Articles | Volume 22, issue 20
https://doi.org/10.5194/acp-22-13581-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-13581-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Circular polarization in atmospheric aerosols
ESSIC, University of Maryland, College Park, MD 20740, USA
Code 613, Climate and Radiation Laboratory, GSFC/NASA, Greenbelt, MD 20771, USA
Kirk D. Knobelspiesse
Code 616, Ocean Ecology Laboratory, GSFC/NASA, Greenbelt, MD 20771, USA
Related authors
Sampa Das, Peter R. Colarco, Huisheng Bian, and Santiago Gassó
Atmos. Chem. Phys., 24, 4421–4449, https://doi.org/10.5194/acp-24-4421-2024, https://doi.org/10.5194/acp-24-4421-2024, 2024
Short summary
Short summary
The smoke aerosols emitted from vegetation burning can alter the regional energy budget via multiple pathways. We utilized detailed observations from the NASA ORACLES airborne campaign based in Namibia during September 2016 to improve the representation of smoke aerosol properties and lifetimes in our GEOS Earth system model. The improved model simulations are for the first time able to capture the observed changes in the smoke absorption during long-range plume transport.
Outi Meinander, Pavla Dagsson-Waldhauserova, Pavel Amosov, Elena Aseyeva, Cliff Atkins, Alexander Baklanov, Clarissa Baldo, Sarah L. Barr, Barbara Barzycka, Liane G. Benning, Bojan Cvetkovic, Polina Enchilik, Denis Frolov, Santiago Gassó, Konrad Kandler, Nikolay Kasimov, Jan Kavan, James King, Tatyana Koroleva, Viktoria Krupskaya, Markku Kulmala, Monika Kusiak, Hanna K. Lappalainen, Michał Laska, Jerome Lasne, Marek Lewandowski, Bartłomiej Luks, James B. McQuaid, Beatrice Moroni, Benjamin Murray, Ottmar Möhler, Adam Nawrot, Slobodan Nickovic, Norman T. O’Neill, Goran Pejanovic, Olga Popovicheva, Keyvan Ranjbar, Manolis Romanias, Olga Samonova, Alberto Sanchez-Marroquin, Kerstin Schepanski, Ivan Semenkov, Anna Sharapova, Elena Shevnina, Zongbo Shi, Mikhail Sofiev, Frédéric Thevenet, Throstur Thorsteinsson, Mikhail Timofeev, Nsikanabasi Silas Umo, Andreas Uppstu, Darya Urupina, György Varga, Tomasz Werner, Olafur Arnalds, and Ana Vukovic Vimic
Atmos. Chem. Phys., 22, 11889–11930, https://doi.org/10.5194/acp-22-11889-2022, https://doi.org/10.5194/acp-22-11889-2022, 2022
Short summary
Short summary
High-latitude dust (HLD) is a short-lived climate forcer, air pollutant, and nutrient source. Our results suggest a northern HLD belt at 50–58° N in Eurasia and 50–55° N in Canada and at >60° N in Eurasia and >58° N in Canada. Our addition to the previously identified global dust belt (GDB) provides crucially needed information on the extent of active HLD sources with both direct and indirect impacts on climate and environment in remote regions, which are often poorly understood and predicted.
Andrew M. Sayer, Brian Cairns, Kirk D. Knobelspiesse, Luca Lelli, Chamara Rajapakshe, Scott E. Giangrande, Gareth E. Thomas, and Damao Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-2005, https://doi.org/10.5194/egusphere-2025-2005, 2025
Short summary
Short summary
Satellites can estimate cloud height in several ways: two include a thermal technique (colder clouds being higher up), and another looking at colours of light that oxygen in the atmosphere absorbs (darker clouds being lower down). It can also be measured (from ground or space) by radar and lidar. We compare satellite data we developed using the oxygen method with other estimates to help us refine our technique.
Sean R. Foley, Kirk D. Knobelspiesse, Andrew M. Sayer, Meng Gao, James Hays, and Judy Hoffman
Atmos. Meas. Tech., 17, 7027–7047, https://doi.org/10.5194/amt-17-7027-2024, https://doi.org/10.5194/amt-17-7027-2024, 2024
Short summary
Short summary
Measuring the shape of clouds helps scientists understand how the Earth will continue to respond to climate change. Satellites measure clouds in different ways. One way is to take pictures of clouds from multiple angles and to use the differences between the pictures to measure cloud structure. However, doing this accurately can be challenging. We propose a way to use machine learning to recover the shape of clouds from multi-angle satellite data.
Sampa Das, Peter R. Colarco, Huisheng Bian, and Santiago Gassó
Atmos. Chem. Phys., 24, 4421–4449, https://doi.org/10.5194/acp-24-4421-2024, https://doi.org/10.5194/acp-24-4421-2024, 2024
Short summary
Short summary
The smoke aerosols emitted from vegetation burning can alter the regional energy budget via multiple pathways. We utilized detailed observations from the NASA ORACLES airborne campaign based in Namibia during September 2016 to improve the representation of smoke aerosol properties and lifetimes in our GEOS Earth system model. The improved model simulations are for the first time able to capture the observed changes in the smoke absorption during long-range plume transport.
Meng Gao, Bryan A. Franz, Peng-Wang Zhai, Kirk Knobelspiesse, Andrew M. Sayer, Xiaoguang Xu, J. Vanderlei Martins, Brian Cairns, Patricia Castellanos, Guangliang Fu, Neranga Hannadige, Otto Hasekamp, Yongxiang Hu, Amir Ibrahim, Frederick Patt, Anin Puthukkudy, and P. Jeremy Werdell
Atmos. Meas. Tech., 16, 5863–5881, https://doi.org/10.5194/amt-16-5863-2023, https://doi.org/10.5194/amt-16-5863-2023, 2023
Short summary
Short summary
This study evaluated the retrievability and uncertainty of aerosol and ocean properties from PACE's HARP2 instrument using enhanced neural network models with the FastMAPOL algorithm. A cascading retrieval method is developed to improve retrieval performance. A global set of simulated HARP2 data is generated and used for uncertainty evaluations. The performance assessment demonstrates that the FastMAPOL algorithm is a viable approach for operational application to HARP2 data after PACE launch.
Neranga K. Hannadige, Peng-Wang Zhai, Meng Gao, Yongxiang Hu, P. Jeremy Werdell, Kirk Knobelspiesse, and Brian Cairns
Atmos. Meas. Tech., 16, 5749–5770, https://doi.org/10.5194/amt-16-5749-2023, https://doi.org/10.5194/amt-16-5749-2023, 2023
Short summary
Short summary
We evaluated the impact of three ocean optical models with different numbers of free parameters on the performance of an aerosol and ocean color remote sensing algorithm using the multi-angle polarimeter (MAP) measurements. It was demonstrated that the three- and seven-parameter bio-optical models can be used to accurately represent both open and coastal waters, whereas the one-parameter model has smaller retrieval uncertainty over open water.
Meng Gao, Kirk Knobelspiesse, Bryan A. Franz, Peng-Wang Zhai, Brian Cairns, Xiaoguang Xu, and J. Vanderlei Martins
Atmos. Meas. Tech., 16, 2067–2087, https://doi.org/10.5194/amt-16-2067-2023, https://doi.org/10.5194/amt-16-2067-2023, 2023
Short summary
Short summary
Multi-angle polarimetric measurements have been shown to greatly improve the remote sensing capability of aerosols and help atmospheric correction for ocean color retrievals. However, the uncertainty correlations among different measurement angles have not been well characterized. In this work, we provided a practical framework to evaluate the impact of the angular uncertainty correlation in retrieval results and a method to directly estimate correlation strength from retrieval residuals.
Andrew M. Sayer, Luca Lelli, Brian Cairns, Bastiaan van Diedenhoven, Amir Ibrahim, Kirk D. Knobelspiesse, Sergey Korkin, and P. Jeremy Werdell
Atmos. Meas. Tech., 16, 969–996, https://doi.org/10.5194/amt-16-969-2023, https://doi.org/10.5194/amt-16-969-2023, 2023
Short summary
Short summary
This paper presents a method to estimate the height of the top of clouds above Earth's surface using satellite measurements. It is based on light absorption by oxygen in Earth's atmosphere, which darkens the signal that a satellite will see at certain wavelengths of light. Clouds "shield" the satellite from some of this darkening, dependent on cloud height (and other factors), because clouds scatter light at these wavelengths. The method will be applied to the future NASA PACE mission.
Outi Meinander, Pavla Dagsson-Waldhauserova, Pavel Amosov, Elena Aseyeva, Cliff Atkins, Alexander Baklanov, Clarissa Baldo, Sarah L. Barr, Barbara Barzycka, Liane G. Benning, Bojan Cvetkovic, Polina Enchilik, Denis Frolov, Santiago Gassó, Konrad Kandler, Nikolay Kasimov, Jan Kavan, James King, Tatyana Koroleva, Viktoria Krupskaya, Markku Kulmala, Monika Kusiak, Hanna K. Lappalainen, Michał Laska, Jerome Lasne, Marek Lewandowski, Bartłomiej Luks, James B. McQuaid, Beatrice Moroni, Benjamin Murray, Ottmar Möhler, Adam Nawrot, Slobodan Nickovic, Norman T. O’Neill, Goran Pejanovic, Olga Popovicheva, Keyvan Ranjbar, Manolis Romanias, Olga Samonova, Alberto Sanchez-Marroquin, Kerstin Schepanski, Ivan Semenkov, Anna Sharapova, Elena Shevnina, Zongbo Shi, Mikhail Sofiev, Frédéric Thevenet, Throstur Thorsteinsson, Mikhail Timofeev, Nsikanabasi Silas Umo, Andreas Uppstu, Darya Urupina, György Varga, Tomasz Werner, Olafur Arnalds, and Ana Vukovic Vimic
Atmos. Chem. Phys., 22, 11889–11930, https://doi.org/10.5194/acp-22-11889-2022, https://doi.org/10.5194/acp-22-11889-2022, 2022
Short summary
Short summary
High-latitude dust (HLD) is a short-lived climate forcer, air pollutant, and nutrient source. Our results suggest a northern HLD belt at 50–58° N in Eurasia and 50–55° N in Canada and at >60° N in Eurasia and >58° N in Canada. Our addition to the previously identified global dust belt (GDB) provides crucially needed information on the extent of active HLD sources with both direct and indirect impacts on climate and environment in remote regions, which are often poorly understood and predicted.
Meng Gao, Kirk Knobelspiesse, Bryan A. Franz, Peng-Wang Zhai, Andrew M. Sayer, Amir Ibrahim, Brian Cairns, Otto Hasekamp, Yongxiang Hu, Vanderlei Martins, P. Jeremy Werdell, and Xiaoguang Xu
Atmos. Meas. Tech., 15, 4859–4879, https://doi.org/10.5194/amt-15-4859-2022, https://doi.org/10.5194/amt-15-4859-2022, 2022
Short summary
Short summary
In this work, we assessed the pixel-wise retrieval uncertainties on aerosol and ocean color derived from multi-angle polarimetric measurements. Standard error propagation methods are used to compute the uncertainties. A flexible framework is proposed to evaluate how representative these uncertainties are compared with real retrieval errors. Meanwhile, to assist operational data processing, we optimized the computational speed to evaluate the retrieval uncertainties based on neural networks.
