Articles | Volume 22, issue 17
https://doi.org/10.5194/acp-22-11631-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-11631-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Springtime nitrogen oxides and tropospheric ozone in Svalbard: results from the measurement station network
Alena Dekhtyareva
CORRESPONDING AUTHOR
Geophysical Institute, Faculty of Mathematics and Natural Sciences, University of Bergen, P.O. Box 7803, 5020, Bergen, Norway
Bjerknes Centre for Climate Research, Jahnebakken 5, 5007, Bergen, Norway
Department of Automation and Process Engineering, Faculty of Engineering Science and Technology, UiT The Arctic University of Norway, P.O. Box 6050 Langnes, 9037, Tromsø, Norway
Mark Hermanson
Hermanson and Associates LLC, 200 W 53rd str., Minneapolis, MN 55419, USA
Anna Nikulina
Russian Arctic Scientific Expedition on Spitsbergen, Arctic and Antarctic Research Institute, Beringa str., 38, St. Petersburg, 199397, Russia
Ove Hermansen
Department of Monitoring and Information Technology, NILU – Norwegian Institute for Air Research, Instituttveien 18, 2007, Kjeller, Norway
Tove Svendby
Department of Atmosphere and Climate, NILU – Norwegian Institute for Air Research, Instituttveien 18, 2007, Kjeller, Norway
Kim Holmén
International director, Norwegian Polar Institute, P.O. Box 505, 9171, Longyearbyen, Norway
Department of Physics and Technology, Faculty of Science and Technology, UiT The Arctic University of Norway, P.O. Box 6050 Langnes, 9037, Tromsø, Norway
Rune Grand Graversen
Department of Physics and Technology, Faculty of Science and Technology, UiT The Arctic University of Norway, P.O. Box 6050 Langnes, 9037, Tromsø, Norway
Norwegian Meteorological Institute, Kirkegårdsvegen 60, 9239, Tromsø, Norway
Related authors
Andrew W. Seidl, Aina Johannessen, Alena Dekhtyareva, Jannis M. Huss, Marius O. Jonassen, Alexander Schulz, Ove Hermansen, Christoph K. Thomas, and Harald Sodemann
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-293, https://doi.org/10.5194/essd-2024-293, 2024
Revised manuscript under review for ESSD
Short summary
Short summary
ISLAS2020 set out to measure the stable water isotopic composition of Arctic moisture. By not only measuring at different sites around Ny-Ålesund, Svalbard, but also measuring at variable heights above surface level, we aim to characterize processes that produce or modify the isotopic composition. We also collect precipitation samples from sites that were typically downstream of Ny-Ålesund, so as to capture the isotopic composition during removal from the atmospheric water cycle.
Harald Sodemann, Alena Dekhtyareva, Alvaro Fernandez, Andrew Seidl, and Jenny Maccali
Atmos. Meas. Tech., 16, 5181–5203, https://doi.org/10.5194/amt-16-5181-2023, https://doi.org/10.5194/amt-16-5181-2023, 2023
Short summary
Short summary
We describe a device that allows one to produce a continuous stream of water vapour with a specified level of humidity. As a main innovation, we can mix waters with different water isotope composition. Through a series of tests we show that the performance characteristics of the device are in line with specifications. We present two laboratory applications where the device proves useful, first in characterizing instruments, and second for the analysis of water contained in stalagmites.
Tatiana Drotikova, Alena Dekhtyareva, Roland Kallenborn, and Alexandre Albinet
Atmos. Chem. Phys., 21, 14351–14370, https://doi.org/10.5194/acp-21-14351-2021, https://doi.org/10.5194/acp-21-14351-2021, 2021
Short summary
Short summary
A total of 86 polycyclic aromatic compounds (PACs), toxic compounds mainly emitted after fossil fuel combustion, were measured during 8 months in the urban air of Longyearbyen (78° N, 15° E), the most populated settlement in Svalbard. Contrary to a stereotype of pristine Arctic conditions with very low human activity, considerable PAC concentrations were detected, with spring levels comparable to European levels. Air pollution was caused by local snowmobiles in spring and shipping in summer.
David Tichopád, Kamil Láska, Tove Svendby, Klára Čížková, Andrea Pazmiño, Boyan Petkov, and Ladislav Metelka
EGUsphere, https://doi.org/10.5194/egusphere-2025-3963, https://doi.org/10.5194/egusphere-2025-3963, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This study examined changes in the total ozone column above three Antarctic stations in 2007–2023 using ground and satellite observations. Ozone changes were mainly influenced by stratospheric temperature and atmospheric circulation. A significant increase occurred at Marambio, and unusually warm conditions in September 2019 caused ozone to rise strongly over East Antarctica, improving understanding of how the ozone layer responds to environmental changes.
Morteza Babaei, Rune Grand Graversen, Johannes Patrick Stoll, and Jakub Petříček
EGUsphere, https://doi.org/10.5194/egusphere-2025-3867, https://doi.org/10.5194/egusphere-2025-3867, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
Extreme weather events have historically caused major challenges for humanity. Yet, our understanding of the mechanisms that contribute to their formation remains unclear. Our study provides evidence that locally amplified and slow-moving planetary waves are responsible for the formation of extreme cold spells. These findings are obtained based on two novel metrics assessing the amplitude and speed of ridges and troughs separately at all longitudes around latitude circles.
