Articles | Volume 22, issue 20
https://doi.org/10.5194/acp-22-13527-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-13527-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
An improved representation of aerosol mixing state for air quality–weather interactions
Robin Stevens
Air Quality Research Division, Environment and Climate Change Canada, 2121 Trans-Canada Highway, Dorval, Québec, Canada
Department of Chemistry and Centre de Recherche en Santé Publique, Université de Montréal, Montréal, Quebec, Canada
Andrei Ryjkov
Air Quality Research Division, Environment and Climate Change Canada, 2121 Trans-Canada Highway, Dorval, Québec, Canada
Mahtab Majdzadeh
Air Quality Research Division, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario, Canada
Ashu Dastoor
CORRESPONDING AUTHOR
Air Quality Research Division, Environment and Climate Change Canada, 2121 Trans-Canada Highway, Dorval, Québec, Canada
Related authors
Nansi Fakhri, Robin Stevens, Arnold Downey, Konstantina Oikonomou, Jean Sciare, Charbel Afif, and Patrick L. Hayes
Atmos. Chem. Phys., 24, 1193–1212, https://doi.org/10.5194/acp-24-1193-2024, https://doi.org/10.5194/acp-24-1193-2024, 2024
Short summary
Short summary
We investigated the chemical composition of atmospheric fine particles, their emission sources, and the potential human health risk associated with trace elements in particles for an urban site in Montréal over a 3-month period (August–November). This study represents the first time that such extensive composition measurements were included in an urban source apportionment study in Canada, and it provides greater resolution of fine-particle sources than has been previously achieved in Canada.
Kirill Semeniuk, Ashu Dastoor, and Alex Lupu
Geosci. Model Dev., 18, 6479–6515, https://doi.org/10.5194/gmd-18-6479-2025, https://doi.org/10.5194/gmd-18-6479-2025, 2025
Short summary
Short summary
The Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) inorganic aerosol sub-model has been implemented in the Global Environmental Multiscale – Modeling Air Quality and Chemistry (GEM-MACH) air quality model. MOSAIC includes metal cation reactions and is a non-equilibrium, double-moment scheme that conserves aerosol number. Compared to the current aerosol sub-model, MOSAIC produces a more accurate size distribution and aerosol number concentration. It also improves the simulated nitrate and ammonium distribution. This work serves to expand the capacity of GEM-MACH for chemistry and weather coupling.
Ashu Dastoor, Hélène Angot, Johannes Bieser, Flora Brocza, Brock Edwards, Aryeh Feinberg, Xinbin Feng, Benjamin Geyman, Charikleia Gournia, Yipeng He, Ian M. Hedgecock, Ilia Ilyin, Jane Kirk, Che-Jen Lin, Igor Lehnherr, Robert Mason, David McLagan, Marilena Muntean, Peter Rafaj, Eric M. Roy, Andrei Ryjkov, Noelle E. Selin, Francesco De Simone, Anne L. Soerensen, Frits Steenhuisen, Oleg Travnikov, Shuxiao Wang, Xun Wang, Simon Wilson, Rosa Wu, Qingru Wu, Yanxu Zhang, Jun Zhou, Wei Zhu, and Scott Zolkos
Geosci. Model Dev., 18, 2747–2860, https://doi.org/10.5194/gmd-18-2747-2025, https://doi.org/10.5194/gmd-18-2747-2025, 2025
Short summary
Short summary
This paper introduces the Multi-Compartment Mercury (Hg) Modeling and Analysis Project (MCHgMAP) aimed at informing the effectiveness evaluations of two multilateral environmental agreements: the Minamata Convention on Mercury and the Convention on Long-Range Transboundary Air Pollution. The experimental design exploits a variety of models (atmospheric, land, oceanic ,and multimedia mass balance models) to assess the short- and long-term influences of anthropogenic Hg releases into the environment.
Nansi Fakhri, Robin Stevens, Arnold Downey, Konstantina Oikonomou, Jean Sciare, Charbel Afif, and Patrick L. Hayes
Atmos. Chem. Phys., 24, 1193–1212, https://doi.org/10.5194/acp-24-1193-2024, https://doi.org/10.5194/acp-24-1193-2024, 2024
Short summary
Short summary
We investigated the chemical composition of atmospheric fine particles, their emission sources, and the potential human health risk associated with trace elements in particles for an urban site in Montréal over a 3-month period (August–November). This study represents the first time that such extensive composition measurements were included in an urban source apportionment study in Canada, and it provides greater resolution of fine-particle sources than has been previously achieved in Canada.
Mohammad Mortezazadeh, Jean-François Cossette, Ashu Dastoor, Jean de Grandpré, Irena Ivanova, and Abdessamad Qaddouri
Geosci. Model Dev., 17, 335–346, https://doi.org/10.5194/gmd-17-335-2024, https://doi.org/10.5194/gmd-17-335-2024, 2024
Short summary
Short summary
The interpolation process is the most computationally expensive step of the semi-Lagrangian (SL) approach. In this paper we implement a new interpolation scheme into the semi-Lagrangian approach which has the same computational cost as a third-order polynomial scheme but with the accuracy of a fourth-order interpolation scheme. This improvement is achieved by using two third-order backward and forward polynomial interpolation schemes in two consecutive time steps.
Mahtab Majdzadeh, Craig A. Stroud, Christopher Sioris, Paul A. Makar, Ayodeji Akingunola, Chris McLinden, Xiaoyi Zhao, Michael D. Moran, Ihab Abboud, and Jack Chen
Geosci. Model Dev., 15, 219–249, https://doi.org/10.5194/gmd-15-219-2022, https://doi.org/10.5194/gmd-15-219-2022, 2022
Short summary
Short summary
A new lookup table for aerosol optical properties based on a Mie scattering code was calculated and adopted within an improved version of the photolysis module in the GEM-MACH in-line chemical transport model. The modified version of the photolysis module makes use of online interactive aerosol feedback and applies core-shell parameterizations to the black carbon absorption efficiency based on Bond et al. (2006) to the size bins with black carbon mass fraction of less than 40 %.
Ashu Dastoor, Andrei Ryjkov, Gregor Kos, Junhua Zhang, Jane Kirk, Matthew Parsons, and Alexandra Steffen
Atmos. Chem. Phys., 21, 12783–12807, https://doi.org/10.5194/acp-21-12783-2021, https://doi.org/10.5194/acp-21-12783-2021, 2021
Short summary
Short summary
An assessment of mercury levels in air and deposition in the Athabasca oil sands region (AOSR) in Northern Alberta, Canada, was conducted to investigate the contribution of Hg emitted from oil sands activities to the surrounding landscape using a 3D process-based Hg model in 2012–2015. Oil sands Hg emissions are found to be important sources of Hg contamination to the local landscape in proximity to the processing activities, particularly in wintertime.
