Articles | Volume 22, issue 16
https://doi.org/10.5194/acp-22-10527-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-10527-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Weakening of tropical sea breeze convective systems through interactions of aerosol, radiation, and soil moisture
Department of Atmospheric Science, Colorado State University, Fort
Collins, Colorado, USA
Environmental and Climate Sciences Department, Brookhaven National
Laboratory, Upton, New York, USA
Susan C. van den Heever
Department of Atmospheric Science, Colorado State University, Fort
Collins, Colorado, USA
Related authors
No articles found.
Sean W. Freeman, Jennie Bukowski, Leah D. Grant, Peter J. Marinescu, J. Minnie Park, Stacey M. Hitchcock, Christine A. Neumaier, and Susan C. van den Heever
EGUsphere, https://doi.org/10.5194/egusphere-2024-2425, https://doi.org/10.5194/egusphere-2024-2425, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
In this work, we tested different placements of a temperature and humidity sensor onboard a drone to understand what the relative errors are. Understanding these errors is critical as we want to collect more meteorological data from non-specialized platforms, such as drone swarms and drone package delivery.
Corey G. Amiot, Timothy J. Lang, Susan C. van den Heever, Richard A. Ferrare, Ousmane O. Sy, Lawrence D. Carey, Sundar A. Christopher, John R. Mecikalski, Sean W. Freeman, George Alexander Sokolowsky, Chris A. Hostetler, and Simone Tanelli
EGUsphere, https://doi.org/10.5194/egusphere-2024-2384, https://doi.org/10.5194/egusphere-2024-2384, 2024
Short summary
Short summary
Decoupling aerosol and environmental impacts on convection is challenging. Using airborne data, we correlated microwave-frequency convective metrics with aerosol concentrations in several different environments. Medium-to-high aerosol concentrations were often strongly and positively correlated with convective intensity and frequency, especially in favorable environments based on temperature lapse rates and K-Index. Storm environment is important to consider when evaluating aerosol effects.
Dié Wang, Roni Kobrosly, Tao Zhang, Tamanna Subba, Susan van den Heever, Siddhant Gupta, and Michael Jensen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2436, https://doi.org/10.5194/egusphere-2024-2436, 2024
Short summary
Short summary
We use a new method to understand how tiny particles in the air, called aerosols, affect rain clouds in the Houston-Galveston area. Aerosols generally do not make these clouds grow much taller, with an average height increase of about 1 km under certain conditions. However, their effects on rainfall strength and cloud expansion are less certain. Clouds influenced by sea breezes show a stronger aerosol impact, possibly due to unaccounted factors like vertical winds in near-surface layers.
G. Alexander Sokolowsky, Sean W. Freeman, William K. Jones, Julia Kukulies, Fabian Senf, Peter J. Marinescu, Max Heikenfeld, Kelcy N. Brunner, Eric C. Bruning, Scott M. Collis, Robert C. Jackson, Gabrielle R. Leung, Nils Pfeifer, Bhupendra A. Raut, Stephen M. Saleeby, Philip Stier, and Susan C. van den Heever
Geosci. Model Dev., 17, 5309–5330, https://doi.org/10.5194/gmd-17-5309-2024, https://doi.org/10.5194/gmd-17-5309-2024, 2024
Short summary
Short summary
Building on previous analysis tools developed for atmospheric science, the original release of the Tracking and Object-Based Analysis (tobac) Python package, v1.2, was open-source, modular, and insensitive to the type of gridded input data. Here, we present the latest version of tobac, v1.5, which substantially improves scientific capabilities and computational efficiency from the previous version. These enhancements permit new uses for tobac in atmospheric science and potentially other fields.
Gabrielle R. Leung, Stephen M. Saleeby, G. Alexander Sokolowsky, Sean W. Freeman, and Susan C. van den Heever
Atmos. Chem. Phys., 23, 5263–5278, https://doi.org/10.5194/acp-23-5263-2023, https://doi.org/10.5194/acp-23-5263-2023, 2023
Short summary
Short summary
This study uses a suite of high-resolution simulations to explore how the concentration and type of aerosol particles impact shallow tropical clouds and the overall aerosol budget. Under more-polluted conditions, there are more aerosol particles present, but we also find that clouds are less able to remove those aerosol particles via rainout. Instead, those aerosol particles are more likely to be detrained aloft and remain in the atmosphere for further aerosol–cloud interactions.