Valerio Lembo, Gabriele Messori, Davide Faranda, Vera Melinda Galfi, Rune Grand Graversen, and Flavio Emanuele Pons
EGUsphere, https://doi.org/10.5194/egusphere-2025-2189, https://doi.org/10.5194/egusphere-2025-2189, 2025
Short summary
Short summary
Hemispheric heatwaves have fundamental implications for ecosystems and societies. They are studied together with the large-scale atmospheric dynamics, through the lens of the poleward heat transports by planetary-scale waves. Extremely weak transports of heat towards the Poles are found to be associated with hemispheric heatwaves in the Northern Hemisphere mid-latitudes. Therefore, we conclude that heat transports are a clear indicator, and possibly a precursor of hemispehric heatwaves.
Kai-Uwe Eiselt and Rune Grand Graversen
The Cryosphere, 19, 1849–1871, https://doi.org/10.5194/tc-19-1849-2025, https://doi.org/10.5194/tc-19-1849-2025, 2025
Short summary
Short summary
In this study we optimise and train a random forest model to predict avalanche danger in northern Norway based on meteorological reanalysis data. The model performance is at the low end compared to recent similar studies. A hindcast of the frequency of avalanche days (based on the avalanche-danger level) is performed from 1970 to 2024, and a correlation is found with the Arctic Oscillation. This has potential implications for longer-term avalanche predictability.
Colin G. Jones, Fanny Adloff, Ben B. B. Booth, Peter M. Cox, Veronika Eyring, Pierre Friedlingstein, Katja Frieler, Helene T. Hewitt, Hazel A. Jeffery, Sylvie Joussaume, Torben Koenigk, Bryan N. Lawrence, Eleanor O'Rourke, Malcolm J. Roberts, Benjamin M. Sanderson, Roland Séférian, Samuel Somot, Pier Luigi Vidale, Detlef van Vuuren, Mario Acosta, Mats Bentsen, Raffaele Bernardello, Richard Betts, Ed Blockley, Julien Boé, Tom Bracegirdle, Pascale Braconnot, Victor Brovkin, Carlo Buontempo, Francisco Doblas-Reyes, Markus Donat, Italo Epicoco, Pete Falloon, Sandro Fiore, Thomas Frölicher, Neven S. Fučkar, Matthew J. Gidden, Helge F. Goessling, Rune Grand Graversen, Silvio Gualdi, José M. Gutiérrez, Tatiana Ilyina, Daniela Jacob, Chris D. Jones, Martin Juckes, Elizabeth Kendon, Erik Kjellström, Reto Knutti, Jason Lowe, Matthew Mizielinski, Paola Nassisi, Michael Obersteiner, Pierre Regnier, Romain Roehrig, David Salas y Mélia, Carl-Friedrich Schleussner, Michael Schulz, Enrico Scoccimarro, Laurent Terray, Hannes Thiemann, Richard A. Wood, Shuting Yang, and Sönke Zaehle
Earth Syst. Dynam., 15, 1319–1351, https://doi.org/10.5194/esd-15-1319-2024, https://doi.org/10.5194/esd-15-1319-2024, 2024
Short summary
Short summary
We propose a number of priority areas for the international climate research community to address over the coming decade. Advances in these areas will both increase our understanding of past and future Earth system change, including the societal and environmental impacts of this change, and deliver significantly improved scientific support to international climate policy, such as future IPCC assessments and the UNFCCC Global Stocktake.
Andrew W. Seidl, Aina Johannessen, Alena Dekhtyareva, Jannis M. Huss, Marius O. Jonassen, Alexander Schulz, Ove Hermansen, Christoph K. Thomas, and Harald Sodemann
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-293, https://doi.org/10.5194/essd-2024-293, 2024
Revised manuscript under review for ESSD
Short summary
Short summary
ISLAS2020 set out to measure the stable water isotopic composition of Arctic moisture. By not only measuring at different sites around Ny-Ålesund, Svalbard, but also measuring at variable heights above surface level, we aim to characterize processes that produce or modify the isotopic composition. We also collect precipitation samples from sites that were typically downstream of Ny-Ålesund, so as to capture the isotopic composition during removal from the atmospheric water cycle.
Hanne H. Christiansen, Ilkka S. O. Matero, Lisa Baddeley, Kim Holmén, Clara J. M. Hoppe, Maarten J. J. E. Loonen, Rune Storvold, Vito Vitale, Agata Zaborska, and Heikki Lihavainen
Earth Syst. Dynam., 15, 933–946, https://doi.org/10.5194/esd-15-933-2024, https://doi.org/10.5194/esd-15-933-2024, 2024
Short summary
Short summary
We provide an overview of the state and future of Earth system science in Svalbard as a synthesis of the recommendations made by the scientific community active in the archipelago. This work helped identify foci for developments of the observing system and a path forward to reach the full interdisciplinarity needed to operate at Earth system science scale. Better understanding of the processes in Svalbard will benefit both process-level understanding and Earth system models.