Cited articles
Abdul-Razzak, H. and Ghan, S. J.: A parameterization of aerosol activation 3,
Sectional representation, J. Geophys. Res., 107, 4026,
https://doi.org/10.1029/2001JD000483, 2002. a, b, c
Adachi, K., Chung, S. H., and Buseck, P. R.: Shapes of soot aerosol particles
and implications for their effects on climate, J. Geophys.
Res., 115, D15206, https://doi.org/10.1029/2009JD012868, 2010. a
Akingunola, A., Makar, P. A., Zhang, J., Darlington, A., Li, S. M., Gordon, M.,
Moran, M. D., and Zheng, Q.: A chemical transport model study of plume-rise
and particle size distribution for the Athabasca oil sands, Atmos.
Chem. Phys., 18, 8667–8688, https://doi.org/10.5194/acp-18-8667-2018, 2018. a
Andersson, C., Bergström, R., Bennet, C., Robertson, L., Thomas, M., Korhonen, H., Lehtinen, K. E. J., and Kokkola, H.: MATCH-SALSA – Multi-scale Atmospheric Transport and CHemistry model coupled to the SALSA aerosol microphysics model – Part 1: Model description and evaluation, Geosci. Model Dev., 8, 171–189, https://doi.org/10.5194/gmd-8-171-2015, 2015. a, b
Anttila, T.: Sensitivity of cloud droplet formation to the numerical treatment
of the particle mixing state, J. Geophys. Res., 115, D21205,
https://doi.org/10.1029/2010jd013995, 2010. a
Appel, K. W., Pouliot, G. A., Simon, H., Sarwar, G., Pye, H. O. T., Napelenok,
S. L., Akhtar, F., and Roselle, S. J.: Evaluation of dust and trace metal
estimates from the Community Multiscale Air Quality (CMAQ) model
version 5.0, Geosci. Model Dev., 6, 883–899,
https://doi.org/10.5194/gmd-6-883-2013, 2013. a, b
Aquila, V., Hendricks, J., Lauer, A., Riemer, N., Vogel, H., Baumgardner, D.,
Minikin, A., Petzold, A., Schwarz, J. P., Spackman, J. R., Weinzierl, B.,
Righi, M., and Dall'Amico, M.: MADE-in: a new aerosol microphysics submodel
for global simulation of insoluble particles and their mixing state,
Geosci. Model Dev., 4, 325–355, https://doi.org/10.5194/gmd-4-325-2011,
2011. a, b
Bellouin, N., Mann, G. W., Woodhouse, M. T., Johnson, C., Carslaw, K. S., and
Dalvi, M.: Impact of the modal aerosol scheme GLOMAP-mode on aerosol
forcing in the Hadley Centre Global Environmental Model,
Atmos. Chem. Phys., 13, 3027–3044,
https://doi.org/10.5194/acp-13-3027-2013, 2013. a, b
Bergman, T., Kerminen, V.-M., Korhonen, H., Lehtinen, K. J., Makkonen, R.,
Arola, A., Mielonen, T., Romakkaniemi, S., Kulmala, M., and Kokkola, H.:
Evaluation of the sectional aerosol microphysics module SALSA
implementation in ECHAM5-HAM aerosol-climate model, Geosci. Model
Dev., 5, 845–868, https://doi.org/10.5194/gmd-5-845-2012, 2012. a, b
Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore,
A. M., Li, Q., Liu, H. Y., Mickley, L. J., and Schultz, M. G.: Global
modeling of tropospheric chemistry with assimilated meteorology: Model
description and evaluation, J. Geophys. Res.-Atmos.,
106, 23073–23095, https://doi.org/10.1029/2001JD000807, 2001. a, b
Bieser, J., Aulinger, A., Matthias, V., Quante, M., and Builtjes, P.: SMOKE
for Europe – adaptation, modification and evaluation of a comprehensive
emission model for Europe, Geosci. Model Dev., 4, 47–68,
https://doi.org/10.5194/gmd-4-47-2011, 2011. a
Binkowski, F. S. and Roselle, S. J.: Models-3 Community Multiscale Air
Quality (CMAQ) model aerosol component 1. Model description, J.
Geophys. Res., 108, 4183, https://doi.org/10.1029/2001JD001409, 2003. a, b
Bond, T. C., Habib, G., and Bergstrom, R. W.: Limitations in the enhancement of
visible light absorption due to mixing state, J. Geophys. Res., 111, D20211, https://doi.org/10.1029/2006JD007315, 2006. a, b
Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T.,
DeAngelo, B. J., Flanner, M. G., Ghan, S., Kärcher, B., Koch, D., Kinne, S.,
Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M.,
Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K.,
Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U.,
Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and Zender,
C. S.: Bounding the role of black carbon in the climate system: A
scientific assessment, J. Geophys. Res.-Atmos., 118,
5380–5552, https://doi.org/10.1002/jgrd.50171, 2013. a
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster,
P., Kerminen, V.-M. M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P.,
Satheesh, S. K., Sherwood, S., Stevens, B., and Zhang, X. Y.: Clouds and
Aerosols, in: Climate Change 2013: The Physical Science Basis.
