clouds over the Indo-Gangetic Plain (IGP). A major finding of this study was that the high loading of aerosols led to a high occurrence of precipitating clouds under unstable conditions in summer. The study has the potential to open a new avenue for the scientific community to further explore and understand the complications of aerosol–cloud–precipitation over the complex topography of the IGP.
Myungje Choi, Alexei Lyapustin, Gregory L. Schuster, Sujung Go, Yujie Wang, Sergey Korkin, Ralph Kahn, Jeffrey S. Reid, Edward J. Hyer, Thomas F. Eck, Mian Chin, David J. Diner, Olga Kalashnikova, Oleg Dubovik, Jhoon Kim, and Hans Moosmüller
Atmos. Chem. Phys., 24, 10543–10565, https://doi.org/10.5194/acp-24-10543-2024, https://doi.org/10.5194/acp-24-10543-2024, 2024
Short summary
Short summary
This paper introduces a retrieval algorithm to estimate two key absorbing components in smoke (black carbon and brown carbon) using DSCOVR EPIC measurements. Our analysis reveals distinct smoke properties, including spectral absorption, layer height, and black carbon and brown carbon, over North America and central Africa. The retrieved smoke properties offer valuable observational constraints for modeling radiative forcing and informing health-related studies.
Brian Harr, Bing Pu, and Qinjian Jin
Atmos. Chem. Phys., 24, 8625–8651, https://doi.org/10.5194/acp-24-8625-2024, https://doi.org/10.5194/acp-24-8625-2024, 2024
Short summary
Short summary
We found that the formation of the extreme trans-Atlantic African dust event in June 2015 was associated with a brief surge in dust emissions over western North Africa and extreme circulation patterns, including intensified easterly jets, which facilitated the westward transport of dust. The dust plume modified radiative flux along its transport pathway but had minor impacts on air quality in the US due to the record-high Caribbean low-level jet advecting part of the plume to the Pacific.
James L. Gomez, Robert J. Allen, and King-Fai Li
Atmos. Chem. Phys., 24, 6937–6963, https://doi.org/10.5194/acp-24-6937-2024, https://doi.org/10.5194/acp-24-6937-2024, 2024
Short summary
Short summary
Wildfires in California (CA) have grown very large during the past 20 years. These fires emit sunlight-absorbing aerosols. Analyzing observational data, our study finds that aerosols emitted from large fires in northern CA spread throughout CA and Nevada and heat the atmosphere. This heating is consistent with larger-than-normal temperatures and dry conditions. Further study is needed to determine how much the aerosols heat the atmosphere and whether they are drying the atmosphere as well.
Norman T. O’Neill, Keyvan Ranjbar, Liviu Ivănescu, Yann Blanchard, Seyed Ali Sayedain, and Yasmin AboEl-Fetouh
EGUsphere, https://doi.org/10.5194/egusphere-2024-1057, https://doi.org/10.5194/egusphere-2024-1057, 2024
Short summary
Short summary
Dust from mid-latitude deserts or from local drainage basins is a weak component of atmospheric aerosols in the Arctic. Satellite-based dust estimates are often overestimated because dust and cloud measurements can be confused. Illustrations are given with an emphasis on the flawed claim that a classic indicator of dust (negative brightness temperature differences) is proof of the presence of airborne Arctic dust. Low altitude “warm” water plumes are the likely source of such negative values.
Yuxuan Xing, Yang Chen, Shirui Yan, Xiaoyi Cao, Yong Zhou, Xueying Zhang, Tenglong Shi, Xiaoying Niu, Dongyou Wu, Jiecan Cui, Yue Zhou, Xin Wang, and Wei Pu
Atmos. Chem. Phys., 24, 5199–5219, https://doi.org/10.5194/acp-24-5199-2024, https://doi.org/10.5194/acp-24-5199-2024, 2024
Short summary
Short summary
This study investigated the impact of dust storms from the Taklamakan Desert on surrounding high mountains and regional radiation balance. Using satellite data and simulations, researchers found that dust storms significantly darken the snow surface in the Tien Shan, Kunlun, and Qilian mountains, reaching mountains up to 1000 km away. This darkening occurs not only in spring but also during summer and autumn, leading to increased absorption of solar radiation.
Yuqin Liu, Tao Lin, Jiahua Zhang, Fu Wang, Yiyi Huang, Xian Wu, Hong Ye, Guoqin Zhang, Xin Cao, and Gerrit de Leeuw
Atmos. Chem. Phys., 24, 4651–4673, https://doi.org/10.5194/acp-24-4651-2024, https://doi.org/10.5194/acp-24-4651-2024, 2024
Short summary
Short summary
A new method, the geographical detector method (GDM), has been applied to satellite data, in addition to commonly used statistical methods, to study the sensitivity of cloud properties to aerosol over China. Different constraints for aerosol and cloud liquid water path apply over polluted and clean areas. The GDM shows that cloud parameters are more sensitive to combinations of parameters than to individual parameters, but confounding effects due to co-variation of parameters cannot be excluded.
Kangwen Sun, Guangyao Dai, Songhua Wu, Oliver Reitebuch, Holger Baars, Jiqiao Liu, and Suping Zhang
Atmos. Chem. Phys., 24, 4389–4409, https://doi.org/10.5194/acp-24-4389-2024, https://doi.org/10.5194/acp-24-4389-2024, 2024
Short summary
Short summary
This paper investigates the correlation between marine aerosol optical properties and wind speeds over remote oceans using the spaceborne lidars ALADIN and CALIOP. Three remote ocean areas are selected. Pure marine aerosol optical properties at 355 nm are derived from ALADIN. The relationships between marine aerosol optical properties and wind speeds are analyzed within and above the marine atmospheric boundary layer, revealing the effect of wind speed on marine aerosols over remote oceans.
Perla Alalam, Fabrice Ducos, and Hervé Herbin
EGUsphere, https://doi.org/10.5194/egusphere-2024-888, https://doi.org/10.5194/egusphere-2024-888, 2024
Short summary
Short summary
This study dives into the impact of mineral dust laboratory complex refractive indices (CRI) on quantifying the dust microphysical properties using satellite infrared remote sensing. Results show that using new CRI obtained by advanced realistic techniques can improve the accuracy of these measurements, emphasizing the importance of choosing the suitable CRI in atmospheric models. This improvement is crucial for better predicting the dust radiative effect and impact on the climate.
Jingting Huang, S. Marcela Loría-Salazar, Min Deng, Jaehwa Lee, and Heather A. Holmes
Atmos. Chem. Phys., 24, 3673–3698, https://doi.org/10.5194/acp-24-3673-2024, https://doi.org/10.5194/acp-24-3673-2024, 2024
Short summary
Short summary
Increased wildfire intensity has resulted in taller wildfire smoke plumes. We investigate the vertical structure of wildfire smoke plumes using aircraft lidar data and establish two effective smoke plume height metrics. Four novel satellite-based plume height products are evaluated for wildfires in the western US. Our results provide guidance on the strengths and limitations of these satellite products and set the stage for improved plume rise estimates by leveraging satellite products.
Piyushkumar N. Patel, Jonathan H. Jiang, Ritesh Gautam, Harish Gadhavi, Olga Kalashnikova, Michael J. Garay, Lan Gao, Feng Xu, and Ali Omar
Atmos. Chem. Phys., 24, 2861–2883, https://doi.org/10.5194/acp-24-2861-2024, https://doi.org/10.5194/acp-24-2861-2024, 2024
Short summary
Short summary
Global measurements of cloud condensation nuclei (CCN) are essential for understanding aerosol–cloud interactions and predicting climate change. To address this gap, we introduced a remote sensing algorithm that retrieves vertically resolved CCN number concentrations from airborne and spaceborne lidar systems. This innovation offers a global distribution of CCN concentrations from space, facilitating model evaluation and precise quantification of aerosol climate forcing.
Lorraine A. Remer, Robert C. Levy, and J. Vanderlei Martins
Atmos. Chem. Phys., 24, 2113–2127, https://doi.org/10.5194/acp-24-2113-2024, https://doi.org/10.5194/acp-24-2113-2024, 2024
Short summary
Short summary
Aerosols are small liquid or solid particles suspended in the atmosphere, including smoke, particulate pollution, dust, and sea salt. Today, we rely on satellites viewing Earth's atmosphere to learn about these particles. Here, we speculate on the future to imagine how satellite viewing of aerosols will change. We expect more public and private satellites with greater capabilities, better ways to infer information from satellites, and merging of data with models.
Xiaoxia Shang, Antti Lipponen, Maria Filioglou, Anu-Maija Sundström, Mark Parrington, Virginie Buchard, Anton S. Darmenov, Ellsworth J. Welton, Eleni Marinou, Vassilis Amiridis, Michael Sicard, Alejandro Rodríguez-Gómez, Mika Komppula, and Tero Mielonen
Atmos. Chem. Phys., 24, 1329–1344, https://doi.org/10.5194/acp-24-1329-2024, https://doi.org/10.5194/acp-24-1329-2024, 2024
Short summary
Short summary
In June 2019, smoke particles from a Canadian wildfire event were transported to Europe. The long-range-transported smoke plumes were monitored with a spaceborne lidar and reanalysis models. Based on the aerosol mass concentrations estimated from the observations, the reanalysis models had difficulties in reproducing the amount and location of the smoke aerosols during the transport event. Consequently, more spaceborne lidar missions are needed for reliable monitoring of aerosol plumes.
Blake T. Sorenson, Jeffrey S. Reid, Jianglong Zhang, Robert E. Holz, William L. Smith Sr., and Amanda Gumber
Atmos. Chem. Phys., 24, 1231–1248, https://doi.org/10.5194/acp-24-1231-2024, https://doi.org/10.5194/acp-24-1231-2024, 2024
Short summary
Short summary
Smoke particles are typically submicron in size and assumed to have negligible impacts at the thermal infrared spectrum. However, we show that infrared signatures can be observed over dense smoke plumes from satellites. We found that giant particles are unlikely to be the dominant cause. Rather, co-transported water vapor injected to the middle to upper troposphere and surface cooling beneath the plume due to shadowing are significant, with the surface cooling effect being the most dominant.
Farnaz Hosseinpour and Eric M. Wilcox
Atmos. Chem. Phys., 24, 707–724, https://doi.org/10.5194/acp-24-707-2024, https://doi.org/10.5194/acp-24-707-2024, 2024
Short summary
Short summary
This study shows mechanistic relationships between the radiative effect of dust aerosols in the Saharan air layer and the kinetic energy of the African easterly waves across the tropical Atlantic Ocean using 22 years of daily satellite observations and reanalysis data based on satellite assimilation. Our findings suggest that dust aerosols not merely are transported by these waves but also contribute to the growth of waves through the enhancement of diabatic heating induced by dust.
Markus D. Petters, Tyas Pujiastuti, Ajmal Rasheeda Satheesh, Sabin Kasparoglu, Bethany Sutherland, and Nicholas Meskhidze
Atmos. Chem. Phys., 24, 745–762, https://doi.org/10.5194/acp-24-745-2024, https://doi.org/10.5194/acp-24-745-2024, 2024
Short summary
Short summary
This work introduces a new method that uses remote sensing techniques to obtain surface number emissions of particles with a diameter greater than 500 nm. The technique was applied to study particle emissions at an urban site near Houston, TX, USA. The emissions followed a diurnal pattern and peaked near noon local time. The daily averaged emissions correlated with wind speed. The source is likely due to wind-driven erosion of material situated on asphalted and other hard surfaces.
Zhuang Wang, Chune Shi, Hao Zhang, Yujia Chen, Xiyuan Chi, Congzi Xia, Suyao Wang, Yizhi Zhu, Kaidi Zhang, Xintong Chen, Chengzhi Xing, and Cheng Liu
Atmos. Chem. Phys., 23, 14271–14292, https://doi.org/10.5194/acp-23-14271-2023, https://doi.org/10.5194/acp-23-14271-2023, 2023
Short summary
Short summary
The annual cycle of dust and anthropogenic aerosols' vertical distributions was revealed by polarization Raman lidar in Beijing. Anthropogenic aerosols typically accumulate at the top of the mixing layer (ML) due to the hygroscopic growth of atmospheric particles, and this is most significant in summer. There is no significant relationship between bottom dust mass concentration and ML height, while the dust in the upper air tends to be distributed near the mixing layer.
Simone Lolli, Michaël Sicard, Francesco Amato, Adolfo Comeron, Cristina Gíl-Diaz, Tony C. Landi, Constantino Munoz-Porcar, Daniel Oliveira, Federico Dios Otin, Francesc Rocadenbosch, Alejandro Rodriguez-Gomez, Andrés Alastuey, Xavier Querol, and Cristina Reche
Atmos. Chem. Phys., 23, 12887–12906, https://doi.org/10.5194/acp-23-12887-2023, https://doi.org/10.5194/acp-23-12887-2023, 2023
Short summary
Short summary
We evaluated the long-term trends and seasonal variability of the vertically resolved aerosol properties over the past 17 years in Barcelona. Results shows that air quality is improved, with a consistent drop in PM concentrations at the surface, as well as the column aerosol optical depth. The results also show that natural dust outbreaks are more likely in summer, with aerosols reaching an altitude of 5 km, while in winter, aerosols decay as an exponential with a scale height of 600 m.
Ludovico Di Antonio, Claudia Di Biagio, Gilles Foret, Paola Formenti, Guillaume Siour, Jean-François Doussin, and Matthias Beekmann
Atmos. Chem. Phys., 23, 12455–12475, https://doi.org/10.5194/acp-23-12455-2023, https://doi.org/10.5194/acp-23-12455-2023, 2023
Short summary
Short summary
Long-term (2000–2021) 1 km resolution satellite data have been used to investigate the climatological aerosol optical depth (AOD) variability and trends at different scales in Europe. Average enhancements of the local-to-regional AOD ratio at 550 nm of 57 %, 55 %, 39 % and 32 % are found for large metropolitan areas such as Barcelona, Lisbon, Paris and Athens, respectively, suggesting a non-negligible enhancement of the aerosol burden through local emissions.