Harald Sodemann, Alena Dekhtyareva, Alvaro Fernandez, Andrew Seidl, and Jenny Maccali
Atmos. Meas. Tech., 16, 5181–5203, https://doi.org/10.5194/amt-16-5181-2023, https://doi.org/10.5194/amt-16-5181-2023, 2023
Short summary
Short summary
We describe a device that allows one to produce a continuous stream of water vapour with a specified level of humidity. As a main innovation, we can mix waters with different water isotope composition. Through a series of tests we show that the performance characteristics of the device are in line with specifications. We present two laboratory applications where the device proves useful, first in characterizing instruments, and second for the analysis of water contained in stalagmites.
Leonie Bernet, Tove Svendby, Georg Hansen, Yvan Orsolini, Arne Dahlback, Florence Goutail, Andrea Pazmiño, Boyan Petkov, and Arve Kylling
Atmos. Chem. Phys., 23, 4165–4184, https://doi.org/10.5194/acp-23-4165-2023, https://doi.org/10.5194/acp-23-4165-2023, 2023
Short summary
Short summary
After the severe destruction of the ozone layer, the amount of ozone in the stratosphere is expected to increase again. At northern high latitudes, however, such a recovery has not been detected yet. To assess ozone changes in that region, we analyse the amount of ozone above specific locations (total ozone) measured at three stations in Norway. We found that total ozone increases significantly at two Arctic stations, which may be an indication of ozone recovery at northern high latitudes.
Patrick Johannes Stoll, Rune Grand Graversen, and Gabriele Messori
Weather Clim. Dynam., 4, 1–17, https://doi.org/10.5194/wcd-4-1-2023, https://doi.org/10.5194/wcd-4-1-2023, 2023
Short summary
Short summary
The atmosphere is in motion and hereby transporting warm, cold, moist, and dry air to different climate zones. In this study, we investigate how this transport of energy organises in different manners. Outside the tropics, atmospheric waves of sizes between 2000 and 8000 km, which we perceive as cyclones from the surface, transport most of the energy and moisture poleward. In the winter, large-scale weather situations become very important for transporting energy into the polar regions.
Valerio Lembo, Federico Fabiano, Vera Melinda Galfi, Rune Grand Graversen, Valerio Lucarini, and Gabriele Messori
Weather Clim. Dynam., 3, 1037–1062, https://doi.org/10.5194/wcd-3-1037-2022, https://doi.org/10.5194/wcd-3-1037-2022, 2022
Short summary
Short summary
Eddies in mid-latitudes characterize the exchange of heat between the tropics and the poles. This exchange is largely uneven, with a few extreme events bearing most of the heat transported across latitudes in a season. It is thus important to understand what the dynamical mechanisms are behind these events. Here, we identify recurrent weather regime patterns associated with extreme transports, and we identify scales of mid-latitudinal eddies that are mostly responsible for the transport.
Stephen M. Platt, Øystein Hov, Torunn Berg, Knut Breivik, Sabine Eckhardt, Konstantinos Eleftheriadis, Nikolaos Evangeliou, Markus Fiebig, Rebecca Fisher, Georg Hansen, Hans-Christen Hansson, Jost Heintzenberg, Ove Hermansen, Dominic Heslin-Rees, Kim Holmén, Stephen Hudson, Roland Kallenborn, Radovan Krejci, Terje Krognes, Steinar Larssen, David Lowry, Cathrine Lund Myhre, Chris Lunder, Euan Nisbet, Pernilla B. Nizzetto, Ki-Tae Park, Christina A. Pedersen, Katrine Aspmo Pfaffhuber, Thomas Röckmann, Norbert Schmidbauer, Sverre Solberg, Andreas Stohl, Johan Ström, Tove Svendby, Peter Tunved, Kjersti Tørnkvist, Carina van der Veen, Stergios Vratolis, Young Jun Yoon, Karl Espen Yttri, Paul Zieger, Wenche Aas, and Kjetil Tørseth
Atmos. Chem. Phys., 22, 3321–3369, https://doi.org/10.5194/acp-22-3321-2022, https://doi.org/10.5194/acp-22-3321-2022, 2022
Short summary
Short summary
Here we detail the history of the Zeppelin Observatory, a unique global background site and one of only a few in the high Arctic. We present long-term time series of up to 30 years of atmospheric components and atmospheric transport phenomena. Many of these time series are important to our understanding of Arctic and global atmospheric composition change. Finally, we discuss the future of the Zeppelin Observatory and emerging areas of future research on the Arctic atmosphere.
Tatiana Drotikova, Alena Dekhtyareva, Roland Kallenborn, and Alexandre Albinet
Atmos. Chem. Phys., 21, 14351–14370, https://doi.org/10.5194/acp-21-14351-2021, https://doi.org/10.5194/acp-21-14351-2021, 2021
Short summary
Short summary
A total of 86 polycyclic aromatic compounds (PACs), toxic compounds mainly emitted after fossil fuel combustion, were measured during 8 months in the urban air of Longyearbyen (78° N, 15° E), the most populated settlement in Svalbard. Contrary to a stereotype of pristine Arctic conditions with very low human activity, considerable PAC concentrations were detected, with spring levels comparable to European levels. Air pollution was caused by local snowmobiles in spring and shipping in summer.