Contribution of Working Group I to the Fifth Assessment Report
of the Intergovernmental Panel on Climate Change, edited by: Stocker,
T., Qin, D., Plattner, G.-K., Tignor, M., Allen, S., Boschung, J., Nauels,
A., Xia, Y., Bex, V., and Midgley, P., 571–657, Cambridge University
Press, Cambridge, United Kingdom and New York, NY, USA, ISBN 9781107415324, https://doi.org/10.1017/CBO9781107415324, 2013. a
Cappa, C. D., Onasch, T. B., Massoli, P., Worsnop, D. R., Bates, T. S., Cross,
E. S., Davidovits, P., Hakala, J., Hayden, K. L., Jobson, B. T., Kolesar,
K. R., Lack, D. A., Lerner, B. M., Li, S. M., Mellon, D., Nuaaman, I.,
Olfert, J. S., Petaja, T., Quinn, P. K., Song, C., Subramanian, R., Williams,
E. J., and Zaveri, R. A.: Radiative Absorption Enhancements Due to the
Mixing State of Atmospheric Black Carbon, Science, 337, 1078–1081,
https://doi.org/10.1126/science.1223447, 2012. a
Charron, M., Polavarapu, S., Buehner, M., Vaillancourt, P. A., Charette, C.,
Roch, M., Morneau, J., Garand, L., Aparicio, J. M., MacPherson, S., Pellerin,
S., St-James, J., and Heilliette, S.: The Stratospheric Extension of the
Canadian Global Deterministic Medium-Range Weather Forecasting System and Its
Impact on Tropospheric Forecasts, Mon. Weather Rev., 140, 1924–1944,
https://doi.org/10.1175/MWR-D-11-00097.1, 2012. a
Chen, J., Anderson, K., Pavlovic, R., Moran, M. D., Englefield, P., Thompson,
D. K., Munoz-Alpizar, R., and Landry, H.: The FireWork v2.0 air quality
forecast system with biomass burning emissions from the Canadian Forest
Fire Emissions Prediction System v2.03, Geosci. Model Dev., 12, 3283–3310, https://doi.org/10.5194/gmd-12-3283-2019, 2019. a
Ching, J., Zaveri, R. A., Easter, R. C., Riemer, N., and Fast, J. D.: A
three-dimensional sectional representation of aerosol mixing state for
simulating optical properties and cloud condensation nuclei, J. Geophys. Res.-Atmos., 121, 5912–5929,
https://doi.org/10.1002/2015jd024323, 2016. a, b, c
Cohard, J.-M. and Pinty, J.-P.: A comprehensive two-moment warm microphysical
bulk scheme. I: Description and tests, Q. J. Roy.
Meteorol. Soc., 126, 1815–1842, https://doi.org/10.1002/qj.49712656613, 2010. a
Côté, J., Desmarais, J.-G., Gravel, S., Méthot, A., Patoine, A.,
Roch, M., and Staniforth, A.: The Operational CMC–MRB Global Environmental
Multiscale (GEM) Model, Part II: Results, Mon. Weather Rev., 126,
1397–1418, https://doi.org/10.1175/1520-0493(1998)126<1397:TOCMGE>2.0.CO;2,
1998a. a
Côté, J., Gravel, S., Méthot, A., Patoine, A., Roch, M., and
Staniforth, A.: The Operational CMC-MRB Global Environmental Multiscale (GEM)
Model. Part I: Design Considerations and Formulation, Mon. Weather Rev.,
126, 1373–1395, https://doi.org/10.1175/1520-0493(1998)126<1373:TOCMGE>2.0.CO;2,
1998b. a
Cui, X., Wang, X., Yang, L., Chen, B., Chen, J., Andersson, A., and Gustafsson,
O.: Radiative absorption enhancement from coatings on black carbon aerosols,
Sci. Total Environ., 551/552, 51–56,
https://doi.org/10.1016/j.scitotenv.2016.02.026, 2016. a
Dalirian, M., Ylisirniö, A., Buchholz, A., Schlesinger, D., Ström, J.,
Virtanen, A., and Riipinen, I.: Cloud droplet activation of black carbon
particles coated with organic compounds of varying solubility, Atmos. Chem. Phys., 18, 12477–12489, https://doi.org/10.5194/acp-18-12477-2018,
2018. a
Elleman, R. A. and Covert, D. S.: Aerosol size distribution modeling with the
Community Multiscale Air Quality modeling system in the Pacific
Northwest: 1. Model comparison to observations, J. Geophys. Res., 114, D11206, https://doi.org/10.1029/2008JD010791, 2009. a, b
Emmons, L. K., Walters, S., Hess, P. G., Lamarque, J.-F., Pfister, G. G.,
Fillmore, D., Granier, C., Guenther, A., Kinnison, D., Laepple, T., Orlando,
J., Tie, X., Tyndall, G., Wiedinmyer, C., Baughcum, S. L., and Kloster, S.:
Description and evaluation of the Model for Ozone and Related chemical
Tracers, version 4 (MOZART-4), Geosci. Model Dev., 3,
43–67, https://doi.org/10.5194/gmd-3-43-2010, 2010. a, b, c
Fung, C., Misra, P., Bloxam, R., and Wong, S.: A numerical experiment on the
relative importance of H2O2 O3 in aqueous conversion of SO2 to SO ,
Atmos. Environ. Pt. A, 25, 411–423,
https://doi.org/10.1016/0960-1686(91)90312-U, 1991. a
Galmarini, S., Makar, P., Clifton, O. E., Hogrefe, C., Bash, J. O., Bellasio,
R., Bianconi, R., Bieser, J., Butler, T., Ducker, J., Flemming, J., Hodzic,
A., Holmes, C. D., Kioutsioukis, I., Kranenburg, R., Lupascu, A.,
Perez-Camanyo, J. L., Pleim, J., Ryu, Y.-H., San Jose, R., Schwede, D.,
Silva, S., and Wolke, R.: Technical note: AQMEII4 Activity 1: evaluation
of wet and dry deposition schemes as an integral part of regional-scale air
quality models, Atmos. Chem. Phys., 21, 15663–15697,
https://doi.org/10.5194/acp-21-15663-2021, 2021. a, b
Gong, S. L.: A parameterization of sea-salt aerosol source function for sub-
and super-micron particles, Global Biogeochem. Cy., 17, 1097,
https://doi.org/10.1029/2003gb002079, 2003. a
Gong, S. L., Barrie, L. A., and Lazare, M.: Canadian Aerosol Module: A
size-segregated simulation of atmospheric aerosol processes for climate and
air quality models 1. Module development, J. Geophys. Res.,
108, 4007, https://doi.org/10.1029/2001JD002002, 2003. a, b
Gong, W., Dastoor, A. P., Bouchet, V. S., Gong, S., Makar, P. A., Moran, M. D.,