Sebastien Garrigues, Melanie Ades, Samuel Remy, Johannes Flemming, Zak Kipling, Istvan Laszlo, Mark Parrington, Antje Inness, Roberto Ribas, Luke Jones, Richard Engelen, and Vincent-Henri Peuch
Atmos. Chem. Phys., 23, 10473–10487, https://doi.org/10.5194/acp-23-10473-2023, https://doi.org/10.5194/acp-23-10473-2023, 2023
Short summary
Short summary
The Copernicus Atmosphere Monitoring Service (CAMS) provides global monitoring of aerosols using the ECMWF forecast model constrained by the assimilation of satellite aerosol optical depth (AOD). This work aims at evaluating the assimilation of the NOAA VIIRS AOD product in the ECMWF model. It shows that the introduction of VIIRS in the CAMS data assimilation system enhances the accuracy of the aerosol analysis, particularly over Europe and desert and maritime sites.
Maria Filioglou, Ari Leskinen, Ville Vakkari, Ewan O'Connor, Minttu Tuononen, Pekko Tuominen, Samuli Laukkanen, Linnea Toiviainen, Annika Saarto, Xiaoxia Shang, Petri Tiitta, and Mika Komppula
Atmos. Chem. Phys., 23, 9009–9021, https://doi.org/10.5194/acp-23-9009-2023, https://doi.org/10.5194/acp-23-9009-2023, 2023
Short summary
Short summary
Pollen impacts climate and public health, and it can be detected in the atmosphere by lidars which measure the linear particle depolarization ratio (PDR), a shape-relevant optical parameter. As aerosols also cause depolarization, surface aerosol and pollen observations were combined with measurements from ground-based lidars operating at different wavelengths to determine the optical properties of birch and pine pollen and quantify their relative contribution to the PDR.
Jesús Abril-Gago, Pablo Ortiz-Amezcua, Diego Bermejo-Pantaleón, Juana Andújar-Maqueda, Juan Antonio Bravo-Aranda, María José Granados-Muñoz, Francisco Navas-Guzmán, Lucas Alados-Arboledas, Inmaculada Foyo-Moreno, and Juan Luis Guerrero-Rascado
Atmos. Chem. Phys., 23, 8453–8471, https://doi.org/10.5194/acp-23-8453-2023, https://doi.org/10.5194/acp-23-8453-2023, 2023
Short summary
Short summary
Validation activities of Aeolus wind products were performed in Granada with different upward-probing instrumentation (Doppler lidar system and radiosondes) and spatiotemporal collocation criteria. Specific advantages and disadvantages of each instrument were identified, and an optimal comparison criterion is proposed. Aeolus was proven to provide reliable wind products, and the upward-probing instruments were proven to be useful for Aeolus wind product validation activities.
Jianyu Zheng, Zhibo Zhang, Hongbin Yu, Anne Garnier, Qianqian Song, Chenxi Wang, Claudia Di Biagio, Jasper F. Kok, Yevgeny Derimian, and Claire Ryder
Atmos. Chem. Phys., 23, 8271–8304, https://doi.org/10.5194/acp-23-8271-2023, https://doi.org/10.5194/acp-23-8271-2023, 2023
Short summary
Short summary
We developed a multi-year satellite-based retrieval of dust optical depth at 10 µm and the coarse-mode dust effective diameter over global oceans. It reveals climatological coarse-mode dust transport patterns and regional differences over the North Atlantic, the Indian Ocean and the North Pacific.
Shikuan Jin, Yingying Ma, Zhongwei Huang, Jianping Huang, Wei Gong, Boming Liu, Weiyan Wang, Ruonan Fan, and Hui Li
Atmos. Chem. Phys., 23, 8187–8210, https://doi.org/10.5194/acp-23-8187-2023, https://doi.org/10.5194/acp-23-8187-2023, 2023
Short summary
Short summary
To better understand the Asian aerosol environment, we studied distributions and trends of aerosol with different sizes and types. Over the past 2 decades, dust, sulfate, and sea salt aerosol decreased by 5.51 %, 3.07 %, and 9.80 %, whereas organic carbon and black carbon aerosol increased by 17.09 % and 6.23 %, respectively. The increase in carbonaceous aerosols was a feature of Asia. An exception is found in East Asia, where the carbonaceous aerosols reduced, owing largely to China's efforts.
Mukunda M. Gogoi, S. Suresh Babu, Ryoichi Imasu, and Makiko Hashimoto
Atmos. Chem. Phys., 23, 8059–8079, https://doi.org/10.5194/acp-23-8059-2023, https://doi.org/10.5194/acp-23-8059-2023, 2023
Short summary
Short summary
Considering the climate warming potential of atmospheric black carbon (BC), satellite-based retrieval is a novel idea. This study highlights the regional distribution of BC based on observations by the Cloud and Aerosol Imager-2 on board the GOSAT-2 satellite and near-surface measurements of BC in ARFINET. The satellite retrieval fairly depicts the regional and seasonal features of BC over the Indian region, which are similar to those recorded by surface observations.
Hao Fan, Xingchuan Yang, Chuanfeng Zhao, Yikun Yang, and Zhenyao Shen
Atmos. Chem. Phys., 23, 7781–7798, https://doi.org/10.5194/acp-23-7781-2023, https://doi.org/10.5194/acp-23-7781-2023, 2023
Short summary
Short summary
Using 20-year multi-source data, this study shows pronounced regional and seasonal variations in fire activities and emissions. Seasonal variability of fires is larger with increasing latitude. The increase in temperature in the Northern Hemisphere's middle- and high-latitude forest regions was primarily responsible for the increase in fires and emissions, while the changes in fire occurrence in tropical regions were more influenced by the decrease in precipitation and relative humidity.
Rosemary Huck, Robert G. Bryant, and James King
Atmos. Chem. Phys., 23, 6299–6318, https://doi.org/10.5194/acp-23-6299-2023, https://doi.org/10.5194/acp-23-6299-2023, 2023
Short summary
Short summary
This study shows that mineral aerosol (dust) emission events in high-latitude areas are under-represented in both ground- and space-based detecting methods. This is done through a suite of ground-based data to prove that dust emissions from the proglacial area, Lhù’ààn Mân, occur almost daily but are not always recorded at different timescales. Dust has multiple effects on atmospheric processes; therefore, accurate quantification is important in the calibration and validation of climate models.
Michail Mytilinaios, Sara Basart, Sergio Ciamprone, Juan Cuesta, Claudio Dema, Enza Di Tomaso, Paola Formenti, Antonis Gkikas, Oriol Jorba, Ralph Kahn, Carlos Pérez García-Pando, Serena Trippetta, and Lucia Mona
Atmos. Chem. Phys., 23, 5487–5516, https://doi.org/10.5194/acp-23-5487-2023, https://doi.org/10.5194/acp-23-5487-2023, 2023
Short summary
Short summary
Multiscale Online Non-hydrostatic AtmospheRe CHemistry model (MONARCH) dust reanalysis provides a high-resolution 3D reconstruction of past dust conditions, allowing better quantification of climate and socioeconomic dust impacts. We assess the performance of the reanalysis needed to reproduce dust optical depth using dust-related products retrieved from satellite and ground-based observations and show that it reproduces the spatial distribution and seasonal variability of atmospheric dust well.
Jacob Z. Tindan, Qinjian Jin, and Bing Pu
Atmos. Chem. Phys., 23, 5435–5466, https://doi.org/10.5194/acp-23-5435-2023, https://doi.org/10.5194/acp-23-5435-2023, 2023
Short summary
Short summary
We use the Infrared Atmospheric Sounder Interferometer (IASI) retrievals of dust variables (dust optical depth and dust layer height) and surface observations to understand the day- and nighttime variations in dust aerosols over the dust belt. Our results show that daytime dust aerosols are significantly different from nighttime, and such day–night variations are influenced by meteorological factors such as wind speed, precipitation, and turbulent motions within the atmospheric boundary layer.
Ross Herbert and Philip Stier
Atmos. Chem. Phys., 23, 4595–4616, https://doi.org/10.5194/acp-23-4595-2023, https://doi.org/10.5194/acp-23-4595-2023, 2023
Short summary
Short summary
We provide robust evidence from multiple sources showing that smoke from fires in the Amazon rainforest significantly modifies the diurnal cycle of convection and cools the climate. Low to moderate amounts of smoke increase deep convective clouds and rain, whilst beyond a threshold amount, the smoke starts to suppress the convection and rain. We are currently at this threshold, suggesting increases in fires from agricultural practices or droughts will reduce cloudiness and rain over the region.
Yue Huang, Jasper F. Kok, Masanori Saito, and Olga Muñoz
Atmos. Chem. Phys., 23, 2557–2577, https://doi.org/10.5194/acp-23-2557-2023, https://doi.org/10.5194/acp-23-2557-2023, 2023
Short summary
Short summary
Global aerosol models and remote sensing retrievals use dust optical models with inconsistent and inaccurate dust shape approximations. Here, we present a new dust optical model constrained by measured dust shape distributions. This new dust optical model is an improvement on the current dust optical models used in models and retrieval algorithms, as quantified by comparisons against laboratory and field observations of dust optics.
Konstantinos Michailidis, Maria-Elissavet Koukouli, Dimitris Balis, J. Pepijn Veefkind, Martin de Graaf, Lucia Mona, Nikolaos Papagianopoulos, Gesolmina Pappalardo, Ioanna Tsikoudi, Vassilis Amiridis, Eleni Marinou, Anna Gialitaki, Rodanthi-Elisavet Mamouri, Argyro Nisantzi, Daniele Bortoli, Maria João Costa, Vanda Salgueiro, Alexandros Papayannis, Maria Mylonaki, Lucas Alados-Arboledas, Salvatore Romano, Maria Rita Perrone, and Holger Baars
Atmos. Chem. Phys., 23, 1919–1940, https://doi.org/10.5194/acp-23-1919-2023, https://doi.org/10.5194/acp-23-1919-2023, 2023
Short summary
Short summary
Comparisons with ground-based correlative lidar measurements constitute a key component in the validation of satellite aerosol products. This paper presents the validation of the TROPOMI aerosol layer height (ALH) product, using archived quality assured ground-based data from lidar stations that belong to the EARLINET network. Comparisons between the TROPOMI ALH and co-located EARLINET measurements show good agreement over the ocean.
María Ángeles López-Cayuela, Carmen Córdoba-Jabonero, Diego Bermejo-Pantaleón, Michaël Sicard, Vanda Salgueiro, Francisco Molero, Clara Violeta Carvajal-Pérez, María José Granados-Muñoz, Adolfo Comerón, Flavio T. Couto, Rubén Barragán, María-Paz Zorzano, Juan Antonio Bravo-Aranda, Constantino Muñoz-Porcar, María João Costa, Begoña Artíñano, Alejandro Rodríguez-Gómez, Daniele Bortoli, Manuel Pujadas, Jesús Abril-Gago, Lucas Alados-Arboledas, and Juan Luis Guerrero-Rascado
Atmos. Chem. Phys., 23, 143–161, https://doi.org/10.5194/acp-23-143-2023, https://doi.org/10.5194/acp-23-143-2023, 2023
Short summary
Short summary
An intense Saharan dust outbreak crossing the Iberian Peninsula in springtime was monitored to determinine the specific contribution of fine and coarse dust particles at five lidar stations, strategically covering its SW–central–NE pathway. Expected dust ageing along the transport started unappreciated. A different fine-dust impact on optical (~30 %) and mass (~10 %) properties was found. Use of polarized lidar measurements (mainly in elastic systems) for fine/coarse dust separation is crucial.
Kyriakoula Papachristopoulou, Ioannis-Panagiotis Raptis, Antonis Gkikas, Ilias Fountoulakis, Akriti Masoom, and Stelios Kazadzis
Atmos. Chem. Phys., 22, 15703–15727, https://doi.org/10.5194/acp-22-15703-2022, https://doi.org/10.5194/acp-22-15703-2022, 2022
Short summary
Short summary
Megacities' air quality is determined by atmospheric aerosols. We focus on changes over the last two decades in the 81 largest cities, using satellite data. European and American cities have lower aerosol compared to African and Asian cities. For European, North American and East Asian cities, aerosols are decreasing over time, especially in China and the US. In the remaining cities, aerosol loads are increasing, particularly in India.
Nilton Évora do Rosário, Elisa Thomé Sena, and Marcia Akemi Yamasoe
Atmos. Chem. Phys., 22, 15021–15033, https://doi.org/10.5194/acp-22-15021-2022, https://doi.org/10.5194/acp-22-15021-2022, 2022
Short summary
Short summary
The 2020 burning season in Brazil was marked by an atypically high number of fire spots across Pantanal, leading to high amounts of smoke within the biome. This study shows that smoke over Pantanal, usually a fraction of that over Amazonia, was higher and resulted mainly from fires in conservation and indigenous areas. It also contributes to highlighting Pantanal's 2020 burning season as the worst combination of a climate extreme scenario and inadequately enforced environmental regulations.
Qingyang Xiao, Guannan Geng, Shigan Liu, Jiajun Liu, Xia Meng, and Qiang Zhang
Atmos. Chem. Phys., 22, 13229–13242, https://doi.org/10.5194/acp-22-13229-2022, https://doi.org/10.5194/acp-22-13229-2022, 2022
Short summary
Short summary
We provided complete coverage PM2.5 concentrations at a 1-km resolution from 2000 to the present, carefully considering the significant changes in land use characteristics in China. This high-resolution PM2.5 data successfully revealed the local-scale PM2.5 variations. We noticed changes in PM2.5 spatial patterns in association with the clean air policies, with the pollution hotspots having transferred from urban centers to rural regions with limited air quality monitoring.
Johannes Quaas, Hailing Jia, Chris Smith, Anna Lea Albright, Wenche Aas, Nicolas Bellouin, Olivier Boucher, Marie Doutriaux-Boucher, Piers M. Forster, Daniel Grosvenor, Stuart Jenkins, Zbigniew Klimont, Norman G. Loeb, Xiaoyan Ma, Vaishali Naik, Fabien Paulot, Philip Stier, Martin Wild, Gunnar Myhre, and Michael Schulz
Atmos. Chem. Phys., 22, 12221–12239, https://doi.org/10.5194/acp-22-12221-2022, https://doi.org/10.5194/acp-22-12221-2022, 2022
Short summary
Short summary
Pollution particles cool climate and offset part of the global warming. However, they are washed out by rain and thus their effect responds quickly to changes in emissions. We show multiple datasets to demonstrate that aerosol emissions and their concentrations declined in many regions influenced by human emissions, as did the effects on clouds. Consequently, the cooling impact on the Earth energy budget became smaller. This change in trend implies a relative warming.