Meng Gao, Bryan A. Franz, Kirk Knobelspiesse, Peng-Wang Zhai, Vanderlei Martins, Sharon Burton, Brian Cairns, Richard Ferrare, Joel Gales, Otto Hasekamp, Yongxiang Hu, Amir Ibrahim, Brent McBride, Anin Puthukkudy, P. Jeremy Werdell, and Xiaoguang Xu
Atmos. Meas. Tech., 14, 4083–4110, https://doi.org/10.5194/amt-14-4083-2021, https://doi.org/10.5194/amt-14-4083-2021, 2021
Short summary
Short summary
Multi-angle polarimetric measurements can retrieve accurate aerosol properties over complex atmosphere and ocean systems; however, most retrieval algorithms require high computational costs. We propose a deep neural network (NN) forward model to represent the radiative transfer simulation of coupled atmosphere and ocean systems and then conduct simultaneous aerosol and ocean color retrievals on AirHARP measurements. The computational acceleration is 103 times with CPU or 104 times with GPU.
Kirk Knobelspiesse, Amir Ibrahim, Bryan Franz, Sean Bailey, Robert Levy, Ziauddin Ahmad, Joel Gales, Meng Gao, Michael Garay, Samuel Anderson, and Olga Kalashnikova
Atmos. Meas. Tech., 14, 3233–3252, https://doi.org/10.5194/amt-14-3233-2021, https://doi.org/10.5194/amt-14-3233-2021, 2021
Short summary
Short summary
We assessed atmospheric aerosol and ocean surface wind speed remote sensing capability with NASA's Multi-angle Imaging SpectroRadiometer (MISR), using synthetic data and a Bayesian inference technique called generalized nonlinear retrieval analysis (GENRA). We found success using three aerosol parameters plus wind speed. This shows that MISR can perform an atmospheric correction for the Moderate Resolution Imaging Spectroradiometer (MODIS) on the same spacecraft (Terra).
Jens Redemann, Robert Wood, Paquita Zuidema, Sarah J. Doherty, Bernadette Luna, Samuel E. LeBlanc, Michael S. Diamond, Yohei Shinozuka, Ian Y. Chang, Rei Ueyama, Leonhard Pfister, Ju-Mee Ryoo, Amie N. Dobracki, Arlindo M. da Silva, Karla M. Longo, Meloë S. Kacenelenbogen, Connor J. Flynn, Kristina Pistone, Nichola M. Knox, Stuart J. Piketh, James M. Haywood, Paola Formenti, Marc Mallet, Philip Stier, Andrew S. Ackerman, Susanne E. Bauer, Ann M. Fridlind, Gregory R. Carmichael, Pablo E. Saide, Gonzalo A. Ferrada, Steven G. Howell, Steffen Freitag, Brian Cairns, Brent N. Holben, Kirk D. Knobelspiesse, Simone Tanelli, Tristan S. L'Ecuyer, Andrew M. Dzambo, Ousmane O. Sy, Greg M. McFarquhar, Michael R. Poellot, Siddhant Gupta, Joseph R. O'Brien, Athanasios Nenes, Mary Kacarab, Jenny P. S. Wong, Jennifer D. Small-Griswold, Kenneth L. Thornhill, David Noone, James R. Podolske, K. Sebastian Schmidt, Peter Pilewskie, Hong Chen, Sabrina P. Cochrane, Arthur J. Sedlacek, Timothy J. Lang, Eric Stith, Michal Segal-Rozenhaimer, Richard A. Ferrare, Sharon P. Burton, Chris A. Hostetler, David J. Diner, Felix C. Seidel, Steven E. Platnick, Jeffrey S. Myers, Kerry G. Meyer, Douglas A. Spangenberg, Hal Maring, and Lan Gao
Atmos. Chem. Phys., 21, 1507–1563, https://doi.org/10.5194/acp-21-1507-2021, https://doi.org/10.5194/acp-21-1507-2021, 2021
Short summary
Short summary
Southern Africa produces significant biomass burning emissions whose impacts on regional and global climate are poorly understood. ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) is a 5-year NASA investigation designed to study the key processes that determine these climate impacts. The main purpose of this paper is to familiarize the broader scientific community with the ORACLES project, the dataset it produced, and the most important initial findings.
Kirk Knobelspiesse, Henrique M. J. Barbosa, Christine Bradley, Carol Bruegge, Brian Cairns, Gao Chen, Jacek Chowdhary, Anthony Cook, Antonio Di Noia, Bastiaan van Diedenhoven, David J. Diner, Richard Ferrare, Guangliang Fu, Meng Gao, Michael Garay, Johnathan Hair, David Harper, Gerard van Harten, Otto Hasekamp, Mark Helmlinger, Chris Hostetler, Olga Kalashnikova, Andrew Kupchock, Karla Longo De Freitas, Hal Maring, J. Vanderlei Martins, Brent McBride, Matthew McGill, Ken Norlin, Anin Puthukkudy, Brian Rheingans, Jeroen Rietjens, Felix C. Seidel, Arlindo da Silva, Martijn Smit, Snorre Stamnes, Qian Tan, Sebastian Val, Andrzej Wasilewski, Feng Xu, Xiaoguang Xu, and John Yorks
Earth Syst. Sci. Data, 12, 2183–2208, https://doi.org/10.5194/essd-12-2183-2020, https://doi.org/10.5194/essd-12-2183-2020, 2020
Short summary
Short summary
The Aerosol Characterization from Polarimeter and Lidar (ACEPOL) field campaign is a resource for the next generation of spaceborne multi-angle polarimeter (MAP) and lidar missions. Conducted in the fall of 2017 from the Armstrong Flight Research Center in Palmdale, California, four MAP instruments and two lidars were flown on the high-altitude ER-2 aircraft over a variety of scene types and ground assets. Data are freely available to the public and useful for algorithm development and testing.
Cited articles
Ahn, C., Torres, O., and Jethva, H.: Assessment of OMI near-UV aerosol
optical depth over land, J. Geophys. Res.-Atmos., 119, 2457–2473,
https://doi.org/10.1002/2013JD020188, 2014.
Ahn, Y.-C., Chung, J., Wilder-Smith, P., and Chen, Z.: Multimodality approach
to optical early detection and mapping of oral neoplasia, J. Biomed. Opt.,
16, 076007, https://doi.org/10.1117/1.3595850, 2011.
Alsante, A. N., Thornton, D. C. O., and Brooks, S. D.: Ocean Aerobiology,
Front. Microbiol., 12, 3143, https://doi.org/10.3389/fmicb.2021.764178, 2021.
Anderson, J. C., Wang, J., Zeng, J., Leptoukh, G., Petrenko, M., Ichoku, C.,
and Hu, C.: Long-term statistical assessment of Aqua-MODIS aerosol optical
depth over coastal regions: bias characteristics and uncertainty sources,
Tellus B Chem. Phys. Meteorol., 65, 20805,
https://doi.org/10.3402/tellusb.v65i0.20805, 2013.
Applequist, J.: An Atom Dipole Interaction Model for Molecular Optical
Properties, Acc. Chem. Res., 10, 79–85, https://doi.org/10.1021/ar50111a002, 1977.
Applequist, J.: Optical Activity: Biot's Bequest, Am. Sci., 75, 58–68, 1987.
Asano, S.: Light scattering properties of spheroidal particles, Appl. Opt.,
18, 712, https://doi.org/10.1364/AO.18.000712, 1979.
Asano, S. and Sato, M.: Light scattering by randomly oriented spheroidal
particles, Appl. Opt., 19, 962, https://doi.org/10.1364/AO.19.000962, 1980.
Autschbach, J.: Computing chiroptical properties with first-principles
theoretical methods: Background and illustrative examples, Chirality,
21, E116–E152, https://doi.org/10.1002/chir.20789, 2009.
Avnir, D.: Critical review of chirality indicators of extraterrestrial life,
New Astron. Rev., 92, 101596,
https://doi.org/10.1016/j.newar.2020.101596, 2021.
Bailey, J., Chrysostomou, A., Hough, J. H., Gledhill, T. M., McCall, A.,
Clark, S., Ménard, F., and Tamura, M.: Circular Polarization in Star-
Formation Regions: Implications for Biomolecular Homochirality, Science, 80, 672–674, https://doi.org/10.1126/science.281.5377.672, 1998.
Barbaro, E., Zangrando, R., Vecchiato, M., Piazza, R., Cairns, W. R. L., Capodaglio, G., Barbante, C., and Gambaro, A.: Free amino acids in Antarctic aerosol: potential markers for the evolution and fate of marine aerosol, Atmos. Chem. Phys., 15, 5457–5469, https://doi.org/10.5194/acp-15-5457-2015, 2015.
Barron, L. D.: Molecular Light Scattering and Optical Activity, 2nd Edn., Cambridge, Cambridge University Press, https://doi.org/10.1017/CBO9780511535468, 2004.
Bellcross, A., Bé, A. G., Geiger, F. M., and Thomson, R. J.: Molecular
Chirality and Cloud Activation Potentials of Dimeric α-Pinene
Oxidation Products, J. Am. Chem. Soc., 143, 16653–16662,
https://doi.org/10.1021/jacs.1c07509, 2021.
Bian, H., Chin, M., Hauglustaine, D. A., Schulz, M., Myhre, G., Bauer, S. E., Lund, M. T., Karydis, V. A., Kucsera, T. L., Pan, X., Pozzer, A., Skeie, R. B., Steenrod, S. D., Sudo, K., Tsigaridis, K., Tsimpidi, A. P., and Tsyro, S. G.: Investigation of global particulate nitrate from the AeroCom phase III experiment, Atmos. Chem. Phys., 17, 12911–12940, https://doi.org/10.5194/acp-17-12911-2017, 2017.
Bickel, W. S. and Stafford, M. E.: Polarized scattered light as a probe for
structure and change in bioparticles, in: Ultrasensitive Biochemical
Diagnostics, vol. 2680, edited by: Cohn, G. E., Soper, S. A., and Chen, C. H. W., 4–15, SPIE, 1996.
Bickel, W. S., Davidson, J. F., Huffman, D. R., and Kilkson, R.: Application
of polarization effects in light scattering: a new biophysical tool, P.
Natl. Acad. Sci. USA, 73, 486–490, https://doi.org/10.1073/pnas.73.2.486, 1976.
Binkowski, F. S. and Roselle, S. J.: Models-3 Community Multiscale Air
Quality (CMAQ) model aerosol component 1. Model description, J. Geophys.
Res.-Atmos., 108, 4183, https://doi.org/10.1029/2001JD001409, 2003.
Bohren, C. F.: Light scattering by an optically active sphere, Chem. Phys. Lett., 29, 458–462, https://doi.org/10.1016/0009-2614(74)85144-4, 1974.
Bohren, C. F.: Scattering of electromagnetic waves by an optically active spherical shell, The J. Chem. Phys., 62, 1566, https://doi.org/10.1063/1.430622, 1975.
Bohren, C. F. and Huffman, D. R.: Absorption and Scattering of Light by
Small Particles, 1st Edn., Wiley-VCH Verlag GmbH, Weinheim, Germany, 1998.
Born, M.: Herbert Herkner, Die Naturwissenschaften, 6, 179–180, https://doi.org/10.1007/BF01491442, 1918.
Cao, X., Roy, G., Roy, N., and Bernier, R.: Comparison of the relationships
between lidar integrated backscattered light and accumulated depolarization
ratios for linear and circular polarization for water droplets, fog oil, and
dust, Appl. Opt., 48, 4130, https://doi.org/10.1364/AO.48.004130, 2009.
Cao, X., Roy, G. A., Cao, X., and Bernier, R.: On linear and circular
depolarization LIDAR signatures in remote sensing of bioaerosols:
experimental validation of the Mueller matrix for randomly oriented
particles, Opt. Eng., 50, 1–11, https://doi.org/10.1117/1.3657505, 2011.