Pabla, B., Ménard, S., Crevier, L.-P., Cousineau, S., and Venkatesh, S.:
Cloud processing of gases and aerosols in a regional air quality model
(AURAMS), Atmos. Res., 82, 248–275,
https://doi.org/10.1016/j.atmosres.2005.10.012, 2006. a, b, c
Gong, W., Makar, P., Zhang, J., Milbrandt, J., Gravel, S., Hayden, K.,
Macdonald, A., and Leaitch, W.: Modelling aerosol–cloud–meteorology
interaction: A case study with a fully coupled air quality model
(GEM-MACH), Atmos. Environ., 115, 695–715,
https://doi.org/10.1016/j.atmosenv.2015.05.062, 2015. a, b, c, d
Han, X., Zhang, M., Zhu, L., and Xu, L.: Model analysis of influences of
aerosol mixing state upon its optical properties in East Asia, Adv. Atmos. Sci., 30, 1201–1212, https://doi.org/10.1007/s00376-012-2150-4,
2013. a
Hogrefe, C., Sistla, G., Zalewsky, E., Hao, W., and Ku, J.-Y.: An Assessment
of the Emissions Inventory Processing Systems EMS-2001 and SMOKE
in Grid-Based Air Quality Models, J. Air Waste
Manag. Assoc., 53, 1121–1129, https://doi.org/10.1080/10473289.2003.10466261,
2003. a
Houyoux, M. R., Vukovich, J. M., Coats, C. J., Wheeler, N. J. M., and
Kasibhatla, P. S.: Emission inventory development and processing for the
Seasonal Model for Regional Air Quality (SMRAQ) project, J. Geophys. Res.-Atmos., 105, 9079–9090,
https://doi.org/10.1029/1999JD900975, 2000. a
IMPROVE Network: Federal Land Manager Environmental Database [data set], http://vista.cira.colostate.edu/Improve/, last access: 3 March 2022. a
Kaiser, J. C., Hendricks, J., Righi, M., Riemer, N., Zaveri, R. A., Metzger,
S., and Aquila, V.: The MESSy aerosol submodel MADE3 (v2.0b):
Description and a box model test, Geosci. Model Dev., 7,
1137–1157, https://doi.org/10.5194/gmd-7-1137-2014, 2014. a, b
Kaiser, J. C., Hendricks, J., Righi, M., Jöckel, P., Tost, H., Kandler, K.,
Weinzierl, B., Sauer, D., Heimerl, K., Schwarz, J. P., Perring, A. E., and
Popp, T.: Global aerosol modeling with MADE3 (v3.0) in EMAC (based on
v2.53): model description and evaluation, Geosci. Model Dev.,
12, 541–579, https://doi.org/10.5194/gmd-12-541-2019, 2019. a, b
Khalizov, A. F., Xue, H., Wang, L., Zheng, J., and Zhang, R.: Enhanced Light
Absorption and Scattering by Carbon Soot Aerosol Internally
Mixed with Sulfuric Acid, J. Phys. Chem. A, 113,
1066–1074, https://doi.org/10.1021/jp807531n, 2009. a
Kim, N., Park, M., Yum, S. S., Park, J. S., Shin, H. J., and Ahn, J. Y.: Impact
of urban aerosol properties on cloud condensation nuclei (CCN) activity
during the KORUS-AQ field campaign, Atmos. Environ., 185,
221–236, https://doi.org/10.1016/j.atmosenv.2018.05.019, 2018. a
Klingmüller, K., Steil, B., Brühl, C., Tost, H., and Lelieveld, J.:
Sensitivity of aerosol radiative effects to different mixing assumptions in
the AEROPT 1.0 submodel of the EMAC atmospheric-chemistry–climate
model, Geosci. Model Dev., 7, 2503–2516,
https://doi.org/10.5194/gmd-7-2503-2014, 2014. a, b
Koehler, K. A., Kreidenweis, S. M., DeMott, P. J., Petters, M. D., Prenni,
A. J., and Carrico, C. M.: Hygroscopicity and cloud droplet activation of
mineral dust aerosol, Geophys. Res. Lett., 36, L08805,
https://doi.org/10.1029/2009GL037348, 2009. a
Kokkola, H., Korhonen, H., Lehtinen, K. E. J., Makkonen, R., Asmi, A.,
Järvenoja, S., Anttila, T., Partanen, A.-I., Kulmala, M., Järvinen, H.,
Laaksonen, A., and Kerminen, V.-M.: SALSA – a sectional aerosol module for
large scale applications, Atmos. Chem. Phys., 8, 2469–2483,
https://doi.org/10.5194/acp-8-2469-2008, 2008. a, b
Kokkola, H., Kühn, T., Laakso, A., Bergman, T., Lehtinen, K. E. J., Mielonen,
T., Arola, A., Stadtler, S., Korhonen, H., Ferrachat, S., Lohmann, U.,
Neubauer, D., Tegen, I., Siegenthaler-Le Drian, C., Schultz, M. G., Bey, I.,
Stier, P., Daskalakis, N., Heald, C. L., and Romakkaniemi, S.: SALSA2.0:
The sectional aerosol module of the aerosol–chemistry–climate model
ECHAM6.3.0-HAM2.3-MOZ1.0, Geosci. Model Dev., 11,
3833–3863, https://doi.org/10.5194/gmd-11-3833-2018, 2018. a, b
Kondo, Y., Matsui, H., Moteki, N., Sahu, L., Takegawa, N., Kajino, M., Zhao,
Y., Cubison, M. J., Jimenez, J. L., Vay, S., Diskin, G. S., Anderson, B.,
Wisthaler, A., Mikoviny, T., Fuelberg, H. E., Blake, D. R., Huey, G.,
Weinheimer, A. J., Knapp, D. J., and Brune, W. H.: Emissions of black carbon,
organic, and inorganic aerosols from biomass burning in North America and
Asia in 2008, J. Geophys. Res., 116, D08204,
https://doi.org/10.1029/2010JD015152, 2011. a, b, c
Lack, D. A., Langridge, J. M., Bahreini, R., Cappa, C. D., Middlebrook, A. M.,
and Schwarz, J. P.: Brown carbon and internal mixing in biomass burning
particles, P. Natl. Acad. Sci. USA, 109,
14802–14807, https://doi.org/10.1073/pnas.1206575109, 2012. a
Lauer, A., Hendricks, J., Ackermann, I., Schell, B., Hass, H., and Metzger, S.:
Simulating aerosol microphysics with the ECHAM/MADE GCM – Part I:
Model description and comparison with observations, Atmos. Chem. Phys., 5, 3251–3276, https://doi.org/10.5194/acp-5-3251-2005, 2005. a, b
Lee, L. a., Pringle, K. J., Reddington, C. L., Mann, G. W., Stier, P.,
Spracklen, D. V., Pierce, J. R., and Carslaw, K. S.: The magnitude and causes
of uncertainty in global model simulations of cloud condensation nuclei,
Atmos. Chem. Phys., 13, 8879–8914,
https://doi.org/10.5194/acp-13-8879-2013, 2013. a