Ukkyo Jeong, Si-Chee Tsay, N. Christina Hsu, David M. Giles, John W. Cooper, Jaehwa Lee, Robert J. Swap, Brent N. Holben, James J. Butler, Sheng-Hsiang Wang, Somporn Chantara, Hyunkee Hong, Donghee Kim, and Jhoon Kim
Atmos. Chem. Phys., 22, 11957–11986, https://doi.org/10.5194/acp-22-11957-2022, https://doi.org/10.5194/acp-22-11957-2022, 2022
Short summary
Short summary
Ultraviolet (UV) measurements from satellite and ground are important for deriving information on several atmospheric trace and aerosol characteristics. Simultaneous retrievals of aerosol and trace gases in this study suggest that water uptake by aerosols is one of the important phenomena affecting aerosol properties over northern Thailand, which is important for regional air quality and climate. Obtained aerosol properties covering the UV are also important for various satellite algorithms.
Abdulaziz Tunde Yakubu and Naven Chetty
Atmos. Chem. Phys., 22, 11065–11087, https://doi.org/10.5194/acp-22-11065-2022, https://doi.org/10.5194/acp-22-11065-2022, 2022
Short summary
Short summary
This study examined the source of atmospheric aerosols and their role in forming clouds and rainfall over South Africa. The research provided answers to the cause of low precipitation, mainly linked to drought and water shortages experienced over the region. Further insight into the cause of occasional flooding that occurs in other parts of the area is provided. Finally, the study described the relationship between aerosol–cloud precipitation based on observation over the region.
África Barreto, Rosa D. García, Carmen Guirado-Fuentes, Emilio Cuevas, A. Fernando Almansa, Celia Milford, Carlos Toledano, Francisco J. Expósito, Juan P. Díaz, and Sergio F. León-Luis
Atmos. Chem. Phys., 22, 11105–11124, https://doi.org/10.5194/acp-22-11105-2022, https://doi.org/10.5194/acp-22-11105-2022, 2022
Short summary
Short summary
A comprehensive characterization of atmospheric aerosols in the subtropical eastern North Atlantic has been carried out in this paper using long-term ground AERONET photometric observations over the period 2005–2020 from a unique network made up of four stations strategically located from sea level to 3555 m height on the island of Tenerife. This is a region that can be considered a key location to study the seasonal dependence of dust transport from the Sahel-Sahara.
Xiaoxi Zhao, Kan Huang, Joshua S. Fu, and Sabur F. Abdullaev
Atmos. Chem. Phys., 22, 10389–10407, https://doi.org/10.5194/acp-22-10389-2022, https://doi.org/10.5194/acp-22-10389-2022, 2022
Short summary
Short summary
Long-range transport of Asian dust to the Arctic was considered an important source of Arctic air pollution. Different transport routes to the Arctic had divergent effects on the evolution of aerosol properties. Depositions of long-range-transported dust particles can reduce the Arctic surface albedo considerably. This study implied that the ubiquitous long-transport dust from China exerted considerable aerosol indirect effects on the Arctic and may have potential biogeochemical significance.
Katherine T. Junghenn Noyes, Ralph A. Kahn, James A. Limbacher, and Zhanqing Li
Atmos. Chem. Phys., 22, 10267–10290, https://doi.org/10.5194/acp-22-10267-2022, https://doi.org/10.5194/acp-22-10267-2022, 2022
Short summary
Short summary
We compare retrievals of wildfire smoke particle size, shape, and light absorption from the MISR satellite instrument to modeling and other satellite data on land cover type, drought conditions, meteorology, and estimates of fire intensity (fire radiative power – FRP). We find statistically significant differences in the particle properties based on burning conditions and land cover type, and we interpret how changes in these properties point to specific aerosol aging mechanisms.
David W. Fillmore, David A. Rutan, Seiji Kato, Fred G. Rose, and Thomas E. Caldwell
Atmos. Chem. Phys., 22, 10115–10137, https://doi.org/10.5194/acp-22-10115-2022, https://doi.org/10.5194/acp-22-10115-2022, 2022
Short summary
Short summary
This paper presents an evaluation of the aerosol analysis incorporated into the Clouds and the Earth's Radiant Energy System (CERES) data products as well as the aerosols' impact on solar radiation reaching the surface. CERES is a NASA Earth observation mission with instruments flying on various polar-orbiting satellites. Its primary objective is the study of the radiative energy balance of the climate system as well as examination of the influence of clouds and aerosols on this balance.
Peng Xian, Jianglong Zhang, Norm T. O'Neill, Travis D. Toth, Blake Sorenson, Peter R. Colarco, Zak Kipling, Edward J. Hyer, James R. Campbell, Jeffrey S. Reid, and Keyvan Ranjbar
Atmos. Chem. Phys., 22, 9915–9947, https://doi.org/10.5194/acp-22-9915-2022, https://doi.org/10.5194/acp-22-9915-2022, 2022
Short summary
Short summary
The study provides baseline Arctic spring and summertime aerosol optical depth climatology, trend, and extreme event statistics from 2003 to 2019 using a combination of aerosol reanalyses, remote sensing, and ground observations. Biomass burning smoke has an overwhelming contribution to black carbon (an efficient climate forcer) compared to anthropogenic sources. Burning's large interannual variability and increasing summer trend have important implications for the Arctic climate.
Harshvardhan Harshvardhan, Richard Ferrare, Sharon Burton, Johnathan Hair, Chris Hostetler, David Harper, Anthony Cook, Marta Fenn, Amy Jo Scarino, Eduard Chemyakin, and Detlef Müller
Atmos. Chem. Phys., 22, 9859–9876, https://doi.org/10.5194/acp-22-9859-2022, https://doi.org/10.5194/acp-22-9859-2022, 2022
Short summary
Short summary
The evolution of aerosol in biomass burning smoke plumes that travel over marine clouds off the Atlantic coast of central Africa was studied using measurements made by a lidar deployed on a high-altitude aircraft. The main finding was that the physical properties of aerosol do not change appreciably once the plume has left land and travels over the ocean over a timescale of 1 to 2 d. Almost all particles in the plume are of radius less than 1 micrometer and spherical in shape.
Peng Xian, Jianglong Zhang, Norm T. O'Neill, Jeffrey S. Reid, Travis D. Toth, Blake Sorenson, Edward J. Hyer, James R. Campbell, and Keyvan Ranjbar
Atmos. Chem. Phys., 22, 9949–9967, https://doi.org/10.5194/acp-22-9949-2022, https://doi.org/10.5194/acp-22-9949-2022, 2022
Short summary
Short summary
The study provides a baseline Arctic spring and summertime aerosol optical depth climatology, trend, and extreme event statistics from 2003 to 2019 using a combination of aerosol reanalyses, remote sensing, and ground observations. Biomass burning smoke has an overwhelming contribution to black carbon (an efficient climate forcer) compared to anthropogenic sources. Burning's large interannual variability and increasing summer trend have important implications for the Arctic climate.
Sudip Chakraborty, Bin Guan, Duane E. Waliser, and Arlindo M. da Silva
Atmos. Chem. Phys., 22, 8175–8195, https://doi.org/10.5194/acp-22-8175-2022, https://doi.org/10.5194/acp-22-8175-2022, 2022
Short summary
Short summary
This study explores extreme aerosol transport events by aerosol atmospheric rivers (AARs) and shows the characteristics of individual AARs such as length, width, length-to-width ratio, transport strength, and dominant transport direction, the seasonal variations, the relationship to the spatial distribution of surface emissions, the vertical profiles of wind, aerosol mixing ratio, and aerosol mass fluxes, and the major planetary-scale aerosol transport pathways.
Guangyao Dai, Kangwen Sun, Xiaoye Wang, Songhua Wu, Xiangying E, Qi Liu, and Bingyi Liu
Atmos. Chem. Phys., 22, 7975–7993, https://doi.org/10.5194/acp-22-7975-2022, https://doi.org/10.5194/acp-22-7975-2022, 2022
Short summary
Short summary
In this paper, a Sahara dust event is tracked with the spaceborne lidars ALADIN and CALIOP and the models ECMWF and HYSPLIT. The performance of ALADIN and CALIOP on tracking the dust event and on the observations of dust optical properties and wind fields during the dust transport is evaluated. The dust mass advection is defined, which is calculated with the combination of data from ALADIN and CALIOP coupled with the products from models to describe the dust transport quantitatively.
Ke Gui, Wenrui Yao, Huizheng Che, Linchang An, Yu Zheng, Lei Li, Hujia Zhao, Lei Zhang, Junting Zhong, Yaqiang Wang, and Xiaoye Zhang
Atmos. Chem. Phys., 22, 7905–7932, https://doi.org/10.5194/acp-22-7905-2022, https://doi.org/10.5194/acp-22-7905-2022, 2022
Short summary
Short summary
This study investigates the aerosol optical and radiative properties and meteorological drivers during two mega SDS events over Northern China in March 2021. The MODIS-retrieved DOD data registered these two events as the most intense episode in the same period in history over the past 20 years. These two extreme SDS events were associated with both atmospheric circulation extremes and local meteorological anomalies that favor enhanced dust emissions in the Gobi Desert.
Manuel Gutleben, Silke Groß, Christian Heske, and Martin Wirth
Atmos. Chem. Phys., 22, 7319–7330, https://doi.org/10.5194/acp-22-7319-2022, https://doi.org/10.5194/acp-22-7319-2022, 2022
Short summary
Short summary
The main transportation route of Saharan mineral dust particles leads over the subtropical Atlantic Ocean and is subject to a seasonal variation. This study investigates the characteristics of wintertime transatlantic dust transport towards the Caribbean by means of airborne lidar measurements. It is found that dust particles are transported at low atmospheric altitudes (<3.5 km) embedded in a relatively moist mixture with two other particle types, namely marine and biomass-burning particles.
Cited articles
Ahn, C., Torres, O., and Jethva, H.: Assessment of OMI near-UV aerosol
optical depth over land, J. Geophys. Res.-Atmos., 119, 2457–2473,
https://doi.org/10.1002/2013JD020188, 2014.
Ahn, Y.-C., Chung, J., Wilder-Smith, P., and Chen, Z.: Multimodality approach
to optical early detection and mapping of oral neoplasia, J. Biomed. Opt.,
16, 076007, https://doi.org/10.1117/1.3595850, 2011.
Alsante, A. N., Thornton, D. C. O., and Brooks, S. D.: Ocean Aerobiology,
Front. Microbiol., 12, 3143, https://doi.org/10.3389/fmicb.2021.764178, 2021.
Anderson, J. C., Wang, J., Zeng, J., Leptoukh, G., Petrenko, M., Ichoku, C.,
and Hu, C.: Long-term statistical assessment of Aqua-MODIS aerosol optical
depth over coastal regions: bias characteristics and uncertainty sources,
Tellus B Chem. Phys. Meteorol., 65, 20805,
https://doi.org/10.3402/tellusb.v65i0.20805, 2013.
Applequist, J.: An Atom Dipole Interaction Model for Molecular Optical
Properties, Acc. Chem. Res., 10, 79–85, https://doi.org/10.1021/ar50111a002, 1977.
Applequist, J.: Optical Activity: Biot's Bequest, Am. Sci., 75, 58–68, 1987.
Asano, S.: Light scattering properties of spheroidal particles, Appl. Opt.,
18, 712, https://doi.org/10.1364/AO.18.000712, 1979.
Asano, S. and Sato, M.: Light scattering by randomly oriented spheroidal
particles, Appl. Opt., 19, 962, https://doi.org/10.1364/AO.19.000962, 1980.
Autschbach, J.: Computing chiroptical properties with first-principles
theoretical methods: Background and illustrative examples, Chirality,
21, E116–E152, https://doi.org/10.1002/chir.20789, 2009.
Avnir, D.: Critical review of chirality indicators of extraterrestrial life,
New Astron. Rev., 92, 101596,
https://doi.org/10.1016/j.newar.2020.101596, 2021.
Bailey, J., Chrysostomou, A., Hough, J. H., Gledhill, T. M., McCall, A.,
Clark, S., Ménard, F., and Tamura, M.: Circular Polarization in Star-
Formation Regions: Implications for Biomolecular Homochirality, Science, 80, 672–674, https://doi.org/10.1126/science.281.5377.672, 1998.
Barbaro, E., Zangrando, R., Vecchiato, M., Piazza, R., Cairns, W. R. L., Capodaglio, G., Barbante, C., and Gambaro, A.: Free amino acids in Antarctic aerosol: potential markers for the evolution and fate of marine aerosol, Atmos. Chem. Phys., 15, 5457–5469, https://doi.org/10.5194/acp-15-5457-2015, 2015.
Barron, L. D.: Molecular Light Scattering and Optical Activity, 2nd Edn., Cambridge, Cambridge University Press, https://doi.org/10.1017/CBO9780511535468, 2004.
Bellcross, A., Bé, A. G., Geiger, F. M., and Thomson, R. J.: Molecular
Chirality and Cloud Activation Potentials of Dimeric α-Pinene
Oxidation Products, J. Am. Chem. Soc., 143, 16653–16662,
https://doi.org/10.1021/jacs.1c07509, 2021.
Bian, H., Chin, M., Hauglustaine, D. A., Schulz, M., Myhre, G., Bauer, S. E., Lund, M. T., Karydis, V. A., Kucsera, T. L., Pan, X., Pozzer, A., Skeie, R. B., Steenrod, S. D., Sudo, K., Tsigaridis, K., Tsimpidi, A. P., and Tsyro, S. G.: Investigation of global particulate nitrate from the AeroCom phase III experiment, Atmos. Chem. Phys., 17, 12911–12940, https://doi.org/10.5194/acp-17-12911-2017, 2017.
Bickel, W. S. and Stafford, M. E.: Polarized scattered light as a probe for
structure and change in bioparticles, in: Ultrasensitive Biochemical
Diagnostics, vol. 2680, edited by: Cohn, G. E., Soper, S. A., and Chen, C. H. W., 4–15, SPIE, 1996.
Bickel, W. S., Davidson, J. F., Huffman, D. R., and Kilkson, R.: Application
of polarization effects in light scattering: a new biophysical tool, P.