Cash, J. M., Heal, M. R., Langford, B., and Drewer, J.: A review of
stereochemical implications in the generation of secondary organic aerosol
from isoprene oxidation, Environ. Sci. Process. Impacts, 18, 1369–1380,
https://doi.org/10.1039/C6EM00354K, 2016.
Chaikovskaya, L. I.: Remote sensing of clouds using linearly and circularly
polarized laser beams: techniques to compute signal polarization, in: Light
Scattering Reviews 3, 191–228, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2008.
Chakrabarty, R. K., Beres, N. D., Moosmüller, H., China, S., Mazzoleni, C., Dubey, M. K., Liu, L., and Mishchenko, M. I.: Soot superaggregates from flaming wildfires and their direct radiative forcing, Sci. Rep., 4, 5508, https://doi.org/10.1038/srep05508, 2014.
Chandrasekhar, S.: Radiative Transfer, Dover Publications In, New York, 1960.
China, S., Mazzoleni, C., Gorkowski, K., Aiken, A. C., and Dubey, M. K.: Morphology and mixing state of individual freshly emitted wildfire carbonaceous particles, Nat. Commun., 4, 2122, https://doi.org/10.1038/ncomms3122, 2013.
Coffeen, D. L.: Polarization and scattering characteristics in the
atmospheres of earth, venus and jupiter, J. Opt. Soc. Am., 69, 1051,
https://doi.org/10.1364/JOSA.69.001051, 1979.
Colarco, P., da Silva, A., Chin, M., and Diehl, T.: Online simulations of
global aerosol distributions in the NASA GEOS-4 model and comparisons to
satellite and ground-based aerosol optical depth, J. Geophys. Res.,
115, D14207, https://doi.org/10.1029/2009JD012820, 2010.
Colomb, A., Yassaa, N., Williams, J., Peeken, I., and Lochte, K.: Screening
volatile organic compounds (VOCs) emissions from five marine phytoplankton
species by head space gas chromatography/mass spectrometry (HS-GC/MS), J.
Environ. Monit., 10, 325–330, https://doi.org/10.1039/b715312k, 2008.
Craven-Jones, J., Harrington, D., Tyo, J. S., Escuti, M., Fineschi, S.,
Mawet, D., Riedi, J., Snik, F., and De Martino, A.: An overview of
polarimetric sensing techniques and technology with applications to
different research fields, in: Polarization: Measurement, Analysis, and
Remote Sensing XI, vol. 9099, p. 90990B., 2014.
Cronin, J. R. and Pizzarello, S.: Enantiomeric Excesses in Meteoritic Amino
Acids, Science, 80, 951–955,
https://doi.org/10.1126/science.275.5302.951, 1997.
Daskalopoulou, V., Mallios, S. A., Ulanowski, Z., Hloupis, G., Gialitaki, A., Tsikoudi, I., Tassis, K., and Amiridis, V.: The electrical activity of Saharan dust as perceived from surface electric field observations, Atmos. Chem. Phys., 21, 927–949, https://doi.org/10.5194/acp-21-927-2021, 2021.
de Boer, J. F. and Milner, T. E.: Review of polarization sensitive optical
coherence tomography and Stokes vector determination, J. Biomed. Opt., 7,
359, https://doi.org/10.1117/1.1483879, 2002.
Degtjarev, V. S. and Kolokolova, L.: Possible application of circular
polarization for remote sensing of cosmic bodies, Earth, Moon Planets,
57, 213–223, https://doi.org/10.1007/BF00057992, 1992.
Denjean, C., Cassola, F., Mazzino, A., Triquet, S., Chevaillier, S., Grand, N., Bourrianne, T., Momboisse, G., Sellegri, K., Schwarzenbock, A., Freney, E., Mallet, M., and Formenti, P.: Size distribution and optical properties of mineral dust aerosols transported in the western Mediterranean, Atmos. Chem. Phys., 16, 1081–1104, https://doi.org/10.5194/acp-16-1081-2016, 2016.
Després, V., Huffman, J. A., Burrows, S. M., Hoose, C., Safatov, A.,
Buryak, G., Fröhlich-Nowoisky, J., Elbert, W., Andreae, M., Pöschl,
U., and Jaenicke, R.: Primary biological aerosol particles in the atmosphere:
a review, Tellus B Chem. Phys. Meteorol., 64, 15598,
https://doi.org/10.3402/tellusb.v64i0.15598, 2012.
Diner, D. J., Braswell, B. H., Davies, R., Gobron, N., Hu, J., Jin, Y.,
Kahn, R. A., Knyazikhin, Y., Loeb, N., Muller, J.-P., Nolin, A. W., Pinty,
B., Schaaf, C. B., Seiz, G., and Stroeve, J.: The value of multiangle
measurements for retrieving structurally and radiatively consistent
properties of clouds, aerosols, and surfaces, Remote Sens. Environ., 97,
495–518, https://doi.org/10.1016/j.rse.2005.06.006, 2005.
Donovan, D. P., Klein Baltink, H., Henzing, J. S., de Roode, S. R., and Siebesma, A. P.: A depolarisation lidar-based method for the determination of liquid-cloud microphysical properties, Atmos. Meas. Tech., 8, 237–266, https://doi.org/10.5194/amt-8-237-2015, 2015.
Dowdy, A. J., Fromm, M. D., and McCarthy, N.: Pyrocumulonimbus lightning and
fire ignition on Black Saturday in southeast Australia, J. Geophys. Res.-Atmos., 122, 7342–7354, https://doi.org/10.1002/2017JD026577, 2017.
Draine, B. T. and Flatau, P. J.: Discrete-Dipole Approximation For Scattering Calculations, J. Opt. Soc. Am. A, 11, 1491–1499, https://doi.org/10.1364/JOSAA.11.001491, 1994.
Drude, P., Millikan, R. A., and Mann, C. R.: The theory of optics, New York [etc.], Longmans, Green, and Co., http://file://catalog.hathitrust.org/Record/001480409 (last access: 7 October 2022), 1902.
Dubovik, O. and King, M. D.: A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements, J. Geophys. Res., 105, 20673, https://doi.org/10.1029/2000JD900282, 2000.
Dubovik, O., Herman, M., Holdak, A., Lapyonok, T., Tanré, D., Deuzé, J. L., Ducos, F., Sinyuk, A., and Lopatin, A.: Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations, Atmos. Meas. Tech., 4, 975–1018, https://doi.org/10.5194/amt-4-975-2011, 2011.
Dubovik, O., Li, Z., Mishchenko, M. I., Tanré, D., Karol, Y., Bojkov,
B., Cairns, B., Diner, D. J., Espinosa, W. R., Goloub, P., Gu, X., Hasekamp,
O. P., Hong, J., Hou, W., Knobelspiesse, K. D., Landgraf, J., Li, L.,
Litvinov, P., Liu, Y., Lopatin, A., Marbach, T., Maring, H. B., Martins, V.,
Meijer, Y., Milinevsky, G., Mukai, S., Parol, F., Qiao, Y., Remer, L. A.,
Rietjens, J., Sano, I., Stammes, P., Stamnes, S., Sun, X., Tabary, P.,
Travis, L. D., Waquet, F., Xu, F., Yan, C., and Yin, D.: Polarimetric remote
sensing of atmospheric aerosols: Instruments, methodologies, results, and
perspectives, J. Quant. Spectrosc. Ra. Transf., 224, 474–511,
https://doi.org/10.1016/j.jqsrt.2018.11.024, 2019.
Duncan, B. N., Prados, A. I., Lamsal, L. N., Liu, Y., Streets, D. G., Gupta,
P., Hilsenrath, E., Kahn, R. A., Nielsen, J. E., Beyersdorf, A. J., Burton,
S. P., Fiore, A. M., Fishman, J., Henze, D. K., Hostetler, C. a., Krotkov,
N. A., Lee, P., Lin, M., Pawson, S., Pfister, G., Pickering, K. E., Pierce,
R. B., Yoshida, Y., and Ziemba, L. D.: Satellite data of atmospheric
pollution for U.S. air quality applications: Examples of applications,
summary of data end-user resources, answers to FAQs, and common mistakes to
avoid, Atmos. Environ., 94, 647–662, https://doi.org/10.1016/j.atmosenv.2014.05.061,
2014.
Ebben, C. J., Zorn, S. R., Lee, S.-B., Artaxo, P., Martin, S. T., and Geiger,
F. M.: Stereochemical transfer to atmospheric aerosol particles accompanying
the oxidation of biogenic volatile organic compounds, Geophys. Res. Lett.,
38, L16807, https://doi.org/10.1029/2011GL048599, 2011.
Ebben, C. J., Shrestha, M., Martinez, I. S., Corrigan, A. L., Frossard, A.
A., Song, W. W., Worton, D. R., Petäjä, T., Williams, J., Russell,
L. M., Kulmala, M., Goldstein, A. H., Artaxo, P., Martin, S. T., Thomson, R.
J., and Geiger, F. M.: Organic constituents on the surfaces of aerosol
particles from Southern Finland, Amazonia, and California Studied by
vibrational sum frequency generation, J. Phys. Chem. A, 116, 8271–8290,
https://doi.org/10.1021/jp302631z, 2012.
Esposito, F., Molinaro, R., Popa, C. I., Molfese, C., Cozzolino, F., Marty,
L., Taj-Eddine, K., Di Achille, G., Franzese, G., Silvestro, S., and Ori, G.
G.: The role of the atmospheric electric field in the dust-lifting process,
Geophys. Res. Lett., 43, 5501–5508,
https://doi.org/10.1002/2016GL068463, 2016.
Evans, A. M.: Comparative Pharmacology of S(+)-Ibuprofen and
(RS)-Ibuprofen, Clin. Rheumatol., 20, 9–14, https://doi.org/10.1007/BF03342662,
2001.
Facchini, M. C., Rinaldi, M., Decesari, S., Carbone, C., Finessi, E.,
Mircea, M., Fuzzi, S., Ceburnis, D., Flanagan, R., Nilsson, E. D., de Leeuw,
G., Martino, M., Woeltjen, J., and O'Dowd, C. D.: Primary submicron marine
aerosol dominated by insoluble organic colloids and aggregates, Geophys.
Res. Lett., 35, https://doi.org/10.1029/2008GL034210, 2008.
Franklin, M., Kalashnikova, O. V., and Garay, M. J.: Size-resolved particulate
matter concentrations derived from 4.4km-resolution size-fractionated
Multi-angle Imaging SpectroRadiometer (MISR) aerosol optical depth over
Southern California, Remote Sens. Environ., 196, 312–323,
https://doi.org/10.1016/j.rse.2017.05.002, 2017.
Ganjitabar, H., Hadidi, R., Garcia, G. A., Nahon, L., and Powis, I.:
Vibrationally-resolved photoelectron spectroscopy and photoelectron circular
dichroism of bicyclic monoterpene enantiomers, J. Mol. Spectrosc., 353,
11–19, https://doi.org/10.1016/j.jms.2018.08.007, 2018.
Gao, Y. and Anderson, J. R.: Characteristics of Chinese aerosols determined
by individual-particle analysis, J. Geophys. Res.-Atmos., 106,
18037–18045, https://doi.org/10.1029/2000JD900725, 2001.
Gassó, S. and Torres, O.: The role of cloud contamination, aerosol layer height and aerosol model in the assessment of the OMI near-UV retrievals over the ocean, Atmos. Meas. Tech., 9, 3031–3052, https://doi.org/10.5194/amt-9-3031-2016, 2016.