Lesins, G., Chylek, P., and Lohmann, U.: A study of internal and external
mixing scenarios and its effect on aerosol optical properties and direct
radiative forcing, J. Geophys. Res.-Atmos., 107,
4094, https://doi.org/10.1029/2001jd000973, 2002. a
Liu, D., Whitehead, J., Alfarra, M. R., Reyes-Villegas, E., Spracklen, D. V.,
Reddington, C. L., Kong, S., Williams, P. I., Ting, Y.-C., Haslett, S.,
Taylor, J. W., Flynn, M. J., Morgan, W. T., McFiggans, G., Coe, H., and
Allan, J. D.: Black-carbon absorption enhancement in the atmosphere
determined by particle mixing state, Nat. Geosci., 10, 184–188,
https://doi.org/10.1038/ngeo2901, 2017. a
Liu, L. and Mishchenko, M.: Scattering and Radiative Properties of
Morphologically Complex Carbonaceous Aerosols: A Systematic
Modeling Study, Remote Sens., 10, 1634, https://doi.org/10.3390/rs10101634,
2018. a
Liu, S., Aiken, A. C., Gorkowski, K., Dubey, M. K., Cappa, C. D., Williams,
L. R., Herndon, S. C., Massoli, P., Fortner, E. C., Chhabra, P. S., Brooks,
W. A., Onasch, T. B., Jayne, J. T., Worsnop, D. R., China, S., Sharma, N.,
Mazzoleni, C., Xu, L., Ng, N. L., Liu, D., Allan, J. D., Lee, J. D., Fleming,
Z. L., Mohr, C., Zotter, P., Szidat, S., and Prévôt, A. S. H.: Enhanced
light absorption by mixed source black and brown carbon particles in UK
winter, Nat. Commun., 6, 8435, https://doi.org/10.1038/ncomms9435, 2015. a
Liu, X., Easter, R. C., Ghan, S. J., Zaveri, R., Rasch, P., Shi, X., Lamarque,
J. F., Gettelman, A., Morrison, H., Vitt, F., Conley, A., Park, S., Neale,
R., Hannay, C., Ekman, A. M. L., Hess, P., Mahowald, N., Collins, W., Iacono,
M. J., Bretherton, C. S., Flanner, M. G., and Mitchell, D.: Toward a minimal
representation of aerosols in climate models: description and evaluation in
the Community Atmosphere Model CAM5, Geosci. Model Dev.,
5, 709–739, https://doi.org/10.5194/gmd-5-709-2012, 2012. a, b, c, d, e
Liu, X., Ma, P.-L. L., Wang, H., Tilmes, S., Singh, B., Easter, R. C., Ghan,
S. J., and Rasch, P. J.: Description and evaluation of a new four-mode
version of the Modal Aerosol Module (MAM4) within version 5.3 of the
Community Atmosphere Model, Geosci. Model Dev., 9,
505–522, https://doi.org/10.5194/gmd-9-505-2016, 2016. a, b, c, d
Majdzadeh, M., Stroud, C. A., Sioris, C., Makar, P. A., Akingunola, A.,
McLinden, C., Zhao, X., Moran, M. D., Abboud, I., and Chen, J.: Development
of aerosol optical properties for improving the MESSy photolysis module in
the GEM-MACH v2.4 air quality model and application for calculating
photolysis rates in a biomass burning plume, Geosci. Model Dev.,
15, 219–249, https://doi.org/10.5194/gmd-15-219-2022, 2022. a, b, c
Makar, P., Bouchet, V., and Nenes, A.: Inorganic chemistry calculations using
HETV – a vectorized solver for the SO –NO3–NH4+ system
based on the ISORROPIA algorithms, Atmos. Environ., 37, 2279–2294,
https://doi.org/10.1016/S1352-2310(03)00074-8, 2003. a
Makar, P. A., Gong, W., Hogrefe, C., Zhang, Y., Curci, G., Žabkar, R.,
Milbrandt, J., Im, U., Balzarini, A., Baró, R., Bianconi, R., Cheung, P.,
Forkel, R., Gravel, S., Hirtl, M., Honzak, L., Hou, A., Jiménez-Guerrero,
P., Langer, M., Moran, M. D., Pabla, B., Pérez, J. L., Pirovano, G.,
San José, R., Tuccella, P., Werhahn, J., Zhang, J., Galmarini, S., Hogrefe,
C., Zhang, Y., Curci, G., Žabkar, R., Im, U., Balzarini, A., Baró, R.,
Bianconi, R., Cheung, P., Forkel, R., Gravel, S., Hirtl, M., Honzak, L., Hou,
A., Jiménez-Guerrero, P., Langer, M., Moran, M. D., Pabla, B., Pérez,
J. L., Pirovano, G., San José, R., Tuccella, P., Werhahn, J., Zhang, J.,
Galmarini, S., Milbrandt, J., Im, U., Balzarini, A., Baró, R., Bianconi, R.,
Cheung, P., Forkel, R., Gravel, S., Hirtl, M., Honzak, L., Hou, A.,
Jiménez-Guerrero, P., Langer, M., Moran, M. D., Pabla, B., Pérez, J. L.,
Pirovano, G., San José, R., Tuccella, P., Werhahn, J., Zhang, J., Galmarini,
S., Hogrefe, C., Zhang, Y., Curci, G., Žabkar, R., Im, U., Balzarini, A.,
Baró, R., Bianconi, R., Cheung, P., Forkel, R., Gravel, S., Hirtl, M.,
Honzak, L., Hou, A., Jiménez-Guerrero, P., Langer, M., Moran, M. D., Pabla,
B., Pérez, J. L., Pirovano, G., San José, R., Tuccella, P., Werhahn, J.,
Zhang, J., and Galmarini, S.: Feedbacks between air pollution and weather,
Part 1: Effects on weather, Atmos. Environ., 115, 442–469,
https://doi.org/10.1016/j.atmosenv.2014.12.003, 2015a. a
Makar, P. A., Gong, W., Hogrefe, C., Zhang, Y., Curci, G., Žabkar, R.,
Milbrandt, J., Im, U., Balzarini, A., Baró, R., Bianconi, R., Cheung, P.,
Forkel, R., Gravel, S., Hirtl, M., Honzak, L., Hou, A., Jiménez-Guerrero,
P., Langer, M., Moran, M. D., Pabla, B., Pérez, J. L., Pirovano, G.,
San José, R., Tuccella, P., Werhahn, J., Zhang, J., Galmarini, S., Hogrefe,
C., Zhang, Y., Curci, G., Žabkar, R., Im, U., Balzarini, A., Baró, R.,
Bianconi, R., Cheung, P., Forkel, R., Gravel, S., Hirtl, M., Honzak, L., Hou,
A., Jiménez-Guerrero, P., Langer, M., Moran, M. D., Pabla, B., Pérez,
J. L., Pirovano, G., San José, R., Tuccella, P., Werhahn, J., Zhang, J.,
Galmarini, S., Milbrandt, J., Im, U., Balzarini, A., Baró, R., Bianconi, R.,
Cheung, P., Forkel, R., Gravel, S., Hirtl, M., Honzak, L., Hou, A.,
Jiménez-Guerrero, P., Langer, M., Moran, M. D., Pabla, B., Pérez, J. L.,
Pirovano, G., San José, R., Tuccella, P., Werhahn, J., Zhang, J., Galmarini,