Panagiotis G. Kosmopoulos, Stelios Kazadzis, Alois W. Schmalwieser, Panagiotis I. Raptis, Kyriakoula Papachristopoulou, Ilias Fountoulakis, Akriti Masoom, Alkiviadis F. Bais, Julia Bilbao, Mario Blumthaler, Axel Kreuter, Anna Maria Siani, Kostas Eleftheratos, Chrysanthi Topaloglou, Julian Gröbner, Bjørn Johnsen, Tove M. Svendby, Jose Manuel Vilaplana, Lionel Doppler, Ann R. Webb, Marina Khazova, Hugo De Backer, Anu Heikkilä, Kaisa Lakkala, Janusz Jaroslawski, Charikleia Meleti, Henri Diémoz, Gregor Hülsen, Barbara Klotz, John Rimmer, and Charalampos Kontoes
Atmos. Meas. Tech., 14, 5657–5699, https://doi.org/10.5194/amt-14-5657-2021, https://doi.org/10.5194/amt-14-5657-2021, 2021
Short summary
Short summary
Large-scale retrievals of the ultraviolet index (UVI) in real time by exploiting the modern Earth observation data and techniques are capable of forming operational early warning systems that raise awareness among citizens of the health implications of high UVI doses. In this direction a novel UVI operating system, the so-called UVIOS, was introduced for massive outputs, while its performance was tested against ground-based measurements revealing a dependence on the input quality and resolution.
Tove M. Svendby, Bjørn Johnsen, Arve Kylling, Arne Dahlback, Germar H. Bernhard, Georg H. Hansen, Boyan Petkov, and Vito Vitale
Atmos. Chem. Phys., 21, 7881–7899, https://doi.org/10.5194/acp-21-7881-2021, https://doi.org/10.5194/acp-21-7881-2021, 2021
Short summary
Short summary
Measurements of total ozone and effective cloud transmittance (eCLT) have been performed since 1995 at three Norwegian sites with GUV multi-filter instruments. The unique data sets of high-time-resolution measurements can be used for a broad range of studies. Data analyses reveal an increase in total ozone above Norway from 1995 to 2019. Measurements of GUV eCLT indicate changes in albedo in Ny-Ålesund (Svalbard) during the past 25 years, most likely resulting from increased Arctic ice melt.
Patrick Johannes Stoll, Thomas Spengler, Annick Terpstra, and Rune Grand Graversen
Weather Clim. Dynam., 2, 19–36, https://doi.org/10.5194/wcd-2-19-2021, https://doi.org/10.5194/wcd-2-19-2021, 2021
Short summary
Short summary
Polar lows are intense meso-scale cyclones occurring at high latitudes. The research community has not agreed on a conceptual model to describe polar-low development. Here, we apply self-organising maps to identify the typical ambient sub-synoptic environments of polar lows and find that they can be described as moist-baroclinic cyclones that develop in four different environments characterised by the vertical wind shear.
Camille Yver-Kwok, Carole Philippon, Peter Bergamaschi, Tobias Biermann, Francescopiero Calzolari, Huilin Chen, Sebastien Conil, Paolo Cristofanelli, Marc Delmotte, Juha Hatakka, Michal Heliasz, Ove Hermansen, Kateřina Komínková, Dagmar Kubistin, Nicolas Kumps, Olivier Laurent, Tuomas Laurila, Irene Lehner, Janne Levula, Matthias Lindauer, Morgan Lopez, Ivan Mammarella, Giovanni Manca, Per Marklund, Jean-Marc Metzger, Meelis Mölder, Stephen M. Platt, Michel Ramonet, Leonard Rivier, Bert Scheeren, Mahesh Kumar Sha, Paul Smith, Martin Steinbacher, Gabriela Vítková, and Simon Wyss
Atmos. Meas. Tech., 14, 89–116, https://doi.org/10.5194/amt-14-89-2021, https://doi.org/10.5194/amt-14-89-2021, 2021
Short summary
Short summary
The Integrated Carbon Observation System (ICOS) is a pan-European research infrastructure which provides harmonized and high-precision scientific data on the carbon cycle and the greenhouse gas (GHG) budget. All stations have to undergo a rigorous assessment before being labeled, i.e., receiving approval to join the network. In this paper, we present the labeling process for the ICOS atmospheric network through the 23 stations that were labeled between November 2017 and November 2019.
Kaisa Lakkala, Jukka Kujanpää, Colette Brogniez, Nicolas Henriot, Antti Arola, Margit Aun, Frédérique Auriol, Alkiviadis F. Bais, Germar Bernhard, Veerle De Bock, Maxime Catalfamo, Christine Deroo, Henri Diémoz, Luca Egli, Jean-Baptiste Forestier, Ilias Fountoulakis, Katerina Garane, Rosa Delia Garcia, Julian Gröbner, Seppo Hassinen, Anu Heikkilä, Stuart Henderson, Gregor Hülsen, Bjørn Johnsen, Niilo Kalakoski, Angelos Karanikolas, Tomi Karppinen, Kevin Lamy, Sergio F. León-Luis, Anders V. Lindfors, Jean-Marc Metzger, Fanny Minvielle, Harel B. Muskatel, Thierry Portafaix, Alberto Redondas, Ricardo Sanchez, Anna Maria Siani, Tove Svendby, and Johanna Tamminen
Atmos. Meas. Tech., 13, 6999–7024, https://doi.org/10.5194/amt-13-6999-2020, https://doi.org/10.5194/amt-13-6999-2020, 2020
Short summary
Short summary
The TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor (S5P) satellite was launched on 13 October 2017 to provide the atmospheric composition for atmosphere and climate research. Ground-based data from 25 sites located in Arctic, subarctic, temperate, equatorial and Antarctic
areas were used for the validation of the TROPOMI surface ultraviolet (UV) radiation product. For most sites 60 %–80 % of TROPOMI data was within ± 20 % of ground-based data.