Gehrels, T., Baker, L. R., Beshore, E., Blenman, C., Burke, J. J., Castillo,
N. D., Dacosta, B., Degewij, J., Doose, L. R., Fountain, J. W., Gotobed, J.,
Kenknight, C. E., Kingston, R., McLaughlin, G., McMillan, R., Murphy, R.,
Smith, P. H., Stoll, C. P., Strickland, R. N., Tomasko, M. G., Wijesinghe,
M. P., Coffeen, D. L., and Esposito, L.: Imaging Photopolarimeter on Pioneer
Saturn, Science, 80, 434–439,
https://doi.org/10.1126/science.207.4429.434, 1980.
Ghosh, N.: Tissue polarimetry: concepts, challenges, applications, and
outlook, J. Biomed. Opt., 16, 110801, https://doi.org/10.1117/1.3652896, 2011.
Ghosh, N., Wood, M. F. G., and Vitkin, I. A.: Mueller matrix decomposition
for extraction of individual polarization parameters from complex turbid
media exhibiting multiple scattering, optical activity, and linear
birefringence, J. Biomed. Opt., 13, 044036, https://doi.org/10.1117/1.2960934, 2008.
Gilbert, G. D. and Pernicka, J. C.: Improvement of underwater visibility by
reduction of backscatter with a circular polarization technique., Appl.
Opt., 6, 741–746, 1967.
Girotto, G., China, S., Bhandari, J., Gorkowski, K., Scarnato, B., Capek, T., Marinoni, A., Veghte, D., Kulkarni, G., Aiken, A., Dubey, M., and Mazzoleni, A. C.: Fractal-like Tar Ball Aggregates from Wildfire Smoke, Environ. Sci. Technol. Lett., 5, 360–365, https://doi.org/10.1021/acs.estlett.8b00229, 2018.
Glavin, D. P. and Dworkin, J. P.: Enrichment of the amino acid L-isovaline
by aqueous alteration on CI and CM meteorite parent bodies, P. Natl.
Acad. Sci. USA, 106, 5487–5492, https://doi.org/10.1073/pnas.0811618106, 2009.
Glavin, D. P., McLain, H. L., Dworkin, J. P., Parker, E. T., Elsila, J. E.,
Aponte, J. C., Simkus, D. N., Pozarycki, C. I., Graham, H. V, Nittler, L. R.,
and Alexander, C. M. O.: Abundant extraterrestrial amino acids in the
primitive CM carbonaceous chondrite Asuka 12236, Meteorit. Planet. Sci.,
55, 1979–2006, https://doi.org/10.1111/maps.13560, 2020a.
Glavin, D. P., Burton, A. S., Elsila, J. E., Aponte, J. C., and Dworkin, J.
P.: The Search for Chiral Asymmetry as a Potential Biosignature in our Solar
System, Chem. Rev., 120, 4660–4689, https://doi.org/10.1021/acs.chemrev.9b00474,
2020b.
Gledhill, T. M. and McCall, A.: Circular polarization by scattering from
spheroidal dust grains, Mon. Not. R. Astron. Soc., 314, 123–137,
https://doi.org/10.1046/j.1365-8711.2000.03323.x, 2000.
Gledhill, T. M., Sparks, W. B., Ulanowski, Z., Hough, J. H., and DasSarma, S.: ASTRO-BIOLOGICAL SIGNATURES, in: Optics of Biological Particles, edited by: Hoekstra, A., Maltsev, V., and Videen, G., 193–211 pp., Dordrecht, Springer Netherlands, https://doi.org/10.1007/978-1-4020-5502-7_6, 2007.
Goldstein, D. and Goldstein, D. H.: Polarized Light, Revised and Expanded, 2nd Edn., CRC Press, https://doi.org/10.1201/9780203911587, 2003.
González, N. J. D., Borg-Karlson, A.-K., Artaxo, P., Guenther, A.,
Krejci, R., Nozière, B., and Noone, K.: Primary and secondary organics in
the tropical Amazonian rainforest aerosols: chiral analysis of
2-methyltetraols, Environ. Sci. Process. Impacts, 16, 1413,
https://doi.org/10.1039/c4em00102h, 2014.
Gregory, R. P. and Raps, S.: The differential scattering of circularly
polarized light by chloroplasts and evaluation of their true circular
dichroism., Biochem. J., 142, 193–201, 1974.
Haarig, M., Walser, A., Ansmann, A., Dollner, M., Althausen, D., Sauer, D., Farrell, D., and Weinzierl, B.: Profiles of cloud condensation nuclei, dust mass concentration, and ice-nucleating-particle-relevant aerosol properties in the Saharan Air Layer over Barbados from polarization lidar and airborne in situ measurements, Atmos. Chem. Phys., 19, 13773–13788, https://doi.org/10.5194/acp-19-13773-2019, 2019.
Hansen, J. E.: Circular Polarization of Sunlight Reflected by Clouds, J.
Atmos. Sci., 28, 1515–1516,
https://doi.org/10.1175/1520-0469(1971)028<1515:CPOSRB>2.0.CO;2,
1971.
Hansen, J. E. and Hovenier, J. W.: Interpretation of the Polarization of
Venus, J. Atmos. Sci., 31, 1137–1160,
https://doi.org/10.1175/1520-0469(1974)031<1137:IOTPOV>2.0.CO;2,
1974.
Harrison, R. G., Nicoll, K. A., Ulanowski, Z., and Mather, T. A.:
Self-charging of the Eyjafjallajökull volcanic ash plume, Environ. Res.
Lett., 5, 24004, https://doi.org/10.1088/1748-9326/5/2/024004, 2010.
Harrison, R. G., Nicoll, K. A., Marlton, G. J., Ryder, C. L., and Bennett, A.
J.: Corrigendum: Saharan dust plume charging observed over the UK 2018,
Environ. Res. Lett., 13, 109502,
https://doi.org/10.1088/1748-9326/aae591, 2018.
Hasekamp, O. P. and Landgraf, J.: Retrieval of aerosol properties over land
surfaces: capabilities of multiple-viewing-angle intensity and polarization
measurements, Appl. Opt., 46, 3332–3344, 2007.
Hasekamp, O. P., Fu, G., Rusli, S. P., Wu, L., Di Noia, A., Brugh, J. aan
de, Landgraf, J., Martijn Smit, J., Rietjens, J., and van Amerongen, A.:
Aerosol measurements by SPEXone on the NASA PACE mission: expected retrieval
capabilities, J. Quant. Spectrosc. Ra. Transf., 227, 170–184,
https://doi.org/10.1016/j.jqsrt.2019.02.006, 2019.
Herman, B. M., Caudill, T. R., Flittner, D., Thome, K. J., and Ben-David, A.:
Comparison of the Gauss-Seidel spherical polarized radiative transfer code
with other radiative transfer codes, Appl. Opt., 34, 4563–4572,
https://doi.org/10.1364/AO.34.004563, 1995.
Herman, J. R. and Celarier, E. A.: Earth surface reflectivity climatology at
340–380 nm from TOMS data, J. Geophys. Res., 102, 28003,
https://doi.org/10.1029/97JD02074, 1997.
Herman, J. R., Celarier, E., and Larko, D.: UV 380 nm reflectivity of the
Earth's surface, clouds and aerosols, J. Geophys. Res., 106, 5335–5351,
doi:Doi 10.1029/2000jd900584, 2001.
Herman, M., Deuzé, J.-L., Marchand, A., Roger, B., and Lallart, P.:
Aerosol remote sensing from POLDER/ADEOS over the ocean: Improved retrieval
using a nonspherical particle model, J. Geophys. Res.-Atmos., 110, D10S02,
https://doi.org/10.1029/2004JD004798, 2005.
Hodzic, A., Kasibhatla, P. S., Jo, D. S., Cappa, C. D., Jimenez, J. L., Madronich, S., and Park, R. J.: Rethinking the global secondary organic aerosol (SOA) budget: stronger production, faster removal, shorter lifetime, Atmos. Chem. Phys., 16, 7917–7941, https://doi.org/10.5194/acp-16-7917-2016, 2016.
Holloway, T., Miller, D., Anenberg, S., Diao, M., Duncan, B., Fiore, A. M.,
Henze, D. K., Hess, J., Kinney, P. L., Liu, Y., Neu, J. L., O'Neill, S. M.,
Odman, M. T., Pierce, R. B., Russell, A. G., Tong, D., West, J. J., and
Zondlo, M. A.: Satellite Monitoring for Air Quality and Health, Annu. Rev.
Biomed. Data Sci., 4, 417–447,
https://doi.org/10.1146/annurev-biodatasci-110920-093120, 2021.
Hough, J. H.: High sensitivity polarimetry: techniques and applications BT –
Polarimetric Detection, Characterization and Remote Sensing, edited by: Mishchenko, M. I., Yatskiv, Y. S., Rosenbush, V. K., and Videen, G., 177–204,
Springer Netherlands, Dordrecht, https://doi.org/10.1007/978-94-007-1636-0, 2011.
Hough, J. H., Lucas Patty, C. H., Bailey, J. A., Tamura, M., Hirst, E.,
Harrison, D., and Bartholomew-Biggs, M.: PlanetPol: A Very High Sensitivity
Polarimeter, Publ. Astron. Soc. Pacific, 118, 1302–1318,
https://doi.org/10.1086/507955, 2006.
Hsu, N. C., Jeong, M.-J., Bettenhausen, C., Sayer, A. M., Hansell, R.,
Seftor, C. J., Huang, J., and Tsay, S.-C.: Enhanced Deep Blue aerosol
retrieval algorithm: The second generation, J. Geophys. Res.-Atmos.,
118, 9296–9315, https://doi.org/10.1002/jgrd.50712, 2013.
Hu, Y., Yang, P., Lin, B., Gibson, G., and Hostetler, C.: Discriminating
between spherical and non-spherical scatterers with lidar using circular
polarization: a theoretical study, J. Quant. Spectrosc. Ra. Transf.,
79–80, 757–764, https://doi.org/10.1016/S0022-4073(02)00320-5, 2003.
Inness, A., Ades, M., Agustí-Panareda, A., Barré, J., Benedictow, A., Blechschmidt, A.-M., Dominguez, J. J., Engelen, R., Eskes, H., Flemming, J., Huijnen, V., Jones, L., Kipling, Z., Massart, S., Parrington, M., Peuch, V.-H., Razinger, M., Remy, S., Schulz, M., and Suttie, M.: The CAMS reanalysis of atmospheric composition, Atmos. Chem. Phys., 19, 3515–3556, https://doi.org/10.5194/acp-19-3515-2019, 2019.
Ippolitov, I. I., Kabanova, M. V., Nagorskii, P. M., Pkhalagov, Y. A., and
Smirnov, S. V.: Diurnal variations in the electrical field intensity under
smoke from forest fires, Dokl. Earth Sci., 453, 1137–1140,
https://doi.org/10.1134/S1028334X1311010X, 2013.
Jethva, H. and Torres, O.: A comparative evaluation of Aura-OMI and SKYNET near-UV single-scattering albedo products, Atmos. Meas. Tech., 12, 6489–6503, https://doi.org/10.5194/amt-12-6489-2019, 2019.
Jethva, H., Torres, O., and Ahn, C.: Global assessment of OMI aerosol
single-scattering albedo using ground-based AERONET inversion, J. Geophys.
Res.-Atmos., 119, 9020–9040, https://doi.org/10.1002/2014JD021672, 2014.
Kahn, R. A. and Gaitley, B. J.: An analysis of global aerosol type as
retrieved by MISR, J. Geophys. Res.-Atmos., (February), 120, 4248–4281,
https://doi.org/10.1002/2015JD023322, 2015.
Kamra, A. K.: Measurements of the electrical properties of dust storms, J.
Geophys. Res., 77, 5856–5869,
https://doi.org/10.1029/JC077i030p05856, 1972.
Kawabata, K., Coffeen, D. L., Hansen, J. E., Lane, W. A., Sato, M., and
Travis, L. D.: Cloud and haze properties from Pioneer Venus polarimetry, J.