Ewan Crosbie, Luke D. Ziemba, Michael A. Shook, Claire E. Robinson, Edward L. Winstead, K. Lee Thornhill, Rachel A. Braun, Alexander B. MacDonald, Connor Stahl, Armin Sorooshian, Susan C. van den Heever, Joshua P. DiGangi, Glenn S. Diskin, Sarah Woods, Paola Bañaga, Matthew D. Brown, Francesca Gallo, Miguel Ricardo A. Hilario, Carolyn E. Jordan, Gabrielle R. Leung, Richard H. Moore, Kevin J. Sanchez, Taylor J. Shingler, and Elizabeth B. Wiggins
Atmos. Chem. Phys., 22, 13269–13302, https://doi.org/10.5194/acp-22-13269-2022, https://doi.org/10.5194/acp-22-13269-2022, 2022
Short summary
Short summary
The linkage between cloud droplet and aerosol particle chemical composition was analyzed using samples collected in a polluted tropical marine environment. Variations in the droplet composition were related to physical and dynamical processes in clouds to assess their relative significance across three cases that spanned a range of rainfall amounts. In spite of the pollution, sea salt still remained a major contributor to the droplet composition and was preferentially enhanced in rainwater.
Eva-Lou Edwards, Jeffrey S. Reid, Peng Xian, Sharon P. Burton, Anthony L. Cook, Ewan C. Crosbie, Marta A. Fenn, Richard A. Ferrare, Sean W. Freeman, John W. Hair, David B. Harper, Chris A. Hostetler, Claire E. Robinson, Amy Jo Scarino, Michael A. Shook, G. Alexander Sokolowsky, Susan C. van den Heever, Edward L. Winstead, Sarah Woods, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 22, 12961–12983, https://doi.org/10.5194/acp-22-12961-2022, https://doi.org/10.5194/acp-22-12961-2022, 2022
Short summary
Short summary
This study compares NAAPS-RA model simulations of aerosol optical thickness (AOT) and extinction to those retrieved with a high spectral resolution lidar near the Philippines. Agreement for AOT was good, and extinction agreement was strongest below 1500 m. Substituting dropsonde relative humidities into NAAPS-RA did not drastically improve agreement, and we discuss potential reasons why. Accurately modeling future conditions in this region is crucial due to its susceptibility to climate change.
Mariko Oue, Stephen M. Saleeby, Peter J. Marinescu, Pavlos Kollias, and Susan C. van den Heever
Atmos. Meas. Tech., 15, 4931–4950, https://doi.org/10.5194/amt-15-4931-2022, https://doi.org/10.5194/amt-15-4931-2022, 2022
Short summary
Short summary
This study provides an optimization of radar observation strategies to better capture convective cell evolution in clean and polluted environments as well as a technique for the optimization. The suggested optimized radar observation strategy is to better capture updrafts at middle and upper altitudes and precipitation particle evolution of isolated deep convective clouds. This study sheds light on the challenge of designing remote sensing observation strategies in pre-field campaign periods.
Jennie Bukowski and Susan C. van den Heever
Atmos. Chem. Phys., 20, 2967–2986, https://doi.org/10.5194/acp-20-2967-2020, https://doi.org/10.5194/acp-20-2967-2020, 2020
Short summary
Short summary
This paper seeks to better our understanding of how dust storms are represented in a weather model. Depending on how well the model can represent the storm, it can change the dust forecast significantly. This is important for predictions of air quality and visibility; as dust can heat and cool the air in its environment, it is also crucial for calculating the Earth's energy budget. Here, we communicate the uncertainty in a dust model and the effect that it may have on dust forecasts.