S., Hogrefe, C., Zhang, Y., Curci, G., Žabkar, R., Im, U., Balzarini, A.,
Baró, R., Bianconi, R., Cheung, P., Forkel, R., Gravel, S., Hirtl, M.,
Honzak, L., Hou, A., Jiménez-Guerrero, P., Langer, M., Moran, M. D., Pabla,
B., Pérez, J. L., Pirovano, G., San José, R., Tuccella, P., Werhahn, J.,
Zhang, J., and Galmarini, S.: Feedbacks between air pollution and weather,
part 2: Effects on chemistry, Atmos. Environ., 115, 442–469,
https://doi.org/10.1016/j.atmosenv.2014.10.021, 2015b. a
Manktelow, P. T., Carslaw, K. S., Mann, G. W., and Spracklen, D. V.: The impact
of dust on sulfate aerosol, CN and CCN during an East Asian dust
storm, Atmos. Chem. Phys., 10, 365–382,
https://doi.org/10.5194/acp-10-365-2010, 2010. a, b
Mann, G. W., Carslaw, K. S., Spracklen, D. V., Ridley, D. A., Manktelow, P. T.,
Chipperfield, M. P., Pickering, S. J., and Johnson, C. E.: Description and
evaluation of GLOMAP-mode: a modal global aerosol microphysics model for
the UKCA composition-climate model, Geosci. Model Dev., 3,
519–551, https://doi.org/10.5194/gmd-3-519-2010, 2010. a, b
Matsui, H.: Development of a global aerosol model using a two-dimensional
sectional method: 1. Model design, J. Adv. Model. Earth
Syst., 9, 1921–1947, https://doi.org/10.1002/2017ms000936, 2017. a, b
Matsui, H., Koike, M., Kondo, Y., Moteki, N., Fast, J. D., and Zaveri, R. A.:
Development and validation of a black carbon mixing state resolved
three-dimensional model: Aging processes and radiative impact, J. Geophys. Res.-Atmos., 118, 2304–2326,
https://doi.org/10.1029/2012JD018446, 2013. a
Matsui, H., Koike, M., Kondo, Y., Fast, J. D., and Takigawa, M.: Development of
an aerosol microphysical module: Aerosol Two-dimensional bin module for
foRmation and Aging Simulation (ATRAS), Atmos. Chem. Phys., 14, 10315–10331, https://doi.org/10.5194/acp-14-10315-2014, 2014. a, b, c
McFiggans, G., Artaxo, P., Baltensperger, U., Coe, H., Facchini, M. C.,
Feingold, G., Fuzzi, S., Gysel, M., Laaksonen, A., Lohmann, U., Mentel,
T. F., Murphy, D. M., O'Dowd, C. D., Snider, J. R., and Weingartner, E.: The
effect of physical and chemical aerosol properties on warm cloud droplet
activation, Atmos. Chem. Phys., 6, 2593–2649,
https://doi.org/10.5194/acp-6-2593-2006, 2006. a
Menut, L., Bessagnet, B., Khvorostyanov, D., Beekmann, M., Blond, N., Colette,
A., Coll, I., Curci, G., Foret, G., Hodzic, A., Mailler, S., Meleux, F.,
Monge, J.-L., Pison, I., Siour, G., Turquety, S., Valari, M., Vautard, R.,
and Vivanco, M. G.: CHIMERE 2013: a model for regional atmospheric
composition modelling, Geosci. Model Dev., 6, 981–1028,
https://doi.org/10.5194/gmd-6-981-2013, 2013. a, b
Moran, M. D., Ménard, S., Talbot, D., Huang, P., Makar, P. A., Gong, W.,
Landry, H., Gravel, S., Gong, S., Crevier, L.-P., Kallaur, A., and Sassi, M.:
Particulate-matter forecasting with GEM-MACH15, a new Canadian
air-quality forecast model, in: Air pollution modelling and its application
XX, 289–292, Springer, Dordrecht, https://doi.org/10.1007/978-90-481-3812-8, 2010. a, b, c
Moran, M. D., Makar, P. A., Ménard, S., Pavlovic, R., Sassi, M., Beaulieu,
P.-A., Anselmo, D., Mooney, C. J., Gong, W., Stroud, C., Gong, S., and Zhang,
J.: Improvements to Wintertime Particulate-Matter Forecasting With
GEM-MACH15, NATO Science for Peace and Security Series C:
Environmental Security, 591–597, Springer Netherlands, Dordrecht,
https://doi.org/10.1007/978-94-007-1359-8_98, 2012. a, b
Oshima, N., Koike, M., Zhang, Y., and Kondo, Y.: Aging of black carbon in
outflow from anthropogenic sources using a mixing state resolved model: 2.
Aerosol optical properties and cloud condensation nuclei activities,
J. Geophys. Res., 114, D18202, https://doi.org/10.1029/2008jd011681,
2009a. a, b
Oshima, N., Koike, M., Zhang, Y., Kondo, Y., Moteki, N., Takegawa, N., and
Miyazaki, Y.: Aging of black carbon in outflow from anthropogenic sources
using a mixing state resolved model: Model development and evaluation,
J. Geophys. Res., 114, D06210, https://doi.org/10.1029/2008jd010680,
2009b. a, b
Peng, J., Hu, M., Guo, S., Du, Z., Zheng, J., Shang, D., Levy Zamora, M., Zeng,
L., Shao, M., Wu, Y.-S., Zheng, J., Wang, Y., Glen, C. R., Collins, D. R.,
Molina, M. J., and Zhang, R.: Markedly enhanced absorption and direct
radiative forcing of black carbon under polluted urban environments,
P. Natl. Acad. Sci. USA, 113, 4266–4271,
https://doi.org/10.1073/pnas.1602310113, 2016. a, b
Perring, A. E., Schwarz, J. P., Markovic, M. Z., Fahey, D. W., Jimenez, J. L.,
Campuzano-Jost, P., Palm, B. D., Wisthaler, A., Mikoviny, T., Diskin, G.,
Sachse, G., Ziemba, L., Anderson, B., Shingler, T., Crosbie, E., Sorooshian,
A., Yokelson, R., and Gao, R.-S.: In situ measurements of water uptake by
black carbon-containing aerosol in wildfire plumes: WATER UPTAKE BY
BC IN WILDFIRE PLUMES, J. Geophys. Res.-Atmos.,
122, 1086–1097, https://doi.org/10.1002/2016JD025688, 2017. a, b, c
Petters, M. D. and Kreidenweis, S. M.: A single parameter representation of
hygroscopic growth and cloud condensation nucleus activity, Atmos. Chem. Phys., 7, 1961–1971, https://doi.org/10.5194/acp-7-1961-2007, 2007. a, b
Pitchford, M., Malm, W., Schichtel, B., Kumar, N., Lowenthal, D., and Hand, J.:
Revised Algorithm for Estimating Light Extinction from IMPROVE
Particle Speciation Data, J. Air Waste Manag.