Geophys. Res., 85, 8129, https://doi.org/10.1029/JA085iA13p08129, 1980.
Kawata, Y.: Circular polarization of sunlight reflected by planetary
atmospheres, Icarus, 33, 217–232,
https://doi.org/10.1016/0019-1035(78)90035-0, 1978.
Keller, D., Bustamante, C., Maestre, M. F., and Tinoco, I.: Imaging of
optically active biological structures by use of circularly polarized
light, P. Natl. Acad. Sci. USA, 82, 401–405, https://doi.org/10.1073/pnas.82.2.401,
1985.
Kellogg, C. A. and Griffin, D. W.: Aerobiology and the global transport of
desert dust, Trends Ecol. Evol., 21, 638–644,
https://doi.org/10.1016/j.tree.2006.07.004, 2006.
Kemp, J., Henson, G., Steiner, C., and Powell, E.: The optical polarization
of the Sun measured at a sensitivity of parts in ten million, Nature,
326, 270–273, https://doi.org/10.1038/326270a0, 1987.
Kemp, J. C., Wolstencroft, R. D., and SWEDLUND, J. B.: Circular Polarization:
Jupiter and Other Planets, Nature, 232, 165–168,
https://doi.org/10.1038/232165a0, 1971.
Kemppinen, O., Nousiainen, T., and Jeong, G. Y.: Effects of dust particle internal structure on light scattering, Atmos. Chem. Phys., 15, 12011–12027, https://doi.org/10.5194/acp-15-12011-2015, 2015.
Kim, J. H. and Scialli, A. R.: Thalidomide: The Tragedy of Birth Defects and
the Effective Treatment of Disease, Toxicol. Sci., 122, 1–6,
https://doi.org/10.1093/toxsci/kfr088, 2011.
Knobelspiesse, K., Cairns, B., Mishchenko, M., Chowdhary, J., Tsigaridis,
K., van Diedenhoven, B., Martin, W., Ottaviani, M., and Alexandrov, M.:
Analysis of fine-mode aerosol retrieval capabilities by different passive
remote sensing instrument designs, Opt. Express, 20, 21457,
https://doi.org/10.1364/OE.20.021457, 2012.
Knobelspiesse, K., Ibrahim, A., Franz, B., Bailey, S., Levy, R., Ahmad, Z., Gales, J., Gao, M., Garay, M., Anderson, S., and Kalashnikova, O.: Analysis of simultaneous aerosol and ocean glint retrieval using multi-angle observations, Atmos. Meas. Tech., 14, 3233–3252, https://doi.org/10.5194/amt-14-3233-2021, 2021.
Kok, J. F. and Renno, N. O.: Electrostatics in Wind-Blown Sand, Phys. Rev.
Lett., 100, 014501, https://doi.org/10.1103/PhysRevLett.100.014501, 2008.
Kokhanovsky, A. A.: Radiative transfer in chiral random media, Phys. Rev. E,
60, 4899–4907, https://doi.org/10.1103/PhysRevE.60.4899, 1999.
Kokhanovsky, A. A.: Theoretical modelling of CD and ORD spectra of
suspensions with large nonspherical particles, J. Opt. A Pure Appl. Opt.,
4, 288–292, https://doi.org/10.1088/1464-4258/4/3/312, 2002.
Kolokolova, L. and Nagdimunov, L.: Comparative analysis of polarimetric
signatures of aligned and optically active (“homochiral”) dust particles,
Planet. Space Sci., 100, 57–63, https://doi.org/10.1016/j.pss.2014.01.002, 2014.
Kolokolova, L., Petrova, E., and Kimura, H.: Effects of Interaction of
Electromagnetic Waves in Complex Particles, edited by: Zhurbenko, V., InTech.,
2011.
Kunnen, B., Macdonald, C., Doronin, A., Jacques, S., Eccles, M., and
Meglinski, I.: Application of circularly polarized light for non-invasive
diagnosis of cancerous tissues and turbid tissue-like scattering media, J.
Biophotonics, 8, 317–323, https://doi.org/10.1002/jbio.201400104, 2015.
Kuznetsova, M., Lee, C., and Aller, J.: Characterization of the proteinaceous
matter in marine aerosols, Mar. Chem., 96, 359–377,
https://doi.org/10.1016/j.marchem.2005.03.007, 2005.
Lakhtakia, A.: Selected Papers on Natural Optical Activity, edited by: Lakhtakia, A., (Milestone), Bellingham, WA, PIE Optical Engineering Press, https://spie.org/Publications/Book/2315 (last access: 4 October 2022), 1990.
Lane, S. J., James, M. R., and Gilbert, J. S.: Electrostatic phenomena in
volcanic eruptions, J. Phys. Conf. Ser., 301, 12004,
https://doi.org/10.1088/1742-6596/301/1/012004, 2011.
LaRoche, K. T. and Lang, T. J.: Observations of Ash, Ice, and Lightning
within Pyrocumulus Clouds Using Polarimetric NEXRAD Radars and the National
Lightning Detection Network, Mon. Weather Rev., 145, 4899–4910,
https://doi.org/10.1175/MWR-D-17-0253.1, 2017.
Leck, C. and Bigg, E. K.: Biogenic particles in the surface microlayer and
overlaying atmosphere in the central Arctic Ocean during summer, Tellus B
Chem. Phys. Meteorol., 57, 305–316, https://doi.org/10.3402/tellusb.v57i4.16546,
2005.
Lee, B. H., Lopez-Hilfiker, F. D., D'Ambro, E. L., Zhou, P., Boy, M., Petäjä, T., Hao, L., Virtanen, A., and Thornton, J. A.: Semi-volatile and highly oxygenated gaseous and particulate organic compounds observed above a boreal forest canopy, Atmos. Chem. Phys., 18, 11547–11562, https://doi.org/10.5194/acp-18-11547-2018, 2018.
Levy, R. C., Mattoo, S., Munchak, L. A., Remer, L. A., Sayer, A. M., Patadia, F., and Hsu, N. C.: The Collection 6 MODIS aerosol products over land and ocean, Atmos. Meas. Tech., 6, 2989–3034, https://doi.org/10.5194/amt-6-2989-2013, 2013.
Levy, R. C., Munchak, L. A., Mattoo, S., Patadia, F., Remer, L. A., and Holz, R. E.: Towards a long-term global aerosol optical depth record: applying a consistent aerosol retrieval algorithm to MODIS and VIIRS-observed reflectance, Atmos. Meas. Tech., 8, 4083–4110, https://doi.org/10.5194/amt-8-4083-2015, 2015.
Lewis, G. D., Jordan, D. L., and Roberts, P. J.: Backscattering target
detection in a turbid medium by polarization discrimination, Appl. Opt.,
38, 3937, https://doi.org/10.1364/AO.38.003937, 1999.
Li, L., Dubovik, O., Derimian, Y., Schuster, G. L., Lapyonok, T., Litvinov, P., Ducos, F., Fuertes, D., Chen, C., Li, Z., Lopatin, A., Torres, B., and Che, H.: Retrieval of aerosol components directly from satellite and ground-based measurements, Atmos. Chem. Phys., 19, 13409–13443, https://doi.org/10.5194/acp-19-13409-2019, 2019.
Li, P., Lv, D., He, H., and Ma, H.: Separating azimuthal orientation
dependence in polarization measurements of anisotropic media, Opt. Express,
26, 3791, https://doi.org/10.1364/OE.26.003791, 2018.
Li, Z., Xie, Y., Li, L., and Zhang, Y.: Remote Sensing of Atmospheric Aerosol
Composition and Species, in: Remote Sensing of Atmospheric Aerosol
Composition and Species, SPIE, https://doi.org/10.1117/3.2537401.ch1, 2019.
Liu, J. and Kattawar, G. W.: Detection of dinoflagellates by the light
scattering properties of the chiral structure of their chromosomes, J.
Quant. Spectrosc. Ra. Transf., 131, 24–33,
https://doi.org/10.1016/j.jqsrt.2013.02.012, 2013.
Liu, Y. and Diner, D. J.: Multi-Angle Imager for Aerosols: A Satellite
Investigation to Benefit Public Health, Public Health Rep., 132, 14–17,
https://doi.org/10.1177/0033354916679983, 2016.
Lofftus, K., Hunt, A. J., Quinby-Hunt, M. S., Livolant, F., and Maestre, M.
F.: Immobilization Of Unicellular Marine Organisms For Optical
Characterization: A New Method, in: Proc. SPIE 0925, Ocean Optics IX, edited
by: Blizard, M. A., 334–343, 1988.
Lucas Patty, C. H., Snik, F., and Visser, L.: A high-sensitivity circular
spectropolarimeter for remote sensing of homochirality in photosynthetic
organisms (Conference Presentation), in: Polarization Science and Remote
Sensing VIII, edited by: Snik, F. and Shaw, J. A., p. 35, SPIE, 2017.
Lucas Patty, C. H., Luo, D. A., Snik, F., Ariese, F., Buma, W. J., ten Kate,
I. L., van Spanning, R. J. M., Sparks, W. B., Germer, T. A., Garab, G., and
Kudenov, M. W.: Imaging linear and circular polarization features in leaves
with complete Mueller matrix polarimetry, Biochim. Biophys. Acta – Gen.
Subj., 1862, 1350–1363, https://doi.org/10.1016/j.bbagen.2018.03.005, 2018a.
Lucas Patty, C. H., ten Kate, I. L., Sparks, W. B., and Snik, F.: Remote
Sensing of Homochirality: A Proxy for the Detection of Extraterrestrial
Life, in: Chiral Analysis, pp. 29–69, Elsevier, 2018b.
Lucas Patty, C. H., Ariese, F., Buma, W. J., ten Kate, I. L., van Spanning,
R. J. M., and Snik, F.: Circular spectropolarimetric sensing of higher plant
and algal chloroplast structural variations, Photosynth. Res., 140,
129–139, https://doi.org/10.1007/s11120-018-0572-2, 2019a.
Lucas Patty, C. H., ten Kate, I. L., Buma, W. J., van Spanning, R. J. M.,
Steinbach, G., Ariese, F., and Snik, F.: Circular Spectropolarimetric Sensing
of Vegetation in the Field: Possibilities for the Remote Detection of
Extraterrestrial Life, Astrobiology, ast.2019.2050,
https://doi.org/10.1089/ast.2019.2050, 2019b.
Lucas Patty, C. H., Kühn, J. G., Lambrev, P. H., Spadaccia, S., Hoeijmakers, H. J., Keller, C., Mulder, W., Pallichadath, V., Frans, O., Snik, F., Stam, D. M., Pommerol, A., and Demory, B: Biosignatures of the Earth, A&A, 651, https://doi.org/10.1051/0004-6361/202140845, 2021.
MacDermott, A. J.: Distinguishing the chiral signature of life in the solar
system and beyond, in: Instruments, Methods, and Missions for the
Investigation of Extraterrestrial Microorganisms Richard B. Hoover, vol.
3111, edited by: Hoover, R. B., 272–279, 1997.
MacKenzie, S. M., Neveu, M., Davila, A. F., Lunine, J. I., Craft, K. L.,
Cable, M. L., Phillips-Lander, C. M., Hofgartner, J. D., Eigenbrode, J. L.,
Waite, J. H., Glein, C. R., Gold, R., Greenauer, P. J., Kirby, K.,
Bradburne, C., Kounaves, S. P., Malaska, M. J., Postberg, F., Patterson, G.