Natl. Acad. Sci. USA, 73, 486–490, https://doi.org/10.1073/pnas.73.2.486, 1976.
Binkowski, F. S. and Roselle, S. J.: Models-3 Community Multiscale Air
Quality (CMAQ) model aerosol component 1. Model description, J. Geophys.
Res.-Atmos., 108, 4183, https://doi.org/10.1029/2001JD001409, 2003.
Bohren, C. F.: Light scattering by an optically active sphere, Chem. Phys. Lett., 29, 458–462, https://doi.org/10.1016/0009-2614(74)85144-4, 1974.
Bohren, C. F.: Scattering of electromagnetic waves by an optically active spherical shell, The J. Chem. Phys., 62, 1566, https://doi.org/10.1063/1.430622, 1975.
Bohren, C. F. and Huffman, D. R.: Absorption and Scattering of Light by
Small Particles, 1st Edn., Wiley-VCH Verlag GmbH, Weinheim, Germany, 1998.
Born, M.: Herbert Herkner, Die Naturwissenschaften, 6, 179–180, https://doi.org/10.1007/BF01491442, 1918.
Cao, X., Roy, G., Roy, N., and Bernier, R.: Comparison of the relationships
between lidar integrated backscattered light and accumulated depolarization
ratios for linear and circular polarization for water droplets, fog oil, and
dust, Appl. Opt., 48, 4130, https://doi.org/10.1364/AO.48.004130, 2009.
Cao, X., Roy, G. A., Cao, X., and Bernier, R.: On linear and circular
depolarization LIDAR signatures in remote sensing of bioaerosols:
experimental validation of the Mueller matrix for randomly oriented
particles, Opt. Eng., 50, 1–11, https://doi.org/10.1117/1.3657505, 2011.
Cash, J. M., Heal, M. R., Langford, B., and Drewer, J.: A review of
stereochemical implications in the generation of secondary organic aerosol
from isoprene oxidation, Environ. Sci. Process. Impacts, 18, 1369–1380,
https://doi.org/10.1039/C6EM00354K, 2016.
Chaikovskaya, L. I.: Remote sensing of clouds using linearly and circularly
polarized laser beams: techniques to compute signal polarization, in: Light
Scattering Reviews 3, 191–228, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2008.
Chakrabarty, R. K., Beres, N. D., Moosmüller, H., China, S., Mazzoleni, C., Dubey, M. K., Liu, L., and Mishchenko, M. I.: Soot superaggregates from flaming wildfires and their direct radiative forcing, Sci. Rep., 4, 5508, https://doi.org/10.1038/srep05508, 2014.
Chandrasekhar, S.: Radiative Transfer, Dover Publications In, New York, 1960.
China, S., Mazzoleni, C., Gorkowski, K., Aiken, A. C., and Dubey, M. K.: Morphology and mixing state of individual freshly emitted wildfire carbonaceous particles, Nat. Commun., 4, 2122, https://doi.org/10.1038/ncomms3122, 2013.
Coffeen, D. L.: Polarization and scattering characteristics in the
atmospheres of earth, venus and jupiter, J. Opt. Soc. Am., 69, 1051,
https://doi.org/10.1364/JOSA.69.001051, 1979.
Colarco, P., da Silva, A., Chin, M., and Diehl, T.: Online simulations of
global aerosol distributions in the NASA GEOS-4 model and comparisons to
satellite and ground-based aerosol optical depth, J. Geophys. Res.,
115, D14207, https://doi.org/10.1029/2009JD012820, 2010.
Colomb, A., Yassaa, N., Williams, J., Peeken, I., and Lochte, K.: Screening
volatile organic compounds (VOCs) emissions from five marine phytoplankton
species by head space gas chromatography/mass spectrometry (HS-GC/MS), J.
Environ. Monit., 10, 325–330, https://doi.org/10.1039/b715312k, 2008.
Craven-Jones, J., Harrington, D., Tyo, J. S., Escuti, M., Fineschi, S.,
Mawet, D., Riedi, J., Snik, F., and De Martino, A.: An overview of
polarimetric sensing techniques and technology with applications to
different research fields, in: Polarization: Measurement, Analysis, and
Remote Sensing XI, vol. 9099, p. 90990B., 2014.
Cronin, J. R. and Pizzarello, S.: Enantiomeric Excesses in Meteoritic Amino
Acids, Science, 80, 951–955,
https://doi.org/10.1126/science.275.5302.951, 1997.
Daskalopoulou, V., Mallios, S. A., Ulanowski, Z., Hloupis, G., Gialitaki, A., Tsikoudi, I., Tassis, K., and Amiridis, V.: The electrical activity of Saharan dust as perceived from surface electric field observations, Atmos. Chem. Phys., 21, 927–949, https://doi.org/10.5194/acp-21-927-2021, 2021.
de Boer, J. F. and Milner, T. E.: Review of polarization sensitive optical
coherence tomography and Stokes vector determination, J. Biomed. Opt., 7,
359, https://doi.org/10.1117/1.1483879, 2002.
Degtjarev, V. S. and Kolokolova, L.: Possible application of circular
polarization for remote sensing of cosmic bodies, Earth, Moon Planets,
57, 213–223, https://doi.org/10.1007/BF00057992, 1992.
Denjean, C., Cassola, F., Mazzino, A., Triquet, S., Chevaillier, S., Grand, N., Bourrianne, T., Momboisse, G., Sellegri, K., Schwarzenbock, A., Freney, E., Mallet, M., and Formenti, P.: Size distribution and optical properties of mineral dust aerosols transported in the western Mediterranean, Atmos. Chem. Phys., 16, 1081–1104, https://doi.org/10.5194/acp-16-1081-2016, 2016.
Després, V., Huffman, J. A., Burrows, S. M., Hoose, C., Safatov, A.,
Buryak, G., Fröhlich-Nowoisky, J., Elbert, W., Andreae, M., Pöschl,
U., and Jaenicke, R.: Primary biological aerosol particles in the atmosphere:
a review, Tellus B Chem. Phys. Meteorol., 64, 15598,
https://doi.org/10.3402/tellusb.v64i0.15598, 2012.
Diner, D. J., Braswell, B. H., Davies, R., Gobron, N., Hu, J., Jin, Y.,
Kahn, R. A., Knyazikhin, Y., Loeb, N., Muller, J.-P., Nolin, A. W., Pinty,
B., Schaaf, C. B., Seiz, G., and Stroeve, J.: The value of multiangle
measurements for retrieving structurally and radiatively consistent
properties of clouds, aerosols, and surfaces, Remote Sens. Environ., 97,
495–518, https://doi.org/10.1016/j.rse.2005.06.006, 2005.
Donovan, D. P., Klein Baltink, H., Henzing, J. S., de Roode, S. R., and Siebesma, A. P.: A depolarisation lidar-based method for the determination of liquid-cloud microphysical properties, Atmos. Meas. Tech., 8, 237–266, https://doi.org/10.5194/amt-8-237-2015, 2015.
Dowdy, A. J., Fromm, M. D., and McCarthy, N.: Pyrocumulonimbus lightning and
fire ignition on Black Saturday in southeast Australia, J. Geophys. Res.-Atmos., 122, 7342–7354, https://doi.org/10.1002/2017JD026577, 2017.
Draine, B. T. and Flatau, P. J.: Discrete-Dipole Approximation For Scattering Calculations, J. Opt. Soc. Am. A, 11, 1491–1499, https://doi.org/10.1364/JOSAA.11.001491, 1994.
Drude, P., Millikan, R. A., and Mann, C. R.: The theory of optics, New York [etc.], Longmans, Green, and Co., http://file://catalog.hathitrust.org/Record/001480409 (last access: 7 October 2022), 1902.
Dubovik, O. and King, M. D.: A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements, J. Geophys. Res., 105, 20673, https://doi.org/10.1029/2000JD900282, 2000.
Dubovik, O., Herman, M., Holdak, A., Lapyonok, T., Tanré, D., Deuzé, J. L., Ducos, F., Sinyuk, A., and Lopatin, A.: Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations, Atmos. Meas. Tech., 4, 975–1018, https://doi.org/10.5194/amt-4-975-2011, 2011.
Dubovik, O., Li, Z., Mishchenko, M. I., Tanré, D., Karol, Y., Bojkov,
B., Cairns, B., Diner, D. J., Espinosa, W. R., Goloub, P., Gu, X., Hasekamp,
O. P., Hong, J., Hou, W., Knobelspiesse, K. D., Landgraf, J., Li, L.,
Litvinov, P., Liu, Y., Lopatin, A., Marbach, T., Maring, H. B., Martins, V.,
Meijer, Y., Milinevsky, G., Mukai, S., Parol, F., Qiao, Y., Remer, L. A.,
Rietjens, J., Sano, I., Stammes, P., Stamnes, S., Sun, X., Tabary, P.,
Travis, L. D., Waquet, F., Xu, F., Yan, C., and Yin, D.: Polarimetric remote
sensing of atmospheric aerosols: Instruments, methodologies, results, and
perspectives, J. Quant. Spectrosc. Ra. Transf., 224, 474–511,
https://doi.org/10.1016/j.jqsrt.2018.11.024, 2019.
Duncan, B. N., Prados, A. I., Lamsal, L. N., Liu, Y., Streets, D. G., Gupta,
P., Hilsenrath, E., Kahn, R. A., Nielsen, J. E., Beyersdorf, A. J., Burton,
S. P., Fiore, A. M., Fishman, J., Henze, D. K., Hostetler, C. a., Krotkov,
N. A., Lee, P., Lin, M., Pawson, S., Pfister, G., Pickering, K. E., Pierce,
R. B., Yoshida, Y., and Ziemba, L. D.: Satellite data of atmospheric
pollution for U.S. air quality applications: Examples of applications,
summary of data end-user resources, answers to FAQs, and common mistakes to
avoid, Atmos. Environ., 94, 647–662, https://doi.org/10.1016/j.atmosenv.2014.05.061,
2014.
Ebben, C. J., Zorn, S. R., Lee, S.-B., Artaxo, P., Martin, S. T., and Geiger,
F. M.: Stereochemical transfer to atmospheric aerosol particles accompanying
the oxidation of biogenic volatile organic compounds, Geophys. Res. Lett.,
38, L16807, https://doi.org/10.1029/2011GL048599, 2011.
Ebben, C. J., Shrestha, M., Martinez, I. S., Corrigan, A. L., Frossard, A.
A., Song, W. W., Worton, D. R., Petäjä, T., Williams, J., Russell,
L. M., Kulmala, M., Goldstein, A. H., Artaxo, P., Martin, S. T., Thomson, R.
J., and Geiger, F. M.: Organic constituents on the surfaces of aerosol
particles from Southern Finland, Amazonia, and California Studied by
vibrational sum frequency generation, J. Phys. Chem. A, 116, 8271–8290,
https://doi.org/10.1021/jp302631z, 2012.
Esposito, F., Molinaro, R., Popa, C. I., Molfese, C., Cozzolino, F., Marty,
L., Taj-Eddine, K., Di Achille, G., Franzese, G., Silvestro, S., and Ori, G.
G.: The role of the atmospheric electric field in the dust-lifting process,
Geophys. Res. Lett., 43, 5501–5508,
https://doi.org/10.1002/2016GL068463, 2016.
Evans, A. M.: Comparative Pharmacology of S(+)-Ibuprofen and
(RS)-Ibuprofen, Clin. Rheumatol., 20, 9–14, https://doi.org/10.1007/BF03342662,
2001.
Facchini, M. C., Rinaldi, M., Decesari, S., Carbone, C., Finessi, E.,
Mircea, M., Fuzzi, S., Ceburnis, D., Flanagan, R., Nilsson, E. D., de Leeuw,
G., Martino, M., Woeltjen, J., and O'Dowd, C. D.: Primary submicron marine
aerosol dominated by insoluble organic colloids and aggregates, Geophys.
Res. Lett., 35, https://doi.org/10.1029/2008GL034210, 2008.
Franklin, M., Kalashnikova, O. V., and Garay, M. J.: Size-resolved particulate
matter concentrations derived from 4.4km-resolution size-fractionated
Multi-angle Imaging SpectroRadiometer (MISR) aerosol optical depth over
Southern California, Remote Sens. Environ., 196, 312–323,
https://doi.org/10.1016/j.rse.2017.05.002, 2017.
Ganjitabar, H., Hadidi, R., Garcia, G. A., Nahon, L., and Powis, I.:
Vibrationally-resolved photoelectron spectroscopy and photoelectron circular
dichroism of bicyclic monoterpene enantiomers, J. Mol. Spectrosc., 353,
11–19, https://doi.org/10.1016/j.jms.2018.08.007, 2018.
Gao, Y. and Anderson, J. R.: Characteristics of Chinese aerosols determined
by individual-particle analysis, J. Geophys. Res.-Atmos., 106,
18037–18045, https://doi.org/10.1029/2000JD900725, 2001.
Gassó, S. and Torres, O.: The role of cloud contamination, aerosol layer height and aerosol model in the assessment of the OMI near-UV retrievals over the ocean, Atmos. Meas. Tech., 9, 3031–3052, https://doi.org/10.5194/amt-9-3031-2016, 2016.
Gehrels, T., Baker, L. R., Beshore, E., Blenman, C., Burke, J. J., Castillo,
N. D., Dacosta, B., Degewij, J., Doose, L. R., Fountain, J. W., Gotobed, J.,
Kenknight, C. E., Kingston, R., McLaughlin, G., McMillan, R., Murphy, R.,
Smith, P. H., Stoll, C. P., Strickland, R. N., Tomasko, M. G., Wijesinghe,
M. P., Coffeen, D. L., and Esposito, L.: Imaging Photopolarimeter on Pioneer
Saturn, Science, 80, 434–439,
https://doi.org/10.1126/science.207.4429.434, 1980.
Ghosh, N.: Tissue polarimetry: concepts, challenges, applications, and
outlook, J. Biomed. Opt., 16, 110801, https://doi.org/10.1117/1.3652896, 2011.
Ghosh, N., Wood, M. F. G., and Vitkin, I. A.: Mueller matrix decomposition
for extraction of individual polarization parameters from complex turbid
media exhibiting multiple scattering, optical activity, and linear
birefringence, J. Biomed. Opt., 13, 044036, https://doi.org/10.1117/1.2960934, 2008.