Cited articles
AC SAF: GOME-2 BrO Total Column Density Data Record Release 1 – Metop, AC SAF [data set], https://doi.org/10.15770/EUM_SAF_O3M_0011, 2017. a
Adakudlu, M., Andresen, J., Bakke, J., Beldring, S., Benestad, R., Bilt, W.,
Bogen, J., Borstad, C., Breili, K., Breivik, Ø., Børsheim, K. Y.,
Christiansen, H. H., Dobler, A., Engeset, R., Frauenfelder, R., Gerland, S.,
Gjelten, H. M., Gundersen, J., Isaksen, K., Jaedicke, C., Kierulf, H.,
Kohler, J., Li, H., Lutz, J., Melvold, K., Mezghani, A., Nilsen, F., Nilsen,
I. B., Nilsen, J. E. Ø., Pavlova, O., Ravndal, O., Risebrobakken, B.,
Saloranta, T., Sandven, S., Schuler, T. V., Simpson, M. J. R., Skogen, M.,
Smedsrud, L. H., Sund, M., Vikhamar-Schuler, D., Westermann, S., and Wong,
W. K.: Climate in Svalbard 2100 – a knowledge base for climate adaptation,
1/2019, https://www.miljodirektoratet.no/globalassets/publikasjoner/M1242/M1242.pdf (last access: 5 September 2022), 2019. a
Arya, S. P.: Air pollution meteorology and dispersion, Oxford University press, New York, ISBN 978-0-19-507398-0, 1999. a
Beine, H. J., Jaffe, D. A., Stordal, F., Engardt, M., Solberg, S., Schmidbauer,
N., and Holmén, K.: NOx during ozone depletion events in the arctic
troposphere at Ny-Ålesund, Svalbard, Tellus B, 49, 556–565, https://doi.org/10.3402/tellusb.v49i5.16008,
1997b.
a, b, c
Bougoudis, I., Blechschmidt, A.-M., Richter, A., Seo, S., Burrows, J. P., Theys, N., and Rinke, A.: Long-term time series of Arctic tropospheric BrO derived from UV–VIS satellite remote sensing and its relation to first-year sea ice, Atmos. Chem. Phys., 20, 11869–11892, https://doi.org/10.5194/acp-20-11869-2020, 2020. a, b
Christiansen, B., Jepsen, N., Kivi, R., Hansen, G., Larsen, N., and Korsholm, U. S.: Trends and annual cycles in soundings of Arctic tropospheric ozone, Atmos. Chem. Phys., 17, 9347–9364, https://doi.org/10.5194/acp-17-9347-2017, 2017. a
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi,
S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P.,
Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C.,
Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B.,
Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler,
M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J.,
Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N.,
and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of
the data assimilation system, Q. J. Roy. Meteor.
Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011. a
Dekhtyareva, A.: Monitoring of nitrogen oxides at Svalbard: measurements in
Adventdalen, https://doi.org/10.18710/TXQ7EV, 2018. a
Dekhtyareva, A., Edvardsen, K., Holmén, K., Hermansen, O., and Hansson,
H. C.: Influence of local and regional air pollution on atmospheric
measurements in Ny-Ålesund, International Journal of Sustainable
Development and Planning, 11, 578–587, https://doi.org/10.2495/SDP-V11-N4-578-587,
2016. a, b, c, d
Dekhtyareva, A., Holmén, K., Maturilli, M., Hermansen, O., and Graversen,
R.: Effect of seasonal mesoscale and microscale meteorological conditions in
Ny-Ålesund on results of monitoring of long-range transported pollution,
Polar Res., 37, 1508196, https://doi.org/10.1080/17518369.2018.1508196, 2018. a, b, c
Dickerson, R. R., Stedman, D. H., and Delany, A. C.: Direct measurements of
ozone and nitrogen dioxide photolysis rates in the troposphere, J.