W., Porco, C., Núñez, J. I., German, C., Huber, J. A., McKay, C. P.,
de Vera, J.-P., Brucato, J. R., and Spilker, L. J.: The Enceladus Orbilander
Mission Concept: Balancing Return and Resources in the Search for Life,
Planet. Sci. J., 2, 77, https://doi.org/10.3847/psj/abe4da, 2021.
Magzamen, S., Gan, R. W., Liu, J., O'Dell, K., Ford, B., Berg, K., Bol, K.,
Wilson, A., Fischer, E. V., and Pierce, J. R.: Differential Cardiopulmonary
Health Impacts of Local and Long-Range Transport of Wildfire Smoke,
GeoHealth, 5, e2020GH000330, https://doi.org/10.1029/2020GH000330,
2021.
Mallios, S. A., Daskalopoulou, V., and Amiridis, V.: Orientation of non
spherical prolate dust particles moving vertically in the Earth's
atmosphere, J. Aerosol Sci., 151, 105657,
https://doi.org/10.1016/j.jaerosci.2020.105657, 2021.
Manisalidis, I., Stavropoulou, E., Stavropoulos, A., and Bezirtzoglou, E.:
Environmental and Health Impacts of Air Pollution: A Review, Front. Public
Heal., 8, 14, https://doi.org/10.3389/fpubh.2020.00014, 2020.
Maring, H. B.: Vertical distributions of dust and sea-salt aerosols over
Puerto Rico during PRIDE measured from a light aircraft, J. Geophys. Res.,
108, 8587, https://doi.org/10.1029/2002JD002544, 2003.
Martin, W. E., Hesse, E., Hough, J. H., Sparks, W. B., Cockell, C. S.,
Ulanowski, Z., Germer, T. A., and Kaye, P. H.: Polarized optical scattering
signatures from biological materials, J. Quant. Spectrosc. Radiat. Transf.,
111, 2444–2459, https://doi.org/10.1016/j.jqsrt.2010.07.001, 2010.
Martin, W. E., Hesse, E., Hough, J. H., and Gledhill, T. M.: High-sensitivity
Stokes spectropolarimetry on cyanobacteria, J. Quant. Spectrosc. Ra.
Transf., https://doi.org/10.1016/j.jqsrt.2015.10.014, 2016.
Martinez, I. S., Peterson, M. D., Ebben, C. J., Hayes, P. L., Artaxo, P.,
Martin, S. T., and Geiger, F. M.: On molecular chirality within naturally
occurring secondary organic aerosol particles from the central Amazon Basin,
Phys. Chem. Chem. Phys., 13, 12114, https://doi.org/10.1039/c1cp20428a, 2011.
McCoy, D. T., Burrows, S. M., Wood, R., Grosvenor, D. P., Elliott, S. M.,
Ma, P.-L., Rasch, P. J., and Hartmann, D. L.: Natural aerosols explain
seasonal and spatial patterns of Southern Ocean cloud albedo, Sci. Adv.,
1, e1500157, https://doi.org/10.1126/sciadv.1500157, 2015.
Meierhenrich, U. J., Thiemann, W. H.-P., Barbier, B., Brack, A., Alcaraz,
C., Nahon, L., and Wolstencroft, R.: Circular Polarization of Light by Planet
Mercury and Enantiomorphism of its Surface Minerals, Orig. life Evol.
Biosph., 32, 181–190, https://doi.org/10.1023/A:1016028930938, 2002.
Mhawish, A., Kumar, M., Mishra, A. K., Srivastava, P. K., and Banerjee, T.:
Remote Sensing of Aerosols From Space: Retrieval of Properties and
Applications, in: Remote Sensing of Aerosols, Clouds, and Precipitation,
edited by: Islam, T., Hu, Y., Kokhanovsky, A., and Wang, J., pp. 45–83,
Elsevier, 2018.
Mishchenko, M. I.: Electromagnetic Scattering by Particles and Particle
Groups: An Introduction, Cambridge University Press, Cambridge, https://doi.org/10.1017/CBO9781139019064, 2014.
Mishchenko, M. I. and Hovenier, J. W.: Depolarization of light backscattered
by randomly oriented nonspherical particles, Opt. Lett., 20, 1356,
https://doi.org/10.1364/OL.20.001356, 1995.
Mishchenko, M. I. and Yurkin, M. A.: On the concept of random orientation in
far-field electromagnetic scattering by nonspherical particles, Opt. Lett.,
42, 494, https://doi.org/10.1364/OL.42.000494, 2017.
Mishchenko, M. I., Hovenier, J. W., and Travis, L. D. (Eds.): Light Scattering
by Nonspherical Particles: Theory, Measurements, and Applications, Measurement Sci. Technol., 11, 1827–1827, https://doi.org/10.1088/0957-0233/11/12/705, 2000.
Moore, R. H., Karydis, V. A., Capps, S. L., Lathem, T. L., and Nenes, A.: Droplet number uncertainties associated with CCN: an assessment using observations and a global model adjoint, Atmos. Chem. Phys., 13, 4235–4251, https://doi.org/10.5194/acp-13-4235-2013, 2013.
Muñoz, O., Volten, H., de Haan, J. F., Vassen, W., and Hovenier, J. W.:
Experimental determination of scattering matrices of randomly oriented fly
ash and clay particles at 442 and 633 nm, J. Geophys. Res.-Atmos., 106,
22833–22844, https://doi.org/10.1029/2000JD000164, 2001.
Murdin, P.: Encyclopedia of Astronomy & Astrophysics, 1st Edn., Boca Raton, CRC Press, https://www.taylorfrancis.com/books/edit/10.1201/9781003220435/encyclopedia-astronomy-astrophysics-paul-murdin (last access: 4 October 2022), 2001.
Myriokefalitakis, S., Fanourgakis, G., and Kanakidou, M.: The Contribution of
Bioaerosols to the Organic Carbon Budget of the Atmosphere BT – Perspectives
on Atmospheric Sciences, edited by: Karacostas, T., Bais, A., and Nastos, P. T., 845–851, Springer International Publishing, Cham, 2017.
Nafie, L. A.: Circular polarization spectroscopy of chiral molecules, J.
Mol. Struct., 347, 83–100, https://doi.org/10.1016/0022-2860(95)08538-7, 1995.
Nagorskiy, P. M., Pustovalov, K. N., and Smirnov, S. V.: Smoke Plumes from Wildfires and the Electrical State of the Surface Air Layer, Atmos. Ocean. Opt., 35, 387–393, https://doi.org/10.1134/S1024856022040133, 2022.
NASA: The Pioneer Missions, https://www.nasa.gov/centers/ames/missions/archive/pioneer.html, last access: 24
August 2021.
Neupert, W., Brugger, R., Euchenhofer, C., Brune, K., and Geisslinger, G.:
Effects of ibuprofen enantiomers and its coenzyme A thioesters on human
prostaglandin endoperoxide synthases, Br. J. Pharmacol., 122, 487–492,
https://doi.org/10.1038/sj.bjp.0701415, 1997.
Neveu, M., Anbar, A. D., Davila, A. F., Glavin, D. P., MacKenzie, S. M.,
Phillips-Lander, C. M., Sherwood, B., Takano, Y., Williams, P., and Yano, H.:
Returning Samples From Enceladus for Life Detection , Front. Astron. Sp.
Sci., 7, 26, https://doi.org/10.3389/fspas.2020.00026, 2020.
Nicolet, M., Schnaiter, M., and Stetzer, O.: Circular depolarization ratios of single water droplets and finite ice circular cylinders: a modeling study, Atmos. Chem. Phys., 12, 4207–4214, https://doi.org/10.5194/acp-12-4207-2012, 2012.
Nicoll, K. A., Harrison, R. G., and Ulanowski, Z.: Observations of Saharan
dust layer electrification, Environ. Res. Lett., 6, 14001,
https://doi.org/10.1088/1748-9326/6/1/014001, 2010.
Nouri, S. A., Gregory, D. A., and Fuller, K.: Development of an
angle-scanning spectropolarimeter: Preliminary results, J. Quant. Spectrosc.
Ra. Transf., 206, 342–354, https://doi.org/10.1016/j.jqsrt.2017.11.024, 2018.
Noziere, B., González, N. J. D., Borg-Karlson, A. K., Pei, Y., Redeby,
J. P., Krejci, R., Dommen, J., Prevot, A. S. H., and Anthonsen, T.:
Atmospheric chemistry in stereo: A new look at secondary organic aerosols
from isoprene, Geophys. Res. Lett., 38, 138,
https://doi.org/10.1029/2011GL047323, 2011.
O'Dowd, C. D., Facchini, M. C., Cavalli, F., Ceburnis, D., Mircea, M.,
Decesari, S., Fuzzi, S., Yoon, Y. J., Putaud, J., Dowd, C. D. O., Facchini,
M. C., Cavalli, F., Ceburnis, D., Mircea, M., Decesari, S., Fuzzi, S., Yoon,
Y. J., and Putaud, J.: Biogenically driven organic contribution to marine
aerosol, Nature, 431, 676, https://doi.org/10.1038/nature02959, 2004.
Okada, K., Heintzenberg, J., Kai, K., and Qin, Y.: Shape of atmospheric
mineral particles collected in three Chinese arid-regions, Geophys. Res.
Lett., 28, 3123–3126, https://doi.org/10.1029/2000GL012798, 2001.
Omar, A. H., Winker, D. M., Vaughan, M. A., Hu, Y., Trepte, C. R., Ferrare,
R. A., Lee, K.-P., Hostetler, C. A., Kittaka, C., Rogers, R. R., Kuehn, R.
E., and Liu, Z.: The CALIPSO Automated Aerosol Classification and Lidar Ratio
Selection Algorithm, J. Atmos. Ocean. Technol., 26, 1994–2014,
https://doi.org/10.1175/2009JTECHA1231.1, 2009.
Pan, Y.-L., Kalume, A., Arnold, J., Beresnev, L., Wang, C., Rivera, D. N.,
Crown, K. K., and Santarpia, J.: Measurement of circular intensity
differential scattering (CIDS) from single airborne aerosol particles for
bioaerosol detection and identification, Opt. Express, 30, 1442–1451,
https://doi.org/10.1364/OE.448288, 2022.
Paschou, P., Siomos, N., Tsekeri, A., Louridas, A., Georgoussis, G., Freudenthaler, V., Binietoglou, I., Tsaknakis, G., Tavernarakis, A., Evangelatos, C., von Bismarck, J., Kanitz, T., Meleti, C., Marinou, E., and Amiridis, V.: The eVe reference polarisation lidar system for the calibration and validation of the Aeolus L2A product, Atmos. Meas. Tech., 15, 2299–2323, https://doi.org/10.5194/amt-15-2299-2022, 2022.
Pendleton, J. D. and Rosen, D. L.: Light Scattering from an Optically Active
Sphere into a Circular Aperture, Appl. Opt., 37, 7897,
https://doi.org/10.1364/AO.37.007897, 1998.
Perrin, F.: Polarization of Light Scattered by Isotropic Opalescent Media,
J. Chem. Phys., 10, 415, https://doi.org/10.1063/1.1723743, 1942.
Perring, A. E., Schwarz, J. P., Baumgardner, D., Hernandez, M. T.,
Spracklen, D. V, Heald, C. L., Gao, R. S., Kok, G., McMeeking, G. R.,
McQuaid, J. B., and Fahey, D. W.: Airborne observations of regional variation
in fluorescent aerosol across the United States, J. Geophys. Res.-Atmos.,
2014, JD022495, https://doi.org/10.1002/2014JD022495, 2014.