Gilbert, G. D. and Pernicka, J. C.: Improvement of underwater visibility by
reduction of backscatter with a circular polarization technique., Appl.
Opt., 6, 741–746, 1967.
Girotto, G., China, S., Bhandari, J., Gorkowski, K., Scarnato, B., Capek, T., Marinoni, A., Veghte, D., Kulkarni, G., Aiken, A., Dubey, M., and Mazzoleni, A. C.: Fractal-like Tar Ball Aggregates from Wildfire Smoke, Environ. Sci. Technol. Lett., 5, 360–365, https://doi.org/10.1021/acs.estlett.8b00229, 2018.
Glavin, D. P. and Dworkin, J. P.: Enrichment of the amino acid L-isovaline
by aqueous alteration on CI and CM meteorite parent bodies, P. Natl.
Acad. Sci. USA, 106, 5487–5492, https://doi.org/10.1073/pnas.0811618106, 2009.
Glavin, D. P., McLain, H. L., Dworkin, J. P., Parker, E. T., Elsila, J. E.,
Aponte, J. C., Simkus, D. N., Pozarycki, C. I., Graham, H. V, Nittler, L. R.,
and Alexander, C. M. O.: Abundant extraterrestrial amino acids in the
primitive CM carbonaceous chondrite Asuka 12236, Meteorit. Planet. Sci.,
55, 1979–2006, https://doi.org/10.1111/maps.13560, 2020a.
Glavin, D. P., Burton, A. S., Elsila, J. E., Aponte, J. C., and Dworkin, J.
P.: The Search for Chiral Asymmetry as a Potential Biosignature in our Solar
System, Chem. Rev., 120, 4660–4689, https://doi.org/10.1021/acs.chemrev.9b00474,
2020b.
Gledhill, T. M. and McCall, A.: Circular polarization by scattering from
spheroidal dust grains, Mon. Not. R. Astron. Soc., 314, 123–137,
https://doi.org/10.1046/j.1365-8711.2000.03323.x, 2000.
Gledhill, T. M., Sparks, W. B., Ulanowski, Z., Hough, J. H., and DasSarma, S.: ASTRO-BIOLOGICAL SIGNATURES, in: Optics of Biological Particles, edited by: Hoekstra, A., Maltsev, V., and Videen, G., 193–211 pp., Dordrecht, Springer Netherlands, https://doi.org/10.1007/978-1-4020-5502-7_6, 2007.
Goldstein, D. and Goldstein, D. H.: Polarized Light, Revised and Expanded, 2nd Edn., CRC Press, https://doi.org/10.1201/9780203911587, 2003.
González, N. J. D., Borg-Karlson, A.-K., Artaxo, P., Guenther, A.,
Krejci, R., Nozière, B., and Noone, K.: Primary and secondary organics in
the tropical Amazonian rainforest aerosols: chiral analysis of
2-methyltetraols, Environ. Sci. Process. Impacts, 16, 1413,
https://doi.org/10.1039/c4em00102h, 2014.
Gregory, R. P. and Raps, S.: The differential scattering of circularly
polarized light by chloroplasts and evaluation of their true circular
dichroism., Biochem. J., 142, 193–201, 1974.
Haarig, M., Walser, A., Ansmann, A., Dollner, M., Althausen, D., Sauer, D., Farrell, D., and Weinzierl, B.: Profiles of cloud condensation nuclei, dust mass concentration, and ice-nucleating-particle-relevant aerosol properties in the Saharan Air Layer over Barbados from polarization lidar and airborne in situ measurements, Atmos. Chem. Phys., 19, 13773–13788, https://doi.org/10.5194/acp-19-13773-2019, 2019.
Hansen, J. E.: Circular Polarization of Sunlight Reflected by Clouds, J.
Atmos. Sci., 28, 1515–1516,
https://doi.org/10.1175/1520-0469(1971)028<1515:CPOSRB>2.0.CO;2,
1971.
Hansen, J. E. and Hovenier, J. W.: Interpretation of the Polarization of
Venus, J. Atmos. Sci., 31, 1137–1160,
https://doi.org/10.1175/1520-0469(1974)031<1137:IOTPOV>2.0.CO;2,
1974.
Harrison, R. G., Nicoll, K. A., Ulanowski, Z., and Mather, T. A.:
Self-charging of the Eyjafjallajökull volcanic ash plume, Environ. Res.
Lett., 5, 24004, https://doi.org/10.1088/1748-9326/5/2/024004, 2010.
Harrison, R. G., Nicoll, K. A., Marlton, G. J., Ryder, C. L., and Bennett, A.
J.: Corrigendum: Saharan dust plume charging observed over the UK 2018,
Environ. Res. Lett., 13, 109502,
https://doi.org/10.1088/1748-9326/aae591, 2018.
Hasekamp, O. P. and Landgraf, J.: Retrieval of aerosol properties over land
surfaces: capabilities of multiple-viewing-angle intensity and polarization
measurements, Appl. Opt., 46, 3332–3344, 2007.
Hasekamp, O. P., Fu, G., Rusli, S. P., Wu, L., Di Noia, A., Brugh, J. aan
de, Landgraf, J., Martijn Smit, J., Rietjens, J., and van Amerongen, A.:
Aerosol measurements by SPEXone on the NASA PACE mission: expected retrieval
capabilities, J. Quant. Spectrosc. Ra. Transf., 227, 170–184,
https://doi.org/10.1016/j.jqsrt.2019.02.006, 2019.
Herman, B. M., Caudill, T. R., Flittner, D., Thome, K. J., and Ben-David, A.:
Comparison of the Gauss-Seidel spherical polarized radiative transfer code
with other radiative transfer codes, Appl. Opt., 34, 4563–4572,
https://doi.org/10.1364/AO.34.004563, 1995.
Herman, J. R. and Celarier, E. A.: Earth surface reflectivity climatology at
340–380 nm from TOMS data, J. Geophys. Res., 102, 28003,
https://doi.org/10.1029/97JD02074, 1997.
Herman, J. R., Celarier, E., and Larko, D.: UV 380 nm reflectivity of the
Earth's surface, clouds and aerosols, J. Geophys. Res., 106, 5335–5351,
doi:Doi 10.1029/2000jd900584, 2001.
Herman, M., Deuzé, J.-L., Marchand, A., Roger, B., and Lallart, P.:
Aerosol remote sensing from POLDER/ADEOS over the ocean: Improved retrieval
using a nonspherical particle model, J. Geophys. Res.-Atmos., 110, D10S02,
https://doi.org/10.1029/2004JD004798, 2005.
Hodzic, A., Kasibhatla, P. S., Jo, D. S., Cappa, C. D., Jimenez, J. L., Madronich, S., and Park, R. J.: Rethinking the global secondary organic aerosol (SOA) budget: stronger production, faster removal, shorter lifetime, Atmos. Chem. Phys., 16, 7917–7941, https://doi.org/10.5194/acp-16-7917-2016, 2016.
Holloway, T., Miller, D., Anenberg, S., Diao, M., Duncan, B., Fiore, A. M.,
Henze, D. K., Hess, J., Kinney, P. L., Liu, Y., Neu, J. L., O'Neill, S. M.,
Odman, M. T., Pierce, R. B., Russell, A. G., Tong, D., West, J. J., and
Zondlo, M. A.: Satellite Monitoring for Air Quality and Health, Annu. Rev.
Biomed. Data Sci., 4, 417–447,
https://doi.org/10.1146/annurev-biodatasci-110920-093120, 2021.
Hough, J. H.: High sensitivity polarimetry: techniques and applications BT –
Polarimetric Detection, Characterization and Remote Sensing, edited by: Mishchenko, M. I., Yatskiv, Y. S., Rosenbush, V. K., and Videen, G., 177–204,
Springer Netherlands, Dordrecht, https://doi.org/10.1007/978-94-007-1636-0, 2011.
Hough, J. H., Lucas Patty, C. H., Bailey, J. A., Tamura, M., Hirst, E.,
Harrison, D., and Bartholomew-Biggs, M.: PlanetPol: A Very High Sensitivity
Polarimeter, Publ. Astron. Soc. Pacific, 118, 1302–1318,
https://doi.org/10.1086/507955, 2006.
Hsu, N. C., Jeong, M.-J., Bettenhausen, C., Sayer, A. M., Hansell, R.,
Seftor, C. J., Huang, J., and Tsay, S.-C.: Enhanced Deep Blue aerosol
retrieval algorithm: The second generation, J. Geophys. Res.-Atmos.,
118, 9296–9315, https://doi.org/10.1002/jgrd.50712, 2013.
Hu, Y., Yang, P., Lin, B., Gibson, G., and Hostetler, C.: Discriminating
between spherical and non-spherical scatterers with lidar using circular
polarization: a theoretical study, J. Quant. Spectrosc. Ra. Transf.,
79–80, 757–764, https://doi.org/10.1016/S0022-4073(02)00320-5, 2003.
Inness, A., Ades, M., Agustí-Panareda, A., Barré, J., Benedictow, A., Blechschmidt, A.-M., Dominguez, J. J., Engelen, R., Eskes, H., Flemming, J., Huijnen, V., Jones, L., Kipling, Z., Massart, S., Parrington, M., Peuch, V.-H., Razinger, M., Remy, S., Schulz, M., and Suttie, M.: The CAMS reanalysis of atmospheric composition, Atmos. Chem. Phys., 19, 3515–3556, https://doi.org/10.5194/acp-19-3515-2019, 2019.
Ippolitov, I. I., Kabanova, M. V., Nagorskii, P. M., Pkhalagov, Y. A., and
Smirnov, S. V.: Diurnal variations in the electrical field intensity under
smoke from forest fires, Dokl. Earth Sci., 453, 1137–1140,
https://doi.org/10.1134/S1028334X1311010X, 2013.
Jethva, H. and Torres, O.: A comparative evaluation of Aura-OMI and SKYNET near-UV single-scattering albedo products, Atmos. Meas. Tech., 12, 6489–6503, https://doi.org/10.5194/amt-12-6489-2019, 2019.
Jethva, H., Torres, O., and Ahn, C.: Global assessment of OMI aerosol
single-scattering albedo using ground-based AERONET inversion, J. Geophys.
Res.-Atmos., 119, 9020–9040, https://doi.org/10.1002/2014JD021672, 2014.
Kahn, R. A. and Gaitley, B. J.: An analysis of global aerosol type as
retrieved by MISR, J. Geophys. Res.-Atmos., (February), 120, 4248–4281,
https://doi.org/10.1002/2015JD023322, 2015.
Kamra, A. K.: Measurements of the electrical properties of dust storms, J.
Geophys. Res., 77, 5856–5869,
https://doi.org/10.1029/JC077i030p05856, 1972.
Kawabata, K., Coffeen, D. L., Hansen, J. E., Lane, W. A., Sato, M., and
Travis, L. D.: Cloud and haze properties from Pioneer Venus polarimetry, J.
Geophys. Res., 85, 8129, https://doi.org/10.1029/JA085iA13p08129, 1980.
Kawata, Y.: Circular polarization of sunlight reflected by planetary
atmospheres, Icarus, 33, 217–232,
https://doi.org/10.1016/0019-1035(78)90035-0, 1978.
Keller, D., Bustamante, C., Maestre, M. F., and Tinoco, I.: Imaging of
optically active biological structures by use of circularly polarized
light, P. Natl. Acad. Sci. USA, 82, 401–405, https://doi.org/10.1073/pnas.82.2.401,
1985.
Kellogg, C. A. and Griffin, D. W.: Aerobiology and the global transport of
desert dust, Trends Ecol. Evol., 21, 638–644,
https://doi.org/10.1016/j.tree.2006.07.004, 2006.
Kemp, J., Henson, G., Steiner, C., and Powell, E.: The optical polarization
of the Sun measured at a sensitivity of parts in ten million, Nature,
326, 270–273, https://doi.org/10.1038/326270a0, 1987.
Kemp, J. C., Wolstencroft, R. D., and SWEDLUND, J. B.: Circular Polarization:
Jupiter and Other Planets, Nature, 232, 165–168,
https://doi.org/10.1038/232165a0, 1971.
Kemppinen, O., Nousiainen, T., and Jeong, G. Y.: Effects of dust particle internal structure on light scattering, Atmos. Chem. Phys., 15, 12011–12027, https://doi.org/10.5194/acp-15-12011-2015, 2015.
Kim, J. H. and Scialli, A. R.: Thalidomide: The Tragedy of Birth Defects and
the Effective Treatment of Disease, Toxicol. Sci., 122, 1–6,
https://doi.org/10.1093/toxsci/kfr088, 2011.
Knobelspiesse, K., Cairns, B., Mishchenko, M., Chowdhary, J., Tsigaridis,
K., van Diedenhoven, B., Martin, W., Ottaviani, M., and Alexandrov, M.:
Analysis of fine-mode aerosol retrieval capabilities by different passive
remote sensing instrument designs, Opt. Express, 20, 21457,
https://doi.org/10.1364/OE.20.021457, 2012.
Knobelspiesse, K., Ibrahim, A., Franz, B., Bailey, S., Levy, R., Ahmad, Z., Gales, J., Gao, M., Garay, M., Anderson, S., and Kalashnikova, O.: Analysis of simultaneous aerosol and ocean glint retrieval using multi-angle observations, Atmos. Meas. Tech., 14, 3233–3252, https://doi.org/10.5194/amt-14-3233-2021, 2021.
Kok, J. F. and Renno, N. O.: Electrostatics in Wind-Blown Sand, Phys. Rev.
Lett., 100, 014501, https://doi.org/10.1103/PhysRevLett.100.014501, 2008.
Kokhanovsky, A. A.: Radiative transfer in chiral random media, Phys. Rev. E,
60, 4899–4907, https://doi.org/10.1103/PhysRevE.60.4899, 1999.
Kokhanovsky, A. A.: Theoretical modelling of CD and ORD spectra of
suspensions with large nonspherical particles, J. Opt. A Pure Appl. Opt.,
4, 288–292, https://doi.org/10.1088/1464-4258/4/3/312, 2002.
Kolokolova, L. and Nagdimunov, L.: Comparative analysis of polarimetric
signatures of aligned and optically active (“homochiral”) dust particles,
Planet. Space Sci., 100, 57–63, https://doi.org/10.1016/j.pss.2014.01.002, 2014.