Geophys. Res., 87, 4933–4946, https://doi.org/10.1029/JC087iC07p04933, 1982. a
Eckhardt, S., Stohl, A., Beirle, S., Spichtinger, N., James, P., Forster, C., Junker, C., Wagner, T., Platt, U., and Jennings, S. G.: The North Atlantic Oscillation controls air pollution transport to the Arctic, Atmos. Chem. Phys., 3, 1769–1778, https://doi.org/10.5194/acp-3-1769-2003, 2003. a
Eckhardt, S., Hermansen, O., Grythe, H., Fiebig, M., Stebel, K., Cassiani, M., Baecklund, A., and Stohl, A.: The influence of cruise ship emissions on air pollution in Svalbard – a harbinger of a more polluted Arctic?, Atmos. Chem. Phys., 13, 8401–8409, https://doi.org/10.5194/acp-13-8401-2013, 2013. a, b
Esau, I. and Repina, I.: Wind climate in Kongsfjorden, Svalbard, and
attribution of leading wind driving mechanisms through turbulence-resolving
simulations, Adv. Meteorol., 2012, 568454,
https://doi.org/10.1155/2012/568454, 2012. a
European Centre for Medium-Range Weather Forecasts: IFS DOCUMENTATION –
Cy43r3 Operational implementation 11 July 2017 PART IV: PHYSICAL PROCESSES,
Tech. Rep. July,
https://www.ecmwf.int/sites/default/files/elibrary/2017/17736-part-iv-physical-processes.pdf (last access: 14 July 2022),
2017. a
Fan, S.-M. and Jacob, D. J.: Surface ozone depletion in Arctic spring
sustained by bromine reactions on aerosols, Nature, 359, 522–524, 1992. a
Førland, E. J., Hanssen-Bauer, I., and Nordli, P. Ø.: Climate statistics
& longterm series of temperature and precipitation at Svalbard and Jan
Mayen, Tech. rep., Norwegian Meteorological Institute, Oslo, ISSN 0805-9918, 1997. a
Fremme, A. and Sodemann, H.: The role of land and ocean evaporation on the variability of precipitation in the Yangtze River valley, Hydrol. Earth Syst. Sci., 23, 2525–2540, https://doi.org/10.5194/hess-23-2525-2019, 2019. a
Freud, E., Krejci, R., Tunved, P., Leaitch, R., Nguyen, Q. T., Massling, A., Skov, H., and Barrie, L.: Pan-Arctic aerosol number size distributions: seasonality and transport patterns, Atmos. Chem. Phys., 17, 8101–8128, https://doi.org/10.5194/acp-17-8101-2017, 2017. a
Gröbner, J., Hülsen, G., Wuttke, S., Schrems, O., De Simone, S.,
Gallo, V., Rafanelli, C., Petkov, B., Vitale, V., Edvardsen, K., and Stebel,
K.: Quality assurance of solar UV irradiance in the Arctic, Photoch.
Photobio. Sci., 9, 384–391, https://doi.org/10.1039/b9pp00170k, 2010. a
Heintzenberg, J., Tunved, P., Galí, M., and Leck, C.: New particle formation in the Svalbard region 2006–2015, Atmos. Chem. Phys., 17, 6153–6175, https://doi.org/10.5194/acp-17-6153-2017, 2017. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee,
D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M.,
Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E.,
Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti,
G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut,
J. N.: The ERA5 global reanalysis, Q. J. Roy.
Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a
Hirdman, D., Aspmo, K., Burkhart, J. F., Eckhardt, S., Sodemann, H., and Stohl,
A.: Transport of mercury in the Arctic atmosphere: Evidence for a springtime
net sink and summer-time source, Geophys. Res. Lett., 36, 1–5,
https://doi.org/10.1029/2009GL038345, 2009. a, b
Hirdman, D., Burkhart, J. F., Sodemann, H., Eckhardt, S., Jefferson, A., Quinn, P. K., Sharma, S., Ström, J., and Stohl, A.: Long-term trends of black carbon and sulphate aerosol in the Arctic: changes in atmospheric transport and source region emissions, Atmos. Chem. Phys., 10, 9351–9368, https://doi.org/10.5194/acp-10-9351-2010, 2010a. a
Hirdman, D., Sodemann, H., Eckhardt, S., Burkhart, J. F., Jefferson, A., Mefford, T., Quinn, P. K., Sharma, S., Ström, J., and Stohl, A.: Source identification of short-lived air pollutants in the Arctic using statistical analysis of measurement data and particle dispersion model output, Atmos. Chem. Phys., 10, 669–693, https://doi.org/10.5194/acp-10-669-2010, 2010b.