Assoc., 57, 1326–1336, https://doi.org/10.3155/1047-3289.57.11.1326, 2007. a
Pringle, K. J., Tost, H., Message, S., Steil, B., Giannadaki, D., Nenes, A.,
Fountoukis, C., Stier, P., Vignati, E., and Lelieveld, J.: Description and
evaluation of GMXe: a new aerosol submodel for global simulations (v1),
Geosci. Model Dev., 3, 391–412, https://doi.org/10.5194/gmd-3-391-2010,
2010. a, b
Reff, A., Bhave, P. V., Simon, H., Pace, T. G., Pouliot, G. A., Mobley, J. D.,
and Houyoux, M.: Emissions Inventory of PM 2.5 Trace
Elements across the United States, Environ. Sci. Technol.,
43, 5790–5796, https://doi.org/10.1021/es802930x, 2009. a
Regayre, L. A., Johnson, J. S., Yoshioka, M., Pringle, K. J., Sexton, D. M. H.,
Booth, B. B. B., Lee, L. A., Bellouin, N., and Carslaw, K. S.: Aerosol and
physical atmosphere model parameters are both important sources of
uncertainty in aerosol ERF, Atmos. Chem. Phys., 18,
9975–10006, https://doi.org/10.5194/acp-18-9975-2018, 2018. a
Riemer, N., Vogel, H., Vogel, B., and Fiedler, F.: Modeling aerosols on the
mesoscale-γ: Treatment of soot aerosol and its radiative effects, J. Geophys. Res., 108, 4601, https://doi.org/10.1029/2003jd003448, 2003. a, b
Riemer, N., West, M., Zaveri, R. A., and Easter, R. C.: Simulating the
evolution of soot mixing state with a particle-resolved aerosol model,
J. Geophys. Res., 114, D09202, https://doi.org/10.1029/2008jd011073, 2009. a, b
Riemer, N., Ault, A. P., West, M., Craig, R. L., and Curtis, J. H.: Aerosol
Mixing State: Measurements, Modeling, and Impacts, Rev.
Geophys., 57, 187–249, https://doi.org/10.1029/2018RG000615, 2019. a
Schnaiter, M., Linke, C., Möhler, O., Naumann, K.-H., Saathoff, H., Wagner,
R., Schurath, U., and Wehner, B.: Absorption amplification of black carbon
internally mixed with secondary organic aerosol, J. Geophys. Res., 110, D19204, https://doi.org/10.1029/2005jd006046, 2005. a, b
Sharma, S., Leaitch, W. R., Huang, L., Veber, D., Kolonjari, F., Zhang, W.,
Hanna, S. J., Bertram, A. K., and Ogren, J. A.: An evaluation of three
methods for measuring black carbon in Alert, Canada, Atmos. Chem. Phys., 17, 15225–15243, https://doi.org/10.5194/acp-17-15225-2017,
2017. a
Spracklen, D. V., Pringle, K. J., Carslaw, K. S., Chipperfield, M. P., and Mann, G. W.: A global off-line model of size-resolved aerosol microphysics: II. Identification of key uncertainties, Atmos. Chem. Phys., 5, 3233–3250, https://doi.org/10.5194/acp-5-3233-2005, 2005. a, b
Spracklen, D. V., Carslaw, K. S., Pöschl, U., Rap, A., and Forster, P. M.:
Global cloud condensation nuclei influenced by carbonaceous combustion
aerosol, Atmos. Chem. Phys., 11, 9067–9087,
https://doi.org/10.5194/acp-11-9067-2011, 2011. a, b
Stevens, R. and Dastoor, A.: A Review of the Representation of Aerosol
Mixing State in Atmospheric Models, Atmosphere, 10, 168,
https://doi.org/10.3390/atmos10040168, 2019. a, b, c
Stieb, D. M., Burnett, R. T., Smith-Doiron, M., Brion, O., Shin, H. H., and
Economou, V.: A New Multipollutant, No-Threshold Air Quality
Health Index Based on Short-Term Associations Observed in
Daily Time-Series Analyses, J. Air Waste Manag.