Kolokolova, L., Petrova, E., and Kimura, H.: Effects of Interaction of
Electromagnetic Waves in Complex Particles, edited by: Zhurbenko, V., InTech.,
2011.
Kunnen, B., Macdonald, C., Doronin, A., Jacques, S., Eccles, M., and
Meglinski, I.: Application of circularly polarized light for non-invasive
diagnosis of cancerous tissues and turbid tissue-like scattering media, J.
Biophotonics, 8, 317–323, https://doi.org/10.1002/jbio.201400104, 2015.
Kuznetsova, M., Lee, C., and Aller, J.: Characterization of the proteinaceous
matter in marine aerosols, Mar. Chem., 96, 359–377,
https://doi.org/10.1016/j.marchem.2005.03.007, 2005.
Lakhtakia, A.: Selected Papers on Natural Optical Activity, edited by: Lakhtakia, A., (Milestone), Bellingham, WA, PIE Optical Engineering Press, https://spie.org/Publications/Book/2315 (last access: 4 October 2022), 1990.
Lane, S. J., James, M. R., and Gilbert, J. S.: Electrostatic phenomena in
volcanic eruptions, J. Phys. Conf. Ser., 301, 12004,
https://doi.org/10.1088/1742-6596/301/1/012004, 2011.
LaRoche, K. T. and Lang, T. J.: Observations of Ash, Ice, and Lightning
within Pyrocumulus Clouds Using Polarimetric NEXRAD Radars and the National
Lightning Detection Network, Mon. Weather Rev., 145, 4899–4910,
https://doi.org/10.1175/MWR-D-17-0253.1, 2017.
Leck, C. and Bigg, E. K.: Biogenic particles in the surface microlayer and
overlaying atmosphere in the central Arctic Ocean during summer, Tellus B
Chem. Phys. Meteorol., 57, 305–316, https://doi.org/10.3402/tellusb.v57i4.16546,
2005.
Lee, B. H., Lopez-Hilfiker, F. D., D'Ambro, E. L., Zhou, P., Boy, M., Petäjä, T., Hao, L., Virtanen, A., and Thornton, J. A.: Semi-volatile and highly oxygenated gaseous and particulate organic compounds observed above a boreal forest canopy, Atmos. Chem. Phys., 18, 11547–11562, https://doi.org/10.5194/acp-18-11547-2018, 2018.
Levy, R. C., Mattoo, S., Munchak, L. A., Remer, L. A., Sayer, A. M., Patadia, F., and Hsu, N. C.: The Collection 6 MODIS aerosol products over land and ocean, Atmos. Meas. Tech., 6, 2989–3034, https://doi.org/10.5194/amt-6-2989-2013, 2013.
Levy, R. C., Munchak, L. A., Mattoo, S., Patadia, F., Remer, L. A., and Holz, R. E.: Towards a long-term global aerosol optical depth record: applying a consistent aerosol retrieval algorithm to MODIS and VIIRS-observed reflectance, Atmos. Meas. Tech., 8, 4083–4110, https://doi.org/10.5194/amt-8-4083-2015, 2015.
Lewis, G. D., Jordan, D. L., and Roberts, P. J.: Backscattering target
detection in a turbid medium by polarization discrimination, Appl. Opt.,
38, 3937, https://doi.org/10.1364/AO.38.003937, 1999.
Li, L., Dubovik, O., Derimian, Y., Schuster, G. L., Lapyonok, T., Litvinov, P., Ducos, F., Fuertes, D., Chen, C., Li, Z., Lopatin, A., Torres, B., and Che, H.: Retrieval of aerosol components directly from satellite and ground-based measurements, Atmos. Chem. Phys., 19, 13409–13443, https://doi.org/10.5194/acp-19-13409-2019, 2019.
Li, P., Lv, D., He, H., and Ma, H.: Separating azimuthal orientation
dependence in polarization measurements of anisotropic media, Opt. Express,
26, 3791, https://doi.org/10.1364/OE.26.003791, 2018.
Li, Z., Xie, Y., Li, L., and Zhang, Y.: Remote Sensing of Atmospheric Aerosol
Composition and Species, in: Remote Sensing of Atmospheric Aerosol
Composition and Species, SPIE, https://doi.org/10.1117/3.2537401.ch1, 2019.
Liu, J. and Kattawar, G. W.: Detection of dinoflagellates by the light
scattering properties of the chiral structure of their chromosomes, J.
Quant. Spectrosc. Ra. Transf., 131, 24–33,
https://doi.org/10.1016/j.jqsrt.2013.02.012, 2013.
Liu, Y. and Diner, D. J.: Multi-Angle Imager for Aerosols: A Satellite
Investigation to Benefit Public Health, Public Health Rep., 132, 14–17,
https://doi.org/10.1177/0033354916679983, 2016.
Lofftus, K., Hunt, A. J., Quinby-Hunt, M. S., Livolant, F., and Maestre, M.
F.: Immobilization Of Unicellular Marine Organisms For Optical
Characterization: A New Method, in: Proc. SPIE 0925, Ocean Optics IX, edited
by: Blizard, M. A., 334–343, 1988.
Lucas Patty, C. H., Snik, F., and Visser, L.: A high-sensitivity circular
spectropolarimeter for remote sensing of homochirality in photosynthetic
organisms (Conference Presentation), in: Polarization Science and Remote
Sensing VIII, edited by: Snik, F. and Shaw, J. A., p. 35, SPIE, 2017.
Lucas Patty, C. H., Luo, D. A., Snik, F., Ariese, F., Buma, W. J., ten Kate,
I. L., van Spanning, R. J. M., Sparks, W. B., Germer, T. A., Garab, G., and
Kudenov, M. W.: Imaging linear and circular polarization features in leaves
with complete Mueller matrix polarimetry, Biochim. Biophys. Acta – Gen.
Subj., 1862, 1350–1363, https://doi.org/10.1016/j.bbagen.2018.03.005, 2018a.
Lucas Patty, C. H., ten Kate, I. L., Sparks, W. B., and Snik, F.: Remote
Sensing of Homochirality: A Proxy for the Detection of Extraterrestrial
Life, in: Chiral Analysis, pp. 29–69, Elsevier, 2018b.
Lucas Patty, C. H., Ariese, F., Buma, W. J., ten Kate, I. L., van Spanning,
R. J. M., and Snik, F.: Circular spectropolarimetric sensing of higher plant
and algal chloroplast structural variations, Photosynth. Res., 140,
129–139, https://doi.org/10.1007/s11120-018-0572-2, 2019a.
Lucas Patty, C. H., ten Kate, I. L., Buma, W. J., van Spanning, R. J. M.,
Steinbach, G., Ariese, F., and Snik, F.: Circular Spectropolarimetric Sensing
of Vegetation in the Field: Possibilities for the Remote Detection of
Extraterrestrial Life, Astrobiology, ast.2019.2050,
https://doi.org/10.1089/ast.2019.2050, 2019b.
Lucas Patty, C. H., Kühn, J. G., Lambrev, P. H., Spadaccia, S., Hoeijmakers, H. J., Keller, C., Mulder, W., Pallichadath, V., Frans, O., Snik, F., Stam, D. M., Pommerol, A., and Demory, B: Biosignatures of the Earth, A&A, 651, https://doi.org/10.1051/0004-6361/202140845, 2021.
MacDermott, A. J.: Distinguishing the chiral signature of life in the solar
system and beyond, in: Instruments, Methods, and Missions for the
Investigation of Extraterrestrial Microorganisms Richard B. Hoover, vol.
3111, edited by: Hoover, R. B., 272–279, 1997.
MacKenzie, S. M., Neveu, M., Davila, A. F., Lunine, J. I., Craft, K. L.,
Cable, M. L., Phillips-Lander, C. M., Hofgartner, J. D., Eigenbrode, J. L.,
Waite, J. H., Glein, C. R., Gold, R., Greenauer, P. J., Kirby, K.,
Bradburne, C., Kounaves, S. P., Malaska, M. J., Postberg, F., Patterson, G.
W., Porco, C., Núñez, J. I., German, C., Huber, J. A., McKay, C. P.,
de Vera, J.-P., Brucato, J. R., and Spilker, L. J.: The Enceladus Orbilander
Mission Concept: Balancing Return and Resources in the Search for Life,
Planet. Sci. J., 2, 77, https://doi.org/10.3847/psj/abe4da, 2021.
Magzamen, S., Gan, R. W., Liu, J., O'Dell, K., Ford, B., Berg, K., Bol, K.,
Wilson, A., Fischer, E. V., and Pierce, J. R.: Differential Cardiopulmonary
Health Impacts of Local and Long-Range Transport of Wildfire Smoke,
GeoHealth, 5, e2020GH000330, https://doi.org/10.1029/2020GH000330,
2021.
Mallios, S. A., Daskalopoulou, V., and Amiridis, V.: Orientation of non
spherical prolate dust particles moving vertically in the Earth's
atmosphere, J. Aerosol Sci., 151, 105657,
https://doi.org/10.1016/j.jaerosci.2020.105657, 2021.
Manisalidis, I., Stavropoulou, E., Stavropoulos, A., and Bezirtzoglou, E.:
Environmental and Health Impacts of Air Pollution: A Review, Front. Public
Heal., 8, 14, https://doi.org/10.3389/fpubh.2020.00014, 2020.
Maring, H. B.: Vertical distributions of dust and sea-salt aerosols over
Puerto Rico during PRIDE measured from a light aircraft, J. Geophys. Res.,
108, 8587, https://doi.org/10.1029/2002JD002544, 2003.
Martin, W. E., Hesse, E., Hough, J. H., Sparks, W. B., Cockell, C. S.,
Ulanowski, Z., Germer, T. A., and Kaye, P. H.: Polarized optical scattering
signatures from biological materials, J. Quant. Spectrosc. Radiat. Transf.,
111, 2444–2459, https://doi.org/10.1016/j.jqsrt.2010.07.001, 2010.
Martin, W. E., Hesse, E., Hough, J. H., and Gledhill, T. M.: High-sensitivity
Stokes spectropolarimetry on cyanobacteria, J. Quant. Spectrosc. Ra.
Transf., https://doi.org/10.1016/j.jqsrt.2015.10.014, 2016.
Martinez, I. S., Peterson, M. D., Ebben, C. J., Hayes, P. L., Artaxo, P.,
Martin, S. T., and Geiger, F. M.: On molecular chirality within naturally
occurring secondary organic aerosol particles from the central Amazon Basin,
Phys. Chem. Chem. Phys., 13, 12114, https://doi.org/10.1039/c1cp20428a, 2011.
McCoy, D. T., Burrows, S. M., Wood, R., Grosvenor, D. P., Elliott, S. M.,
Ma, P.-L., Rasch, P. J., and Hartmann, D. L.: Natural aerosols explain
seasonal and spatial patterns of Southern Ocean cloud albedo, Sci. Adv.,
1, e1500157, https://doi.org/10.1126/sciadv.1500157, 2015.
Meierhenrich, U. J., Thiemann, W. H.-P., Barbier, B., Brack, A., Alcaraz,
C., Nahon, L., and Wolstencroft, R.: Circular Polarization of Light by Planet
Mercury and Enantiomorphism of its Surface Minerals, Orig. life Evol.
Biosph., 32, 181–190, https://doi.org/10.1023/A:1016028930938, 2002.
Mhawish, A., Kumar, M., Mishra, A. K., Srivastava, P. K., and Banerjee, T.:
Remote Sensing of Aerosols From Space: Retrieval of Properties and
Applications, in: Remote Sensing of Aerosols, Clouds, and Precipitation,
edited by: Islam, T., Hu, Y., Kokhanovsky, A., and Wang, J., pp. 45–83,
Elsevier, 2018.
Mishchenko, M. I.: Electromagnetic Scattering by Particles and Particle
Groups: An Introduction, Cambridge University Press, Cambridge, https://doi.org/10.1017/CBO9781139019064, 2014.
Mishchenko, M. I. and Hovenier, J. W.: Depolarization of light backscattered
by randomly oriented nonspherical particles, Opt. Lett., 20, 1356,
https://doi.org/10.1364/OL.20.001356, 1995.
Mishchenko, M. I. and Yurkin, M. A.: On the concept of random orientation in
far-field electromagnetic scattering by nonspherical particles, Opt. Lett.,
42, 494, https://doi.org/10.1364/OL.42.000494, 2017.
Mishchenko, M. I., Hovenier, J. W., and Travis, L. D. (Eds.): Light Scattering
by Nonspherical Particles: Theory, Measurements, and Applications, Measurement Sci. Technol., 11, 1827–1827, https://doi.org/10.1088/0957-0233/11/12/705, 2000.
Moore, R. H., Karydis, V. A., Capps, S. L., Lathem, T. L., and Nenes, A.: Droplet number uncertainties associated with CCN: an assessment using observations and a global model adjoint, Atmos. Chem. Phys., 13, 4235–4251, https://doi.org/10.5194/acp-13-4235-2013, 2013.
Muñoz, O., Volten, H., de Haan, J. F., Vassen, W., and Hovenier, J. W.:
Experimental determination of scattering matrices of randomly oriented fly
ash and clay particles at 442 and 633 nm, J. Geophys. Res.-Atmos., 106,
22833–22844, https://doi.org/10.1029/2000JD000164, 2001.
Murdin, P.: Encyclopedia of Astronomy & Astrophysics, 1st Edn., Boca Raton, CRC Press, https://www.taylorfrancis.com/books/edit/10.1201/9781003220435/encyclopedia-astronomy-astrophysics-paul-murdin (last access: 4 October 2022), 2001.
Myriokefalitakis, S., Fanourgakis, G., and Kanakidou, M.: The Contribution of
Bioaerosols to the Organic Carbon Budget of the Atmosphere BT – Perspectives
on Atmospheric Sciences, edited by: Karacostas, T., Bais, A., and Nastos, P. T., 845–851, Springer International Publishing, Cham, 2017.
Nafie, L. A.: Circular polarization spectroscopy of chiral molecules, J.
Mol. Struct., 347, 83–100, https://doi.org/10.1016/0022-2860(95)08538-7, 1995.
Nagorskiy, P. M., Pustovalov, K. N., and Smirnov, S. V.: Smoke Plumes from Wildfires and the Electrical State of the Surface Air Layer, Atmos. Ocean. Opt., 35, 387–393, https://doi.org/10.1134/S1024856022040133, 2022.