a
Ibrahim, M., Curci, G., Habbani, F. I., Kucharski, F., Tuccella, P., and
Strada, S.: Association of Air Pollution Levels to Atmospheric Weather
Regimes over Europe, Journal of Environmental Science and Pollution
Research, 7, 442–446, 2021. a
Immler, F. J., Dykema, J., Gardiner, T., Whiteman, D. N., Thorne, P. W., and Vömel, H.: Reference Quality Upper-Air Measurements: guidance for developing GRUAN data products, Atmos. Meas. Tech., 3, 1217–1231, https://doi.org/10.5194/amt-3-1217-2010, 2010. a
IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp., https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_all_final.pdf (last access: 5 September 2022), 2013. a
Klima- og miljødepartementet: Lov om miljøvern på Svalbard
(svalbardmiljøloven),
https://lovdata.no/dokument/NL/lov/2001-06-15-79 (last access: 14 July 2022), 2001. a
Koo, J.-H., Wang, Y., Kurosu, T. P., Chance, K., Rozanov, A., Richter, A., Oltmans, S. J., Thompson, A. M., Hair, J. W., Fenn, M. A., Weinheimer, A. J., Ryerson, T. B., Solberg, S., Huey, L. G., Liao, J., Dibb, J. E., Neuman, J. A., Nowak, J. B., Pierce, R. B., Natarajan, M., and Al-Saadi, J.: Characteristics of tropospheric ozone depletion events in the Arctic spring: analysis of the ARCTAS, ARCPAC, and ARCIONS measurements and satellite BrO observations, Atmos. Chem. Phys., 12, 9909–9922, https://doi.org/10.5194/acp-12-9909-2012, 2012. a
Kramer, L. J., Helmig, D., Burkhart, J. F., Stohl, A., Oltmans, S., and Honrath, R. E.: Seasonal variability of atmospheric nitrogen oxides and non-methane hydrocarbons at the GEOSummit station, Greenland, Atmos. Chem. Phys., 15, 6827–6849, https://doi.org/10.5194/acp-15-6827-2015, 2015. a
Läderach, A. and Sodemann, H.: A revised picture of the atmospheric
moisture residence time, Geophys. Res. Lett., 43, 924–933,
https://doi.org/10.1002/2015GL067449, 2016. a
Li, J., Reiffs, A., Parchatka, U., and Fischer, H.: In situ measurements of
atmospheric CO and its correlation with NOx and O3 at a rural mountain site,
Metrol. Meas. Syst., XXII, 25–38, https://doi.org/10.1515/mms-2015-0001,
2015. a
Maturilli, M.: High resolution radiosonde measurements from station
Ny-Ålesund (2017-04), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.879767,
2017a. a
Maturilli, M.: High resolution radiosonde measurements from station
Ny-Ålesund (2017-05), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.879820,
2017b. a
Maturilli, M. and Kayser, M.: Arctic warming , moisture increase and
circulation changes observed in the Ny-Ålesund homogenized radiosonde
record, Theor. Appl. Climatol., 130, 1–17,
https://doi.org/10.1007/s00704-016-1864-0, 2017.
a
Maturilli, M., Herber, A., and König-Langlo, G.: Climatology and time series of surface meteorology in Ny-Ålesund, Svalbard, Earth Syst. Sci. Data, 5, 155–163, https://doi.org/10.5194/essd-5-155-2013, 2013. a
Ménégoz, M., Guemas, V., Salas Y Melia, D., and Voldoire, A.:
Winter interactions between aerosols and weather regimes in the North
Atlantic European region, J. Geophys. Res.-Atmos., 115,
1–19, https://doi.org/10.1029/2009JD012480, 2010. a
Monks, P. S.: Gas-phase radical chemistry in the troposphere, Chem.
Soc. Rev., 34, 376–395, https://doi.org/10.1039/b307982c, 2005. a
Moore, C. W., Obrist, D., Steffen, A., Staebler, R. M., Douglas, T. A.,
Richter, A., and Nghiem, S. V.: Convective forcing of mercury and ozone in
the Arctic boundary layer induced by leads in sea ice, Nature, 506, 81–84,
https://doi.org/10.1038/nature12924, 2014. a
Papritz, L. and Grams, C. M.: Linking Low-Frequency Large-Scale Circulation
Patterns to Cold Air Outbreak Formation in the Northeastern North Atlantic,
Geophys. Res. Lett., 45, 2542–2553, https://doi.org/10.1002/2017GL076921,
2018. a, b, c, d
Park, S., Son, S. W., Jung, M. I., Park, J., and Park, S. S.: Evaluation of
tropospheric ozone reanalyses with independent ozonesonde observations in
East Asia, Geosci. Lett., 7, 12, https://doi.org/10.1186/s40562-020-00161-9, 2020. a
Parrish, D. D., Murphy, P. C., Albritton, D. L., and Fehsenfeld, F. C.: The
measurement of the photodissociation rate of NO2 in the atmosphere,
Atmos. Environ., 17, 1365–1379, https://doi.org/10.1016/0004-6981(83)90411-0,
1983. a, b, c
Pasquier, J. T., Pfahl, S., and Grams, C. M.: Modulation of Atmospheric River
Occurrence and Associated Precipitation Extremes in the North Atlantic Region
by European Weather Regimes, Geophys. Res. Lett., 46, 1014–1023,
https://doi.org/10.1029/2018GL081194, 2019. a
Porter, W. C., Heald, C. L., Cooley, D., and Russell, B.: Investigating the observed sensitivities of air-quality extremes to meteorological drivers via quantile regression, Atmos. Chem. Phys., 15, 10349–10366, https://doi.org/10.5194/acp-15-10349-2015, 2015. a
Quinn, P. K., Bates, T. S., Baum, E., Bond, T., Burkhart, J. F., Fiore, A. M., Flanner, M. G., Garrett, T. J., Koch, D., Mcconnell, J. R., Shindell, D., and Stohl, A.: The Impact of Short-Lived Pollutants on Arctic Climate., Tech. Rep. 1, Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, http://hdl.handle.net/11374/739 (last access: 14 July 2022), 2008. a
Reimann, S., Kallenborn, R., and Schmidbauer, N.: Severe aromatic hydrocarbon
pollution in the Arctic town of Longyearbyen (Svalbard) caused by snowmobile
emissions, Environ. Sci. Technol., 43, 4791–4795,2009. a
Robertson, S. C., Lanchester, B. S., Galand, M., Lummerzheim, D., Stockton-Chalk, A. B., Aylward, A. D., Furniss, I., and Baumgardner, J.: First ground-based optical analysis of Hβ Doppler profiles close to local noon in the cusp, Ann. Geophys., 24, 2543–2552, https://doi.org/10.5194/angeo-24-2543-2006, 2006.