Peter J. Marinescu, Ezra J. T. Levin, Don Collins, Sonia M. Kreidenweis, and Susan C. van den Heever
Atmos. Chem. Phys., 19, 11985–12006, https://doi.org/10.5194/acp-19-11985-2019, https://doi.org/10.5194/acp-19-11985-2019, 2019
Short summary
Short summary
We characterized and provided fits for the seasonal aerosol size distributions (7 nm–14 µm diameter) at a North American, long–term surface site (SGP), which can be applied to models. Key cycles on timescales of several hours to weeks were also assessed using power spectra for various aerosol size ranges. One key finding is the consistent presence of diurnal cycles in the smallest particles in each season, providing insights into the formation and roles of new particle formation at SGP.
Steven D. Miller, Louie D. Grasso, Qijing Bian, Sonia M. Kreidenweis, Jack F. Dostalek, Jeremy E. Solbrig, Jennifer Bukowski, Susan C. van den Heever, Yi Wang, Xiaoguang Xu, Jun Wang, Annette L. Walker, Ting-Chi Wu, Milija Zupanski, Christine Chiu, and Jeffrey S. Reid
Atmos. Meas. Tech., 12, 5101–5118, https://doi.org/10.5194/amt-12-5101-2019, https://doi.org/10.5194/amt-12-5101-2019, 2019
Short summary
Short summary
Satellite–based detection of lofted mineral via infrared–window channels, well established in the literature, faces significant challenges in the presence of atmospheric moisture. Here, we consider a case featuring the juxtaposition of two dust plumes embedded within dry and moist air masses. The case is considered from the vantage points of numerical modeling, multi–sensor observations, and radiative transfer theory arriving at a new method for mitigating the water vapor masking effect.
Stephen M. Saleeby, Susan C. van den Heever, Jennie Bukowski, Annette L. Walker, Jeremy E. Solbrig, Samuel A. Atwood, Qijing Bian, Sonia M. Kreidenweis, Yi Wang, Jun Wang, and Steven D. Miller
Atmos. Chem. Phys., 19, 10279–10301, https://doi.org/10.5194/acp-19-10279-2019, https://doi.org/10.5194/acp-19-10279-2019, 2019
Short summary
Short summary
This study seeks to understand how intense dust storms impact the heating and cooling of the land surface and atmosphere. Dust storms that are intense enough to substantially impact visibility can also alter how much sunlight reaches the surface during the day and how much heat is trapped in the atmosphere at night. These radiation changes can impact the temperature of the atmosphere and impact the weather in the vicinity.
Stacey Kawecki and Susan van den Heever
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-399, https://doi.org/10.5194/acp-2019-399, 2019
Preprint withdrawn
Short summary
Short summary
This work examines how the topographic height and diameter of an island influence where and when precipitation falls, and why these patterns change. Using a numerical weather model, we systematically increased island orographic heights and diameters. We find that increasing orography increases precipitation amounts, regardless of island diameter size. Precipitation increases because changing the topography alters where moisture and lift occur, which are the prime ingredients for precipitation.