Petäjä, T., O'Connor, E. J., Moisseev, D., Sinclair, V. A.,
Manninen, A. J., Väänänen, R., von Lerber, A., Thornton, J. A.,
Nicoll, K., Petersen, W., Chandrasekar, V., Smith, J. N., Winkler, P. M.,
Krüger, O., Hakola, H., Timonen, H., Brus, D., Laurila, T., Asmi, E.,
Riekkola, M.-L., Mona, L., Massoli, P., Engelmann, R., Komppula, M., Wang,
J., Kuang, C., Bäck, J., Virtanen, A., Levula, J., Ritsche, M., and
Hickmon, N.: BAECC: A Field Campaign to Elucidate the Impact of Biogenic
Aerosols on Clouds and Climate, B. Am. Meteorol. Soc., 97,
1909–1928, https://doi.org/10.1175/BAMS-D-14-00199.1, 2016.
Phalagov, Y. A., Ippolitov, I. I., Nagorskii, P. M., Odintsov, S. L.,
Panchenko, M. V., Smirnov, S. V., and Uzhegov, V. N.: Relation of anomalous
atmospheric conditions to electric field variation, Atmos. Ocean. Opt.,
22, 113–117, https://doi.org/10.1134/S1024856009010163, 2009.
Pospergelis, M. M.: Spectroscopic Measurements of the Four Stokes Parameters
for Light Scattered by Natural Objects, Sov. Physics-Astronomy, 12, 973, 1969.
Purvinis, G., Cameron, B. D., and Altrogge, D. M.: Noninvasive
Polarimetric-Based Glucose Monitoring: An in Vivo Study, J. Diabetes Sci.
Technol., 5, 380–387, https://doi.org/10.1177/193229681100500227, 2011.
Qi, J. and Elson, D. S.: Mueller polarimetric imaging for surgical and
diagnostic applications: a review, J. Biophotonics, 10, 950–982,
https://doi.org/10.1002/jbio.201600152, 2017.
Quinby-Hunt, M. S., Erskine, L. L., and Hunt, A. J.: Polarized light scattering by aerosols in the marine atmospheric boundarylayer, Appl. Opt., 36, 5168–5184, https://doi.org/10.1364/AO.36.005168, 1997.
Remer, L. A., Kleidman, R. G., Levy, R. C., Kaufman, Y. J., Tanré, D.,
Mattoo, S., Martins, J. V., Ichoku, C., Koren, I., Yu, H., and Holben, B. N.:
Global aerosol climatology from the MODIS satellite sensors, J. Geophys.
Res., 113, D14S07, https://doi.org/10.1029/2007JD009661, 2008.
Remer, L. A., Knobelspiesse, K., Zhai, P.-W., Xu, F., Kalashnikova, O. V,
Chowdhary, J., Hasekamp, O. P., Dubovik, O., Wu, L., Ahmad, Z., Boss, E.,
Cairns, B., Coddington, O., Davis, A. B., Dierssen, H. M., Diner, D. J.,
Franz, B., Frouin, R., Gao, B.-C., Ibrahim, A., Levy, R. C., Martins, J. V.,
Omar, A. H., and Torres, O.: Retrieving Aerosol Characteristics From the PACE
Mission, Part 2: Multi-Angle and Polarimetry , Front. Environ. Sci. , 7, 94
https://doi.org/10.3389/fenvs.2019.00094, 2019.
Rogers, C. and Martin, P. G.: On the shape of interstellar
grains, Astrophys. J., 228, 450–464, https://doi.org/10.1086/156866, 1979.
Rosen, D. L.: Remote Biodetection Method Using Circular Dichroism, Appl.
Spectrosc., 47, 1887–1891, https://doi.org/10.1366/0003702934066073, 1993.
Rosenbush, V., Kiselev, N., Shakhovskoy, N., Kolesnikov, S., and Breus, V.:
Circular and linear polarization of comet C/2001 Q4 (NEAT), Why circular
polarization in comets is predominantly left-handed?, Conf. Electromagn.
Light Scatt., 4, 181–184, https://doi.org/10.1615/ICHMT.2007.ConfElectromagLigScat.480,
2007.
Rubin, N. A., D'Aversa, G., Chevalier, P., Shi, Z., Chen, W. T., and Capasso,
F.: Matrix Fourier optics enables a compact full-Stokes polarization camera,
Science, 80, 365, https://doi.org/10.1126/science.aax1839, 2019.
Russell, P. B., Kacenelenbogen, M., Livingston, J. M., Hasekamp, O. P.,
Burton, S. P., Schuster, G. L., Johnson, M. S., Knobelspiesse, K. D.,
Redemann, J., Ramachandran, S., and Holben, B. N.: A multiparameter aerosol
classification method and its application to retrievals from spaceborne
polarimetry, J. Geophys. Res.-Atmos., 119, 9838–9863,
https://doi.org/10.1002/2013JD021411, 2014.
Ryder, C. L., Highwood, E. J., Rosenberg, P. D., Trembath, J., Brooke, J. K., Bart, M., Dean, A., Crosier, J., Dorsey, J., Brindley, H., Banks, J., Marsham, J. H., McQuaid, J. B., Sodemann, H., and Washington, R.: Optical properties of Saharan dust aerosol and contribution from the coarse mode as measured during the Fennec 2011 aircraft campaign, Atmos. Chem. Phys., 13, 303–325, https://doi.org/10.5194/acp-13-303-2013, 2013.
Salma, I., Mészáros, T., Maenhaut, W., Vass, E., and Majer, Z.: Chirality and the origin of atmospheric humic-like substances, Atmos. Chem. Phys., 10, 1315–1327, https://doi.org/10.5194/acp-10-1315-2010, 2010.
Samaké, A., Jaffrezo, J.-L., Favez, O., Weber, S., Jacob, V., Albinet, A., Riffault, V., Perdrix, E., Waked, A., Golly, B., Salameh, D., Chevrier, F., Oliveira, D. M., Bonnaire, N., Besombes, J.-L., Martins, J. M. F., Conil, S., Guillaud, G., Mesbah, B., Rocq, B., Robic, P.-Y., Hulin, A., Le Meur, S., Descheemaecker, M., Chretien, E., Marchand, N., and Uzu, G.: Polyols and glucose particulate species as tracers of primary biogenic organic aerosols at 28 French sites, Atmos. Chem. Phys., 19, 3357–3374, https://doi.org/10.5194/acp-19-3357-2019, 2019.
Sanchez, K. J., Chen, C.-L., Russell, L. M., Betha, R., Liu, J., Price, D.
J., Massoli, P., Ziemba, L. D., Crosbie, E. C., Moore, R. H., Müller,
M., Schiller, S. A., Wisthaler, A., Lee, A. K. Y., Quinn, P. K., Bates, T.
S., Porter, J., Bell, T. G., Saltzman, E. S., Vaillancourt, R. D., and
Behrenfeld, M. J.: Substantial Seasonal Contribution of Observed Biogenic
Sulfate Particles to Cloud Condensation Nuclei, Sci. Rep., 8, 3235,
https://doi.org/10.1038/s41598-018-21590-9, 2018.
Sassen, K.: Boreal tree pollen sensed by polarization lidar: Depolarizing
biogenic chaff, Geophys. Res. Lett., 35,
https://doi.org/10.1029/2008GL035085, 2008.
Savenkov, S. N.: Mueller-matrix characterization of biological tissues BT – Polarimetric Detection, in: Characterization and Remote Sensing, edited by: Mishchenko, M. I., Yatskiv, Y. S., Rosenbush, V. K., and Videen, G., 437–472 pp., Dordrecht, Springer Netherlands, https://doi.org/10.1007/978-94-007-1636-0_17, 2011.
Sayer, A. M., Smirnov, A., Hsu, N. C., and Holben, B. N.: A pure marine
aerosol model, for use in remote sensing applications, J. Geophys. Res.-Atmos., 117, D5, https://doi.org/10.1029/2011JD016689, 2012.
Sayer, A. M., Hsu, N. C., Bettenhausen, C., and Jeong, M.-J.: Validation and
uncertainty estimates for MODIS Collection 6 “Deep Blue” aerosol data, J.
Geophys. Res.-Atmos., 118, 7864–7872,
https://doi.org/10.1002/jgrd.50600, 2013.
Sayer, A. M., Hsu, N. C., Lee, J., Kim, W. V, Dubovik, O., Dutcher, S. T.,
Huang, D., Litvinov, P., Lyapustin, A., Tackett, J. L., and Winker, D. M.:
Validation of SOAR VIIRS Over-Water Aerosol Retrievals and Context Within
the Global Satellite Aerosol Data Record, J. Geophys. Res.-Atmos., 123,
13413–496526, https://doi.org/10.1029/2018JD029465, 2018.
Schmidt, T. H.: Elliptical Polarization by Light Scattering by Submicron
Spheroids, in: Interstellar Dust and Related Topics, edited by: Greenberg, J. M.
and Van De Hulst, H. C., 131–137, Springer Netherlands,
Dordrecht, 1973.
Schutgens, N., Dubovik, O., Hasekamp, O., Torres, O., Jethva, H., Leonard, P. J. T., Litvinov, P., Redemann, J., Shinozuka, Y., de Leeuw, G., Kinne, S., Popp, T., Schulz, M., and Stier, P.: AEROCOM and AEROSAT AAOD and SSA study – Part 1: Evaluation and intercomparison of satellite measurements, Atmos. Chem. Phys., 21, 6895–6917, https://doi.org/10.5194/acp-21-6895-2021, 2021.
Shang, X., Baars, H., Stachlewska, I. S., Mattis, I., and Komppula, M.: Pollen observations at four EARLINET stations during the ACTRIS-COVID-19 campaign, Atmos. Chem. Phys., 22, 3931–3944, https://doi.org/10.5194/acp-22-3931-2022, 2022.
Shapiro, D. B., Quinby-Hunt, M. S. and Hunt, A. J.: Origin of the induced
circular polarization in the light scattering from a dinoflagellate, in:
Proc. SPIE 1302, Ocean Optics X, vol. 1302, edited by: Spinrad, R. W.,
281–289, 1990.
Shapiro, D. B., Hunt, A. J., Quinby-Hunt, M. S., and Hull, P. G.: Circular
polarization effects in the light scattering from single and suspensions of
dinoflagellates, in: SPIEVol. 1537 Underwater Imaging, Photography, and
Visibility, vol. 1537, edited by: Spinrad, R. W., 30–41, 1991.
Shi, W., Fan, F., Zhang, Z., Zhang, T., Li, S., Wang, X., and Chang, S.:
Terahertz Sensing for R/S Chiral Ibuprofen via All-Dielectric Metasurface
with Higher-Order Resonance, Appl. Sci. , 11, 8892, https://doi.org/10.3390/app11198892,
2021.
Slonaker, R. L., Takano, Y., Liou, K.-N., and Ou, S.-C.: Circular
polarization signal for aerosols and clouds, in: Proc. SPIE, vol. 5890,
edited by: Huang, H.-L. A., Bloom, H. J., Xu, X., and Dittberner, G. J.,
58900B–58900B–8, 2005.
Sloot, P. M. A., Hoekstra, A. G., van der Liet, H., and Figdor, C. G.:
Scattering matrix elements of biological particles measured in a flow
through system: theory and practice, Appl. Opt., 28, 1752,
https://doi.org/10.1364/AO.28.001752, 1989.
Smith, S. W.: Chiral Toxicology: It's the Same Thing... Only
Different, Toxicol. Sci., 110, 4–30, https://doi.org/10.1093/toxsci/kfp097, 2009.
Song, W., Staudt, M., Bourgeois, I., and Williams, J.: Laboratory and field measurements of enantiomeric monoterpene emissions as a function of chemotype, light and temperature, Biogeosciences, 11, 1435–1447, https://doi.org/10.5194/bg-11-1435-2014, 2014.