a, b
Rolph, G., Stein, A., and Stunder, B.: Real-time Environmental Applications
and Display sYstem: READY, Environ. Modell. Softw., 95,
210–228, https://doi.org/10.1016/j.envsoft.2017.06.025, 2017. a
Schmalwieser, A. W., Gröbner, J., Blumthaler, M., Klotz, B., De Backer,
H., Bolsée, D., Werner, R., Tomsic, D., Metelka, L., Eriksen, P.,
Jepsen, N., Aun, M., Heikkilä, A., Duprat, T., Sandmann, H., Weiss, T.,
Bais, A., Toth, Z., Siani, A. M., Vaccaro, L., Diémoz, H., Grifoni, D.,
Zipoli, G., Lorenzetto, G., Petkov, B. H., Di Sarra, A. G., Massen, F.,
Yousif, C., Aculinin, A. A., Den Outer, P., Svendby, T., Dahlback, A.,
Johnsen, B., Biszczuk-Jakubowska, J., Krzyscin, J., Henriques, D., Chubarova,
N., Kolarž, P., Mijatovic, Z., Groselj, D., Pribullova, A., Gonzales,
J. R. M., Bilbao, J., Guerrero, J. M. V., Serrano, A., Andersson, S.,
Vuilleumier, L., Webb, A., and O'Hagan, J.: UV Index monitoring in Europe,
Photoch. Photobio. Sci., 16, 1349–1370,
https://doi.org/10.1039/c7pp00178a, 2017. a
Shears, J., Theisen, F., Bjørdal, A., and Norris, S.: Environmental impact
assessment. Ny-Ålesund international scientific research and monitoring
station, Svalbard, Tech. rep., Norsk Polarinstitutt, Tromsø, ISBN 82-766-157-2, 1998. a
Simpson, W. R., Brown, S. S., Saiz-Lopez, A., Thornton, J. A., and Von
Glasow, R.: Tropospheric Halogen Chemistry: Sources, Cycling, and Impacts,
Chem. Rev., 115, 4035–4062, https://doi.org/10.1021/cr5006638, 2015. a, b, c
Sommer, M., Dirksen, R., and Immler, F.: RS92 GRUAN Data Product Version 2 (RS92-GDP.2), GRUAN Lead Centre [data set], https://doi.org/10.5676/GRUAN/RS92-GDP.2, 2012. a
Stein, A., Draxler, R., Rolph, G., Stunder, B., Cohen, M., and Ngan, F.:
NOAA's HYSPLIT atmospheric transport and dispersion modeling system,
B. Am. Meteorol. Soc., 96, 2059–2077,
https://doi.org/10.1175/BAMS-D-14-00110.1, 2015. a
Stohl, A., Forster, C., Frank, A., Seibert, P., and Wotawa, G.: Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2, Atmos. Chem. Phys., 5, 2461–2474, https://doi.org/10.5194/acp-5-2461-2005, 2005. a
Tennbakk, B., Fiksen, K., Borsche, T., Grøndahl, R., Jarstein, S., and Ramm,
B.: Alternativer for framtidig energiforsyning på Svalbard, Tech. Rep.
2018-09, THEMA Consulting Group, Oslo, Norway,
https://www.regjeringen.no/contentassets/cdaceb5f6b5e4fb1aa4e5e151a87859a/thema-og-multiconsult---energiforsyningen-pa-svalbard.pdf (last access: 14 July 2022),
2018. a, b
Vestreng, V., Kallenborn, R., and Økstad, E.: Climate influencing
emissions, scenarios and mitigation options at Svalbard, Klima- og forurensningsdirektoratet, Oslo, Norway, https://www.miljodirektoratet.no/globalassets/publikasjoner/klif2/publikasjoner/2552/ta2552.pdf (last access: 14 July 2022), 2009. a, b, c, d
von der Gathen, P. and Rex, M.: O3 sonde year-round soundings since 1992, https://www-air.larc.nasa.gov/missions/ndacc/data.html?station=ny.alesund/ames/o3sonde/ (last access: 5 September 2022), 2020. a
Williams, E. J., Fehsenfeld, F. C., Jobson, B. T., Kuster, W. C., Goldan,
P. D., Stutz, J., and McClenny, W. A.: Comparison of Ultraviolet Absorbance,
Chemiluminescence,and DOAS Instruments for Ambient Ozone Monitoring,
Environ. Sci. Technol., 40, 5755–5762, https://doi.org/10.1021/es0523542,
2006. a
Short summary
Despite decades of industrial activity in Svalbard, there is no continuous air pollution monitoring in the region’s settlements except Ny-Ålesund. The NOx and O3 observations from the three-station network have been compared for the first time in this study. It has been shown how the large-scale weather regimes control the synoptic meteorological conditions and determine the atmospheric long-range transport pathways and efficiency of local air pollution dispersion.
Despite decades of industrial activity in Svalbard, there is no continuous air pollution...
Altmetrics
Final-revised paper
Preprint