NASA: The Pioneer Missions, https://www.nasa.gov/centers/ames/missions/archive/pioneer.html, last access: 24
August 2021.
Neupert, W., Brugger, R., Euchenhofer, C., Brune, K., and Geisslinger, G.:
Effects of ibuprofen enantiomers and its coenzyme A thioesters on human
prostaglandin endoperoxide synthases, Br. J. Pharmacol., 122, 487–492,
https://doi.org/10.1038/sj.bjp.0701415, 1997.
Neveu, M., Anbar, A. D., Davila, A. F., Glavin, D. P., MacKenzie, S. M.,
Phillips-Lander, C. M., Sherwood, B., Takano, Y., Williams, P., and Yano, H.:
Returning Samples From Enceladus for Life Detection , Front. Astron. Sp.
Sci., 7, 26, https://doi.org/10.3389/fspas.2020.00026, 2020.
Nicolet, M., Schnaiter, M., and Stetzer, O.: Circular depolarization ratios of single water droplets and finite ice circular cylinders: a modeling study, Atmos. Chem. Phys., 12, 4207–4214, https://doi.org/10.5194/acp-12-4207-2012, 2012.
Nicoll, K. A., Harrison, R. G., and Ulanowski, Z.: Observations of Saharan
dust layer electrification, Environ. Res. Lett., 6, 14001,
https://doi.org/10.1088/1748-9326/6/1/014001, 2010.
Nouri, S. A., Gregory, D. A., and Fuller, K.: Development of an
angle-scanning spectropolarimeter: Preliminary results, J. Quant. Spectrosc.
Ra. Transf., 206, 342–354, https://doi.org/10.1016/j.jqsrt.2017.11.024, 2018.
Noziere, B., González, N. J. D., Borg-Karlson, A. K., Pei, Y., Redeby,
J. P., Krejci, R., Dommen, J., Prevot, A. S. H., and Anthonsen, T.:
Atmospheric chemistry in stereo: A new look at secondary organic aerosols
from isoprene, Geophys. Res. Lett., 38, 138,
https://doi.org/10.1029/2011GL047323, 2011.
O'Dowd, C. D., Facchini, M. C., Cavalli, F., Ceburnis, D., Mircea, M.,
Decesari, S., Fuzzi, S., Yoon, Y. J., Putaud, J., Dowd, C. D. O., Facchini,
M. C., Cavalli, F., Ceburnis, D., Mircea, M., Decesari, S., Fuzzi, S., Yoon,
Y. J., and Putaud, J.: Biogenically driven organic contribution to marine
aerosol, Nature, 431, 676, https://doi.org/10.1038/nature02959, 2004.
Okada, K., Heintzenberg, J., Kai, K., and Qin, Y.: Shape of atmospheric
mineral particles collected in three Chinese arid-regions, Geophys. Res.
Lett., 28, 3123–3126, https://doi.org/10.1029/2000GL012798, 2001.
Omar, A. H., Winker, D. M., Vaughan, M. A., Hu, Y., Trepte, C. R., Ferrare,
R. A., Lee, K.-P., Hostetler, C. A., Kittaka, C., Rogers, R. R., Kuehn, R.
E., and Liu, Z.: The CALIPSO Automated Aerosol Classification and Lidar Ratio
Selection Algorithm, J. Atmos. Ocean. Technol., 26, 1994–2014,
https://doi.org/10.1175/2009JTECHA1231.1, 2009.
Pan, Y.-L., Kalume, A., Arnold, J., Beresnev, L., Wang, C., Rivera, D. N.,
Crown, K. K., and Santarpia, J.: Measurement of circular intensity
differential scattering (CIDS) from single airborne aerosol particles for
bioaerosol detection and identification, Opt. Express, 30, 1442–1451,
https://doi.org/10.1364/OE.448288, 2022.
Paschou, P., Siomos, N., Tsekeri, A., Louridas, A., Georgoussis, G., Freudenthaler, V., Binietoglou, I., Tsaknakis, G., Tavernarakis, A., Evangelatos, C., von Bismarck, J., Kanitz, T., Meleti, C., Marinou, E., and Amiridis, V.: The eVe reference polarisation lidar system for the calibration and validation of the Aeolus L2A product, Atmos. Meas. Tech., 15, 2299–2323, https://doi.org/10.5194/amt-15-2299-2022, 2022.
Pendleton, J. D. and Rosen, D. L.: Light Scattering from an Optically Active
Sphere into a Circular Aperture, Appl. Opt., 37, 7897,
https://doi.org/10.1364/AO.37.007897, 1998.
Perrin, F.: Polarization of Light Scattered by Isotropic Opalescent Media,
J. Chem. Phys., 10, 415, https://doi.org/10.1063/1.1723743, 1942.
Perring, A. E., Schwarz, J. P., Baumgardner, D., Hernandez, M. T.,
Spracklen, D. V, Heald, C. L., Gao, R. S., Kok, G., McMeeking, G. R.,
McQuaid, J. B., and Fahey, D. W.: Airborne observations of regional variation
in fluorescent aerosol across the United States, J. Geophys. Res.-Atmos.,
2014, JD022495, https://doi.org/10.1002/2014JD022495, 2014.
Petäjä, T., O'Connor, E. J., Moisseev, D., Sinclair, V. A.,
Manninen, A. J., Väänänen, R., von Lerber, A., Thornton, J. A.,
Nicoll, K., Petersen, W., Chandrasekar, V., Smith, J. N., Winkler, P. M.,
Krüger, O., Hakola, H., Timonen, H., Brus, D., Laurila, T., Asmi, E.,
Riekkola, M.-L., Mona, L., Massoli, P., Engelmann, R., Komppula, M., Wang,
J., Kuang, C., Bäck, J., Virtanen, A., Levula, J., Ritsche, M., and
Hickmon, N.: BAECC: A Field Campaign to Elucidate the Impact of Biogenic
Aerosols on Clouds and Climate, B. Am. Meteorol. Soc., 97,
1909–1928, https://doi.org/10.1175/BAMS-D-14-00199.1, 2016.
Phalagov, Y. A., Ippolitov, I. I., Nagorskii, P. M., Odintsov, S. L.,
Panchenko, M. V., Smirnov, S. V., and Uzhegov, V. N.: Relation of anomalous
atmospheric conditions to electric field variation, Atmos. Ocean. Opt.,
22, 113–117, https://doi.org/10.1134/S1024856009010163, 2009.
Pospergelis, M. M.: Spectroscopic Measurements of the Four Stokes Parameters
for Light Scattered by Natural Objects, Sov. Physics-Astronomy, 12, 973, 1969.
Purvinis, G., Cameron, B. D., and Altrogge, D. M.: Noninvasive
Polarimetric-Based Glucose Monitoring: An in Vivo Study, J. Diabetes Sci.
Technol., 5, 380–387, https://doi.org/10.1177/193229681100500227, 2011.
Qi, J. and Elson, D. S.: Mueller polarimetric imaging for surgical and
diagnostic applications: a review, J. Biophotonics, 10, 950–982,
https://doi.org/10.1002/jbio.201600152, 2017.
Quinby-Hunt, M. S., Erskine, L. L., and Hunt, A. J.: Polarized light scattering by aerosols in the marine atmospheric boundarylayer, Appl. Opt., 36, 5168–5184, https://doi.org/10.1364/AO.36.005168, 1997.
Remer, L. A., Kleidman, R. G., Levy, R. C., Kaufman, Y. J., Tanré, D.,
Mattoo, S., Martins, J. V., Ichoku, C., Koren, I., Yu, H., and Holben, B. N.:
Global aerosol climatology from the MODIS satellite sensors, J. Geophys.
Res., 113, D14S07, https://doi.org/10.1029/2007JD009661, 2008.
Remer, L. A., Knobelspiesse, K., Zhai, P.-W., Xu, F., Kalashnikova, O. V,
Chowdhary, J., Hasekamp, O. P., Dubovik, O., Wu, L., Ahmad, Z., Boss, E.,
Cairns, B., Coddington, O., Davis, A. B., Dierssen, H. M., Diner, D. J.,
Franz, B., Frouin, R., Gao, B.-C., Ibrahim, A., Levy, R. C., Martins, J. V.,
Omar, A. H., and Torres, O.: Retrieving Aerosol Characteristics From the PACE
Mission, Part 2: Multi-Angle and Polarimetry , Front. Environ. Sci. , 7, 94
https://doi.org/10.3389/fenvs.2019.00094, 2019.
Rogers, C. and Martin, P. G.: On the shape of interstellar
grains, Astrophys. J., 228, 450–464, https://doi.org/10.1086/156866, 1979.
Rosen, D. L.: Remote Biodetection Method Using Circular Dichroism, Appl.
Spectrosc., 47, 1887–1891, https://doi.org/10.1366/0003702934066073, 1993.
Rosenbush, V., Kiselev, N., Shakhovskoy, N., Kolesnikov, S., and Breus, V.:
Circular and linear polarization of comet C/2001 Q4 (NEAT), Why circular
polarization in comets is predominantly left-handed?, Conf. Electromagn.
Light Scatt., 4, 181–184, https://doi.org/10.1615/ICHMT.2007.ConfElectromagLigScat.480,
2007.
Rubin, N. A., D'Aversa, G., Chevalier, P., Shi, Z., Chen, W. T., and Capasso,
F.: Matrix Fourier optics enables a compact full-Stokes polarization camera,
Science, 80, 365, https://doi.org/10.1126/science.aax1839, 2019.
Russell, P. B., Kacenelenbogen, M., Livingston, J. M., Hasekamp, O. P.,
Burton, S. P., Schuster, G. L., Johnson, M. S., Knobelspiesse, K. D.,
Redemann, J., Ramachandran, S., and Holben, B. N.: A multiparameter aerosol
classification method and its application to retrievals from spaceborne
polarimetry, J. Geophys. Res.-Atmos., 119, 9838–9863,
https://doi.org/10.1002/2013JD021411, 2014.
Ryder, C. L., Highwood, E. J., Rosenberg, P. D., Trembath, J., Brooke, J. K., Bart, M., Dean, A., Crosier, J., Dorsey, J., Brindley, H., Banks, J., Marsham, J. H., McQuaid, J. B., Sodemann, H., and Washington, R.: Optical properties of Saharan dust aerosol and contribution from the coarse mode as measured during the Fennec 2011 aircraft campaign, Atmos. Chem. Phys., 13, 303–325, https://doi.org/10.5194/acp-13-303-2013, 2013.
Salma, I., Mészáros, T., Maenhaut, W., Vass, E., and Majer, Z.: Chirality and the origin of atmospheric humic-like substances, Atmos. Chem. Phys., 10, 1315–1327, https://doi.org/10.5194/acp-10-1315-2010, 2010.
Samaké, A., Jaffrezo, J.-L., Favez, O., Weber, S., Jacob, V., Albinet, A., Riffault, V., Perdrix, E., Waked, A., Golly, B., Salameh, D., Chevrier, F., Oliveira, D. M., Bonnaire, N., Besombes, J.-L., Martins, J. M. F., Conil, S., Guillaud, G., Mesbah, B., Rocq, B., Robic, P.-Y., Hulin, A., Le Meur, S., Descheemaecker, M., Chretien, E., Marchand, N., and Uzu, G.: Polyols and glucose particulate species as tracers of primary biogenic organic aerosols at 28 French sites, Atmos. Chem. Phys., 19, 3357–3374, https://doi.org/10.5194/acp-19-3357-2019, 2019.
Sanchez, K. J., Chen, C.-L., Russell, L. M., Betha, R., Liu, J., Price, D.
J., Massoli, P., Ziemba, L. D., Crosbie, E. C., Moore, R. H., Müller,
M., Schiller, S. A., Wisthaler, A., Lee, A. K. Y., Quinn, P. K., Bates, T.
S., Porter, J., Bell, T. G., Saltzman, E. S., Vaillancourt, R. D., and
Behrenfeld, M. J.: Substantial Seasonal Contribution of Observed Biogenic
Sulfate Particles to Cloud Condensation Nuclei, Sci. Rep., 8, 3235,
https://doi.org/10.1038/s41598-018-21590-9, 2018.
Sassen, K.: Boreal tree pollen sensed by polarization lidar: Depolarizing
biogenic chaff, Geophys. Res. Lett., 35,
https://doi.org/10.1029/2008GL035085, 2008.
Savenkov, S. N.: Mueller-matrix characterization of biological tissues BT – Polarimetric Detection, in: Characterization and Remote Sensing, edited by: Mishchenko, M. I., Yatskiv, Y. S., Rosenbush, V. K., and Videen, G., 437–472 pp., Dordrecht, Springer Netherlands, https://doi.org/10.1007/978-94-007-1636-0_17, 2011.
Sayer, A. M., Smirnov, A., Hsu, N. C., and Holben, B. N.: A pure marine
aerosol model, for use in remote sensing applications, J. Geophys. Res.-Atmos., 117, D5, https://doi.org/10.1029/2011JD016689, 2012.
Sayer, A. M., Hsu, N. C., Bettenhausen, C., and Jeong, M.-J.: Validation and
uncertainty estimates for MODIS Collection 6 “Deep Blue” aerosol data, J.
Geophys. Res.-Atmos., 118, 7864–7872,
https://doi.org/10.1002/jgrd.50600, 2013.
Sayer, A. M., Hsu, N. C., Lee, J., Kim, W. V, Dubovik, O., Dutcher, S. T.,
Huang, D., Litvinov, P., Lyapustin, A., Tackett, J. L., and Winker, D. M.:
Validation of SOAR VIIRS Over-Water Aerosol Retrievals and Context Within
the Global Satellite Aerosol Data Record, J. Geophys. Res.-Atmos., 123,
13413–496526, https://doi.org/10.1029/2018JD029465, 2018.
Schmidt, T. H.: Elliptical Polarization by Light Scattering by Submicron
Spheroids, in: Interstellar Dust and Related Topics, edited by: Greenberg, J. M.
and Van De Hulst, H. C., 131–137, Springer Netherlands,
Dordrecht, 1973.