Sorek-Hamer, M., Chatfield, R., and Liu, Y.: Review: Strategies for using
satellite-based products in modeling PM2.5 and short-term pollution
episodes, Environ. Int., 144, 106057,
https://doi.org/10.1016/j.envint.2020.106057, 2020.
Sparks, W. B., Hough, J., Germer, T. a, Chen, F., DasSarma, S., DasSarma,
P., Robb, F. T., Manset, N., Kolokolova, L., Reid, N., Macchetto, F. D., and
Martin, W.: Detection of circular polarization in light scattered from
photosynthetic microbes, P. Natl. Acad. Sci. USA, 106, 7816–7821,
https://doi.org/10.1073/pnas.0810215106, 2009b.
Sparks, W. B., Germer, T. A., and Sparks, R. M.: Classical Polarimetry with a
Twist: A Compact, Geometric Approach, Publ. Astron. Soc. Pacific, 131,
75002, https://doi.org/10.1088/1538-3873/ab1933, 2019.
Stamnes, S., Hostetler, C., Ferrare, R., Burton, S., Liu, X., Hair, J., Hu,
Y., Wasilewski, A., Martin, W., van Diedenhoven, B., Chowdhary, J.,
Cetinić, I., Berg, L. K., Stamnes, K., and Cairns, B.: Simultaneous
polarimeter retrievals of microphysical aerosol and ocean color parameters
from the “MAPP” algorithm with comparison to high-spectral-resolution
lidar aerosol and ocean products, Appl. Opt., 57, 2394–2413,
https://doi.org/10.1364/AO.57.002394, 2018.
Stamnes, S., Baize, R., Bontempi, P., Cairns, B., Chemyakin, E., Choi,
Y.-J., Chowdhary, J., Hu, Y., Jeong, M., Kang, K.-I., Kim, S. S., Liu, X.,
Loughman, R., MacDonnell, D., McCormick, M. P., Moon, B., Omar, A.,
Roithmayr, C. M., Sim, C. K., Sun, W., van Diedenhoven, B., Videen, G., and
Wasilewski, A.: Simultaneous Aerosol and Ocean Properties From the PolCube
CubeSat Polarimeter, Front. Remote Sens., 2, 19,
https://doi.org/10.3389/frsen.2021.709040, 2021.
Staudt, M., Byron, J., Piquemal, K., and Williams, J.: Compartment specific
chiral pinene emissions identified in a Maritime pine forest, Sci. Total
Environ., 654, 1158–1166, https://doi.org/10.1016/j.scitotenv.2018.11.146, 2019.
Tinoco, I. and Williams, A. L.: Differential Absorption and Differential
Scattering of Circularly Polarized Light: Applications to Biological
Macromolecules, Annu. Rev. Phys. Chem., 35, 329–355,
https://doi.org/10.1146/annurev.pc.35.100184.001553, 1984.
Toth III, J. R., Rajupet, S., Squire, H., Volbers, B., Zhou, J., Xie, L., Sankaran, R. M., and Lacks, D. J.: Electrostatic forces alter particle size distributions in atmospheric dust, Atmos. Chem. Phys., 20, 3181–3190, https://doi.org/10.5194/acp-20-3181-2020, 2020.
Sascha, T.: POLARIZATION AND POLARIMETRY: A REVIEW, J. Korean Astronom. Soc. 47, 15–39, https://doi.org/10.5303/JKAS.2014.47.1.15, 2014.
Tsekeri, A., Amiridis, V., Louridas, A., Georgoussis, G., Freudenthaler, V., Metallinos, S., Doxastakis, G., Gasteiger, J., Siomos, N., Paschou, P., Georgiou, T., Tsaknakis, G., Evangelatos, C., and Binietoglou, I.: Polarization lidar for detecting dust orientation: system design and calibration, Atmos. Meas. Tech., 14, 7453–7474, https://doi.org/10.5194/amt-14-7453-2021, 2021.
Twohy, C. H., DeMott, P. J., Russell, L. M., Toohey, D. W., Rainwater, B.,
Geiss, R., Sanchez, K. J., Lewis, S., Roberts, G. C., Humphries, R. S.,
McCluskey, C. S., Moore, K. A., Selleck, P. W., Keywood, M. D., Ward, J. P.,
and McRobert, I. M.: Cloud-Nucleating Particles Over the Southern Ocean in a
Changing Climate, Earth's Futur., 9, e2020EF001673,
https://doi.org/10.1029/2020EF001673, 2021.
Tyo, J. S., Goldstein, D. L., Chenault, D. B., and Shaw, J. A.: Review of passive imaging polarimetry for remote sensing applications, Appl. Opt., 45, 5453, https://doi.org/10.1364/AO.45.005453, 2006.
Ulanowski, Z., Bailey, J., Lucas, P. W., Hough, J. H., and Hirst, E.: Alignment of atmospheric mineral dust due to electric field, Atmos. Chem. Phys., 7, 6161–6173, https://doi.org/10.5194/acp-7-6161-2007, 2007.
van de Hulst, H. C.: Light scattering by small particles, Dover Publications
In, New York, New York: Dover Publications, Inc. 1981. Paperback, 470 S., 103 Abb. und 46 Tab., US, 1981.
Vandenbroucke, B., Baes, M., Camps, P., Utsav Kapoor, A., Barrientos, D., and
Bernard, J.-P.: Polarised emission from aligned dust grains in nearby
galaxies: Predictions from the Auriga simulations, Astro. Astrophys., 653, A34, https://doi.org/10.1051/0004-6361/202141333, 2021.
van der Laan, J. D., Wright, J. B., Kemme, S. A., and Scrymgeour, D. A.:
Superior signal persistence of circularly polarized light in polydisperse,
real-world fog environments, Appl. Opt., 57, 5464,
https://doi.org/10.1364/AO.57.005464, 2018.
Van Eeckhout, A., Garcia-Caurel, E., Garnatje, T., Durfort, M., Escalera, J.
C., Vidal, J., Gil, J. J., Campos, J. and Lizana, A.: Depolarizing metrics
for plant samples imaging, edited by: Restani, P., PLoS One, 14, e0213909,
https://doi.org/10.1371/journal.pone.0213909, 2019.
van Harten, G., Snik, F., Rietjens, J. H. H., Smit, J. M., de Boer, J.,
Diamantopoulou, R., Hasekamp, O. P., Stam, D. M., Keller, C. U., Laan, E.
C., Verlaan, A. L., Vliegenthart, W. A., ter Horst, R., Navarro, R.,
Wielinga, K., Hannemann, S., Moon, S. G., and Voors, R.: Prototyping for the
Spectropolarimeter for Planetary EXploration (SPEX): calibration and sky
measurements, p. 81600Z, in: Proc. SPIE, 8160, p. 81600Z, https://doi.org/10.1117/12.893741, 2011.
Verdugo, P., Alldredge, A. L., Azam, F., Kirchman, D. L., Passow, U., and
Santschi, P. H.: The oceanic gel phase: a bridge in the DOM–POM continuum,
Mar. Chem., 92, 67–85,
https://doi.org/10.1016/j.marchem.2004.06.017, 2004.
Videen, G.: Light Scattering Multipole Solution for a Cell, J. Biomed. Opt.,
3, 212, https://doi.org/10.1117/1.429877, 1998.
Wang, X., Yao, G., and Wang, L. V.: Monte Carlo model and single-scattering
approximation of the propagation of polarized light in turbid media
containing glucose, Appl. Opt., 41, 792, https://doi.org/10.1364/AO.41.000792, 2002.
Wedyan, M. A. and Preston, M. R.: The coupling of surface seawater organic
nitrogen and the marine aerosol as inferred from enantiomer-specific amino
acid analysis, Atmos. Environ., 42, 8698–8705,
https://doi.org/10.1016/j.atmosenv.2008.04.038, 2008.
Wei, X., Chang, N.-B., Bai, K., and Gao, W.: Satellite remote sensing of
aerosol optical depth: advances, challenges, and perspectives, Crit. Rev.
Environ. Sci. Technol., 50, 1640–1725,
https://doi.org/10.1080/10643389.2019.1665944, 2020.
Westphal, P., Kaltenbach, J.-M., and Wicker, K.: Corneal birefringence
measured by spectrally resolved Mueller matrix ellipsometry and implications
for non-invasive glucose monitoring, Biomed. Opt. Express, 7, 1160,
https://doi.org/10.1364/BOE.7.001160, 2016.
Whitney, B. A. and Wolff, M. J.: Scattering and Absorption by Aligned Grains
in Circumstellar Environments, Astrophys. J., 574, 205–231,
https://doi.org/10.1086/340901, 2002.
Williams, J., Yassaa, N., Bartenbach, S., and Lelieveld, J.: Mirror image hydrocarbons from Tropical and Boreal forests, Atmos. Chem. Phys., 7, 973–980, https://doi.org/10.5194/acp-7-973-2007, 2007.
Winker, D. M., Pelon, J., Coakley, J. A., Ackerman, S. A., Charlson, R. J.,
Colarco, P. R., Flamant, P., Fu, Q., Hoff, R. M., Kittaka, C., Kubar, T. L.,
Le Treut, H., Mccormick, M. P., Mégie, G., Poole, L., Powell, K.,
Trepte, C., Vaughan, M. A., and Wielicki, B. A.: The CALIPSO Mission, Bull.
Am. Meteorol. Soc., 91, 1211–1230, https://doi.org/10.1175/2010BAMS3009.1, 2010.
Wood, M. F. G., Guo, X., and Vitkin, I. A.: Polarized light propagation in
multiply scattering media exhibiting both linear birefringence and optical
activity: Monte Carlo model and experimental methodology, J. Biomed. Opt.,
12, 014029, https://doi.org/10.1117/1.2434980, 2007.
Yassaa, N., Brancaleoni, E., Frattoni, M., and Ciccioli, P.: Trace level
determination of enantiomeric monoterpenes in terrestrial plant emission and
in the atmosphere using a beta-cyclodextrin capillary column coupled with
thermal desorption and mass spectrometry., J. Chromatogr. A, 915, 185–197,
https://doi.org/10.1016/S0021-9673(01)00587-8, 2001.
Yassaa, N., Peeken, I., Zllner, E., Bluhm, K., Arnold, S., Spracklen, D., and
Williams, J.: Evidence for marine production of monoterpenes, Environ.
Chem., 5, 391–401, https://doi.org/10.1071/EN08047, 2008.
Zeng, X., Chu, J., Cao, W., Kang, W., and Zhang, R.: Visible–IR
transmission enhancement through fog using circularly polarized light, Appl.
Opt., 57, 6817–6822, https://doi.org/10.1364/AO.57.006817, 2018.
Zhang, H. and Zhou, Y.-H.: Effects of 3D electric field on saltation during dust storms: an observational and numerical study, Atmos. Chem. Phys., 20, 14801–14820, https://doi.org/10.5194/acp-20-14801-2020, 2020.
Zhou, Y., Levy, R. C., Remer, L. A., Mattoo, S., and Espinosa, W. R.: Dust
Aerosol Retrieval Over the Oceans With the MODIS/VIIRS Dark Target
Algorithm: 2. Nonspherical Dust Model, Earth Sp. Sci., I7, e2020EA001222,
https://doi.org/10.1029/2020EA001222, 2020.
Short summary
Atmospheric particles interact with light resulting in observable optical polarization. Thus, we can learn about their composition from space. New satellite sensor technology measures full polarization of reflected sunlight. This paper considers circular polarization, an overlooked category of polarization with distinctive features that could bring new insights. We review existing literature and make novel computations to consider this previously underappreciated category of polarization.
Atmospheric particles interact with light resulting in observable optical polarization. Thus, we...
Altmetrics
Final-revised paper
Preprint