Assoc., 58, 435–450, https://doi.org/10.3155/1047-3289.58.3.435, 2008. a
Stier, P., Feichter, J., Kinne, S., Kloster, S., Vignati, E., Wilson, J.,
Ganzeveld, L., Tegen, I., Werner, M., Balkanski, Y., Schulz, M., Boucher, O.,
Minikin, A., and Petzold, A.: The aerosol-climate model ECHAM5-HAM,
Atmos. Chem. Phys., 5, 1125–1156,
https://doi.org/10.5194/acp-5-1125-2005, 2005. a, b
Tonttila, J., Maalick, Z., Raatikainen, T., Kokkola, H., Kühn, T., and
Romakkaniemi, S.: UCLALES–SALSA v1.0: a large-eddy model with
interactive sectional microphysics for aerosol, clouds and precipitation,
Geosci. Model Dev., 10, 169–188, https://doi.org/10.5194/gmd-10-169-2017,
2017. a, b
US EPA Office of Research and Development: CMAQ, https://doi.org/10.5281/zenodo.1167892, 30 June 2017. a, b
US EPA: Air Quality System (AQS) [data set], https://www.epa.gov/aqs, last access: 3 March 2022. a
Venkatram, A., Karamchandani, P., and Misra, P.: Testing a comprehensive acid
deposition model, Atmos. Environ., 22, 737–747,
https://doi.org/10.1016/0004-6981(88)90011-X, 1988. a
Vignati, E., Wilson, J., and Stier, P.: M7: An efficient size-resolved
aerosol microphysics module for large-scale aerosol transport models, J. Geophys. Res.-Atmos., 109, D22202, https://doi.org/10.1029/2003jd004485,
2004. a, b
Vignati, E., Karl, M., Krol, M., Wilson, J., Stier, P., and Cavalli, F.:
Sources of uncertainties in modelling black carbon at the global scale,
Atmos. Chem. Phys., 10, 2595–2611,
https://doi.org/10.5194/acp-10-2595-2010, 2010. a, b
Vogel, B., Vogel, H., Bäumer, D., Bangert, M., Lundgren, K., Rinke, R., and
Stanelle, T.: The comprehensive model system COSMO-ART – Radiative
impact of aerosol on the state of the atmosphere on the regional scale,
Atmos. Chem. Phys., 9, 8661–8680,
https://doi.org/10.5194/acp-9-8661-2009, 2009. a, b
Wang, Q., Huang, R. J., Cao, J., Han, Y., Wang, G., Li, G., Wang, Y., Dai, W.,
Zhang, R., and Zhou, Y.: Mixing State of Black Carbon Aerosol in a
Heavily Polluted Urban Area of China: Implications for Light
Absorption Enhancement, Aerosol Sci. Technol., 48, 689–697,
https://doi.org/10.1080/02786826.2014.917758, 2014a. a
Wang, X., Heald, C. L., Ridley, D. A., Schwarz, J. P., Spackman, J. R.,
Perring, A. E., Coe, H., Liu, D., and Clarke, A. D.: Exploiting simultaneous
observational constraints on mass and absorption to estimate the global
direct radiative forcing of black carbon and brown carbon, Atmos. Chem. Phys., 14, 10989–11010, https://doi.org/10.5194/acp-14-10989-2014,
2014b. a, b
Wang, X., Heald, C. L., Liu, J., Weber, R. J., Campuzano-Jost, P., Jimenez,
J. L., Schwarz, J. P., and Perring, A. E.: Exploring the observational
constraints on the simulation of brown carbon, Atmos. Chem. Phys., 18, 635–653, https://doi.org/10.5194/acp-18-635-2018, 2018. a, b
Willis, M. D., Healy, R. M., Riemer, N., West, M., Wang, J. M., Jeong, C.-H.,
Wenger, J. C., Evans, G. J., Abbatt, J. P. D., and Lee, A. K. Y.:
Quantification of black carbon mixing state from traffic: implications for
aerosol optical properties, Atmos. Chem. Phys., 16,
4693–4706, https://doi.org/10.5194/acp-16-4693-2016, 2016. a
Wilson, J., Cuvelier, C., and Raes, F.: A modeling study of global mixed
aerosol fields, J. Geophys. Res.-Atmos., 106,
34081–34108, https://doi.org/10.1029/2000jd000198, 2001. a, b
Xu, X., Zhao, W., Qian, X., Wang, S., Fang, B., Zhang, Q., Zhang, W., Venables,
D. S., Chen, W., Huang, Y., Deng, X., Wu, B., Lin, X., Zhao, S., and Tong,
Y.: The influence of photochemical aging on light absorption of atmospheric
black carbon and aerosol single-scattering albedo, Atmos. Chem.
Phys., 18, 16829–16844, https://doi.org/10.5194/acp-18-16829-2018, 2018. a
Yao, Y., Curtis, J. H., Ching, J., Zheng, Z., and Riemer, N.: Quantifying the
effects of mixing state on aerosol optical properties, Atmos. Chem. Phys., 22, 9265–9282, https://doi.org/10.5194/acp-22-9265-2022, 2022. a
Zanatta, M., Laj, P., Gysel, M., Baltensperger, U., Vratolis, S.,
Eleftheriadis, K., Kondo, Y., Dubuisson, P., Winiarek, V., Kazadzis, S.,
Tunved, P., and Jacobi, H.-W.: Effects of mixing state on optical and
radiative properties of black carbon in the European Arctic, Atmos. Chem. Phys., 18, 14037–14057, https://doi.org/10.5194/acp-18-14037-2018,
2018. a, b
Zaveri, R. A., Barnard, J. C., Easter, R. C., Riemer, N., and West, M.:
Particle-resolved simulation of aerosol size, composition, mixing state, and
the associated optical and cloud condensation nuclei activation properties in
an evolving urban plume, J. Geophys. Res., 115, D17210,
https://doi.org/10.1029/2009jd013616, 2010. a, b, c
Zhang, J., Moran, M. D., Zheng, Q., Makar, P. A., Baratzadeh, P., Marson, G.,
Liu, P., and Li, S.-M.: Emissions preparation and analysis for multiscale air
quality modeling over the Athabasca Oil Sands Region of Alberta,
Canada, Atmos. Chem. Phys., 18, 10459–10481,
https://doi.org/10.5194/acp-18-10459-2018, 2018. a
Zhang, K., O'Donnell, D., Kazil, J., Stier, P., Kinne, S., Lohmann, U.,
Ferrachat, S., Croft, B., Quaas, J., Wan, H., Rast, S., and Feichter, J.: The
global aerosol-climate model ECHAM-HAM, version 2: sensitivity to
improvements in process representations, Atmos. Chem. Phys.,
12, 8911–8949, https://doi.org/10.5194/acp-12-8911-2012, 2012. a, b
Zhang, R., Khalizov, A. F., Pagels, J., Zhang, D., Xue, H., and McMurry, P. H.:
Variability in morphology, hygroscopicity, and optical properties of soot
aerosols during atmospheric processing, P. Natl. Acad. Sci. USA, 105, 10291–10296, https://doi.org/10.1073/pnas.0804860105, 2008.
a
Zhang, Y., Favez, O., Canonaco, F., Liu, D., Močnik, G., Amodeo, T., Sciare,
J., Prévôt, A. S. H., Gros, V., and Albinet, A.: Evidence of major
secondary organic aerosol contribution to lensing effect black carbon
absorption enhancement, npj Clim. Atmos. Sci., 1, 47,
https://doi.org/10.1038/s41612-018-0056-2, 2018. a
Zieger, P., Väisänen, O., Corbin, J. C., Partridge, D. G., Bastelberger, S.,
Mousavi-Fard, M., Rosati, B., Gysel, M., Krieger, U. K., Leck, C., Nenes, A.,
Riipinen, I., Virtanen, A., and Salter, M. E.: Revising the hygroscopicity of
inorganic sea salt particles, Nat. Commun., 8, 15883,
https://doi.org/10.1038/ncomms15883, 2017. a
Short summary
Absorbing particles like black carbon can be coated with other matter. How much radiation these particles absorb depends on the coating thickness. The removal of these particles by clouds and rain depends on the coating composition. These effects are important for both climate and air quality. We implement a more detailed representation of these particles in an air quality model which accounts for both coating thickness and composition. We find a significant effect on particle concentrations.
Absorbing particles like black carbon can be coated with other matter. How much radiation these...
Altmetrics
Final-revised paper
Preprint