Schutgens, N., Dubovik, O., Hasekamp, O., Torres, O., Jethva, H., Leonard, P. J. T., Litvinov, P., Redemann, J., Shinozuka, Y., de Leeuw, G., Kinne, S., Popp, T., Schulz, M., and Stier, P.: AEROCOM and AEROSAT AAOD and SSA study – Part 1: Evaluation and intercomparison of satellite measurements, Atmos. Chem. Phys., 21, 6895–6917, https://doi.org/10.5194/acp-21-6895-2021, 2021.
Shang, X., Baars, H., Stachlewska, I. S., Mattis, I., and Komppula, M.: Pollen observations at four EARLINET stations during the ACTRIS-COVID-19 campaign, Atmos. Chem. Phys., 22, 3931–3944, https://doi.org/10.5194/acp-22-3931-2022, 2022.
Shapiro, D. B., Quinby-Hunt, M. S. and Hunt, A. J.: Origin of the induced
circular polarization in the light scattering from a dinoflagellate, in:
Proc. SPIE 1302, Ocean Optics X, vol. 1302, edited by: Spinrad, R. W.,
281–289, 1990.
Shapiro, D. B., Hunt, A. J., Quinby-Hunt, M. S., and Hull, P. G.: Circular
polarization effects in the light scattering from single and suspensions of
dinoflagellates, in: SPIEVol. 1537 Underwater Imaging, Photography, and
Visibility, vol. 1537, edited by: Spinrad, R. W., 30–41, 1991.
Shi, W., Fan, F., Zhang, Z., Zhang, T., Li, S., Wang, X., and Chang, S.:
Terahertz Sensing for R/S Chiral Ibuprofen via All-Dielectric Metasurface
with Higher-Order Resonance, Appl. Sci. , 11, 8892, https://doi.org/10.3390/app11198892,
2021.
Slonaker, R. L., Takano, Y., Liou, K.-N., and Ou, S.-C.: Circular
polarization signal for aerosols and clouds, in: Proc. SPIE, vol. 5890,
edited by: Huang, H.-L. A., Bloom, H. J., Xu, X., and Dittberner, G. J.,
58900B–58900B–8, 2005.
Sloot, P. M. A., Hoekstra, A. G., van der Liet, H., and Figdor, C. G.:
Scattering matrix elements of biological particles measured in a flow
through system: theory and practice, Appl. Opt., 28, 1752,
https://doi.org/10.1364/AO.28.001752, 1989.
Smith, S. W.: Chiral Toxicology: It's the Same Thing... Only
Different, Toxicol. Sci., 110, 4–30, https://doi.org/10.1093/toxsci/kfp097, 2009.
Song, W., Staudt, M., Bourgeois, I., and Williams, J.: Laboratory and field measurements of enantiomeric monoterpene emissions as a function of chemotype, light and temperature, Biogeosciences, 11, 1435–1447, https://doi.org/10.5194/bg-11-1435-2014, 2014.
Sorek-Hamer, M., Chatfield, R., and Liu, Y.: Review: Strategies for using
satellite-based products in modeling PM2.5 and short-term pollution
episodes, Environ. Int., 144, 106057,
https://doi.org/10.1016/j.envint.2020.106057, 2020.
Sparks, W. B., Hough, J., Germer, T. a, Chen, F., DasSarma, S., DasSarma,
P., Robb, F. T., Manset, N., Kolokolova, L., Reid, N., Macchetto, F. D., and
Martin, W.: Detection of circular polarization in light scattered from
photosynthetic microbes, P. Natl. Acad. Sci. USA, 106, 7816–7821,
https://doi.org/10.1073/pnas.0810215106, 2009b.
Sparks, W. B., Germer, T. A., and Sparks, R. M.: Classical Polarimetry with a
Twist: A Compact, Geometric Approach, Publ. Astron. Soc. Pacific, 131,
75002, https://doi.org/10.1088/1538-3873/ab1933, 2019.
Stamnes, S., Hostetler, C., Ferrare, R., Burton, S., Liu, X., Hair, J., Hu,
Y., Wasilewski, A., Martin, W., van Diedenhoven, B., Chowdhary, J.,
Cetinić, I., Berg, L. K., Stamnes, K., and Cairns, B.: Simultaneous
polarimeter retrievals of microphysical aerosol and ocean color parameters
from the “MAPP” algorithm with comparison to high-spectral-resolution
lidar aerosol and ocean products, Appl. Opt., 57, 2394–2413,
https://doi.org/10.1364/AO.57.002394, 2018.
Stamnes, S., Baize, R., Bontempi, P., Cairns, B., Chemyakin, E., Choi,
Y.-J., Chowdhary, J., Hu, Y., Jeong, M., Kang, K.-I., Kim, S. S., Liu, X.,
Loughman, R., MacDonnell, D., McCormick, M. P., Moon, B., Omar, A.,
Roithmayr, C. M., Sim, C. K., Sun, W., van Diedenhoven, B., Videen, G., and
Wasilewski, A.: Simultaneous Aerosol and Ocean Properties From the PolCube
CubeSat Polarimeter, Front. Remote Sens., 2, 19,
https://doi.org/10.3389/frsen.2021.709040, 2021.
Staudt, M., Byron, J., Piquemal, K., and Williams, J.: Compartment specific
chiral pinene emissions identified in a Maritime pine forest, Sci. Total
Environ., 654, 1158–1166, https://doi.org/10.1016/j.scitotenv.2018.11.146, 2019.
Tinoco, I. and Williams, A. L.: Differential Absorption and Differential
Scattering of Circularly Polarized Light: Applications to Biological
Macromolecules, Annu. Rev. Phys. Chem., 35, 329–355,
https://doi.org/10.1146/annurev.pc.35.100184.001553, 1984.
Toth III, J. R., Rajupet, S., Squire, H., Volbers, B., Zhou, J., Xie, L., Sankaran, R. M., and Lacks, D. J.: Electrostatic forces alter particle size distributions in atmospheric dust, Atmos. Chem. Phys., 20, 3181–3190, https://doi.org/10.5194/acp-20-3181-2020, 2020.
Sascha, T.: POLARIZATION AND POLARIMETRY: A REVIEW, J. Korean Astronom. Soc. 47, 15–39, https://doi.org/10.5303/JKAS.2014.47.1.15, 2014.
Tsekeri, A., Amiridis, V., Louridas, A., Georgoussis, G., Freudenthaler, V., Metallinos, S., Doxastakis, G., Gasteiger, J., Siomos, N., Paschou, P., Georgiou, T., Tsaknakis, G., Evangelatos, C., and Binietoglou, I.: Polarization lidar for detecting dust orientation: system design and calibration, Atmos. Meas. Tech., 14, 7453–7474, https://doi.org/10.5194/amt-14-7453-2021, 2021.
Twohy, C. H., DeMott, P. J., Russell, L. M., Toohey, D. W., Rainwater, B.,
Geiss, R., Sanchez, K. J., Lewis, S., Roberts, G. C., Humphries, R. S.,
McCluskey, C. S., Moore, K. A., Selleck, P. W., Keywood, M. D., Ward, J. P.,
and McRobert, I. M.: Cloud-Nucleating Particles Over the Southern Ocean in a
Changing Climate, Earth's Futur., 9, e2020EF001673,
https://doi.org/10.1029/2020EF001673, 2021.
Tyo, J. S., Goldstein, D. L., Chenault, D. B., and Shaw, J. A.: Review of passive imaging polarimetry for remote sensing applications, Appl. Opt., 45, 5453, https://doi.org/10.1364/AO.45.005453, 2006.
Ulanowski, Z., Bailey, J., Lucas, P. W., Hough, J. H., and Hirst, E.: Alignment of atmospheric mineral dust due to electric field, Atmos. Chem. Phys., 7, 6161–6173, https://doi.org/10.5194/acp-7-6161-2007, 2007.
van de Hulst, H. C.: Light scattering by small particles, Dover Publications
In, New York, New York: Dover Publications, Inc. 1981. Paperback, 470 S., 103 Abb. und 46 Tab., US, 1981.
Vandenbroucke, B., Baes, M., Camps, P., Utsav Kapoor, A., Barrientos, D., and
Bernard, J.-P.: Polarised emission from aligned dust grains in nearby
galaxies: Predictions from the Auriga simulations, Astro. Astrophys., 653, A34, https://doi.org/10.1051/0004-6361/202141333, 2021.
van der Laan, J. D., Wright, J. B., Kemme, S. A., and Scrymgeour, D. A.:
Superior signal persistence of circularly polarized light in polydisperse,
real-world fog environments, Appl. Opt., 57, 5464,
https://doi.org/10.1364/AO.57.005464, 2018.
Van Eeckhout, A., Garcia-Caurel, E., Garnatje, T., Durfort, M., Escalera, J.
C., Vidal, J., Gil, J. J., Campos, J. and Lizana, A.: Depolarizing metrics
for plant samples imaging, edited by: Restani, P., PLoS One, 14, e0213909,
https://doi.org/10.1371/journal.pone.0213909, 2019.
van Harten, G., Snik, F., Rietjens, J. H. H., Smit, J. M., de Boer, J.,
Diamantopoulou, R., Hasekamp, O. P., Stam, D. M., Keller, C. U., Laan, E.
C., Verlaan, A. L., Vliegenthart, W. A., ter Horst, R., Navarro, R.,
Wielinga, K., Hannemann, S., Moon, S. G., and Voors, R.: Prototyping for the
Spectropolarimeter for Planetary EXploration (SPEX): calibration and sky
measurements, p. 81600Z, in: Proc. SPIE, 8160, p. 81600Z, https://doi.org/10.1117/12.893741, 2011.
Verdugo, P., Alldredge, A. L., Azam, F., Kirchman, D. L., Passow, U., and
Santschi, P. H.: The oceanic gel phase: a bridge in the DOM–POM continuum,
Mar. Chem., 92, 67–85,
https://doi.org/10.1016/j.marchem.2004.06.017, 2004.
Videen, G.: Light Scattering Multipole Solution for a Cell, J. Biomed. Opt.,
3, 212, https://doi.org/10.1117/1.429877, 1998.
Wang, X., Yao, G., and Wang, L. V.: Monte Carlo model and single-scattering
approximation of the propagation of polarized light in turbid media
containing glucose, Appl. Opt., 41, 792, https://doi.org/10.1364/AO.41.000792, 2002.
Wedyan, M. A. and Preston, M. R.: The coupling of surface seawater organic
nitrogen and the marine aerosol as inferred from enantiomer-specific amino
acid analysis, Atmos. Environ., 42, 8698–8705,
https://doi.org/10.1016/j.atmosenv.2008.04.038, 2008.
Wei, X., Chang, N.-B., Bai, K., and Gao, W.: Satellite remote sensing of
aerosol optical depth: advances, challenges, and perspectives, Crit. Rev.
Environ. Sci. Technol., 50, 1640–1725,
https://doi.org/10.1080/10643389.2019.1665944, 2020.
Westphal, P., Kaltenbach, J.-M., and Wicker, K.: Corneal birefringence
measured by spectrally resolved Mueller matrix ellipsometry and implications
for non-invasive glucose monitoring, Biomed. Opt. Express, 7, 1160,
https://doi.org/10.1364/BOE.7.001160, 2016.
Whitney, B. A. and Wolff, M. J.: Scattering and Absorption by Aligned Grains
in Circumstellar Environments, Astrophys. J., 574, 205–231,
https://doi.org/10.1086/340901, 2002.
Williams, J., Yassaa, N., Bartenbach, S., and Lelieveld, J.: Mirror image hydrocarbons from Tropical and Boreal forests, Atmos. Chem. Phys., 7, 973–980, https://doi.org/10.5194/acp-7-973-2007, 2007.
Winker, D. M., Pelon, J., Coakley, J. A., Ackerman, S. A., Charlson, R. J.,
Colarco, P. R., Flamant, P., Fu, Q., Hoff, R. M., Kittaka, C., Kubar, T. L.,
Le Treut, H., Mccormick, M. P., Mégie, G., Poole, L., Powell, K.,
Trepte, C., Vaughan, M. A., and Wielicki, B. A.: The CALIPSO Mission, Bull.
Am. Meteorol. Soc., 91, 1211–1230, https://doi.org/10.1175/2010BAMS3009.1, 2010.
Wood, M. F. G., Guo, X., and Vitkin, I. A.: Polarized light propagation in
multiply scattering media exhibiting both linear birefringence and optical
activity: Monte Carlo model and experimental methodology, J. Biomed. Opt.,
12, 014029, https://doi.org/10.1117/1.2434980, 2007.
Yassaa, N., Brancaleoni, E., Frattoni, M., and Ciccioli, P.: Trace level
determination of enantiomeric monoterpenes in terrestrial plant emission and
in the atmosphere using a beta-cyclodextrin capillary column coupled with
thermal desorption and mass spectrometry., J. Chromatogr. A, 915, 185–197,
https://doi.org/10.1016/S0021-9673(01)00587-8, 2001.
Yassaa, N., Peeken, I., Zllner, E., Bluhm, K., Arnold, S., Spracklen, D., and
Williams, J.: Evidence for marine production of monoterpenes, Environ.
Chem., 5, 391–401, https://doi.org/10.1071/EN08047, 2008.
Zeng, X., Chu, J., Cao, W., Kang, W., and Zhang, R.: Visible–IR
transmission enhancement through fog using circularly polarized light, Appl.
Opt., 57, 6817–6822, https://doi.org/10.1364/AO.57.006817, 2018.
Zhang, H. and Zhou, Y.-H.: Effects of 3D electric field on saltation during dust storms: an observational and numerical study, Atmos. Chem. Phys., 20, 14801–14820, https://doi.org/10.5194/acp-20-14801-2020, 2020.
Zhou, Y., Levy, R. C., Remer, L. A., Mattoo, S., and Espinosa, W. R.: Dust
Aerosol Retrieval Over the Oceans With the MODIS/VIIRS Dark Target
Algorithm: 2. Nonspherical Dust Model, Earth Sp. Sci., I7, e2020EA001222,
https://doi.org/10.1029/2020EA001222, 2020.
Short summary
Atmospheric particles interact with light resulting in observable optical polarization. Thus, we can learn about their composition from space. New satellite sensor technology measures full polarization of reflected sunlight. This paper considers circular polarization, an overlooked category of polarization with distinctive features that could bring new insights. We review existing literature and make novel computations to consider this previously underappreciated category of polarization.
Atmospheric particles interact with light resulting in observable optical polarization. Thus, we...
Altmetrics
Final-revised paper
Preprint