R. B. Seigel, S. C. van den Heever, and S. M. Saleeby
Atmos. Chem. Phys., 13, 4467–4485, https://doi.org/10.5194/acp-13-4467-2013, https://doi.org/10.5194/acp-13-4467-2013, 2013
Related subject area
Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
The impact of the mesh size and microphysics scheme on the representation of mid-level clouds in the ICON model in hilly and complex terrain
The role of ascent timescales for warm conveyor belt (WCB) moisture transport into the upper troposphere and lower stratosphere (UTLS)
Estimating the concentration of silver iodide needed to detect unambiguous signatures of glaciogenic cloud seeding
Ice-nucleating particle concentration impacts cloud properties over Dronning Maud Land, East Antarctica, in COSMO-CLM2
Numerical simulation of aerosol concentration effects on cloud droplet size spectrum evolutions of warm stratiform clouds in Jiangxi, China
The impact of aerosol on cloud water: a heuristic perspective
The presence of clouds lowers climate sensitivity in the MPI-ESM1.2 climate model
Diurnal variation in an amplified canopy urban heat island during heat wave periods in the megacity of Beijing: roles of mountain–valley breeze and urban morphology
Diurnal evolution of non-precipitating marine stratocumuli in a large-eddy simulation ensemble
High ice water content in tropical mesoscale convective systems (a conceptual model)
Evolution of cloud droplet temperature and lifetime in spatiotemporally varying subsaturated environments with implications for ice nucleation at cloud edges
Effect of secondary ice production processes on the simulation of ice pellets using the Predicted Particle Properties microphysics scheme
Simulated particle evolution within a winter storm: contributions of riming to radar moments and precipitation fallout
A thermal-driven graupel generation process to explain dry-season convective vigor over the Amazon
Modeling homogeneous ice nucleation from drop-freezing experiments: impact of droplet volume dispersion and cooling rates
Cloud water adjustments to aerosol perturbations are buffered by solar heating in non-precipitating marine stratocumuli
Glaciation of mixed-phase clouds: insights from bulk model and bin-microphysics large-eddy simulation informed by laboratory experiment
Microphysical processes involving the vapour phase dominate in simulated low-level Arctic clouds
Understanding aerosol–cloud interactions using a single-column model for a cold-air outbreak case during the ACTIVATE campaign
Investigating ice formation pathways using a novel two-moment multi-class cloud microphysics scheme
On the sensitivity of aerosol–cloud interactions to changes in sea surface temperature in radiative–convective equilibrium
Exploring aerosol–cloud interactions in liquid-phase clouds over eastern China and its adjacent ocean using the WRF-Chem–SBM model
How the representation of microphysical processes affects tropical condensate in a global storm-resolving model
Impact of secondary ice production on thunderstorm electrification under different aerosol conditions
Finite domains cause bias in measured and modeled distributions of cloud sizes
A systematic evaluation of high-cloud controlling factors
Tracking precipitation features and associated large-scale environments over southeastern Texas
Revisiting the evolution of downhill thunderstorms over Beijing: a new perspective from a radar wind profiler mesonet
How well can persistent contrails be predicted? An update
Model analysis of biases in satellite diagnosed aerosol effect on cloud liquid water path
Dynamical imprints on precipitation cluster statistics across a hierarchy of high-resolution simulations
Potential impacts of marine fuel regulations on Arctic clouds and radiative feedbacks
Present-day correlations are insufficient to predict cloud albedo change by anthropogenic aerosols in E3SM v2
Simulations of primary and secondary ice production during an Arctic mixed-phase cloud case from the Ny-Ålesund Aerosol Cloud Experiment (NASCENT) campaign
Microphysical characteristics of precipitation within convective overshooting over East China observed by GPM DPR and ERA5
Effects of radiative cooling on advection fog over the northwest Pacific Ocean: observations and large-eddy simulations
Evaluating the Wegener–Bergeron–Findeisen process in ICON in large-eddy mode with in situ observations from the CLOUDLAB project
Aerosol-induced closure of marine cloud cells: enhanced effects in the presence of precipitation
Impact of ice multiplication on the cloud electrification of a cold-season thunderstorm: a numerical case study
Developing a climatological simplification of aerosols to enter the cloud microphysics of a global climate model
Interactions between trade wind clouds and local forcings over the Great Barrier Reef: a case study using convection-permitting simulations
Variability in the properties of the distribution of the relative humidity with respect to ice: implications for contrail formation
Simulating the seeder–feeder impacts on cloud ice and precipitation over the Alps
Can pollen affect precipitation?
Cloud response to co-condensation of water and organic vapors over the boreal forest
Distribution and morphology of non-persistent contrail and persistent contrail formation areas in ERA5
Connection of Surface Snowfall Bias to Cloud Phase Bias – Satellite Observations, ERA5, and CMIP6
Above-cloud concentrations of cloud condensation nuclei help to sustain some Arctic low-level clouds
Contrail formation on ambient aerosol particles for aircraft with hydrogen combustion: a box model trajectory study
Effects of intermittent aerosol forcing on the stratocumulus-to-cumulus transition
Nadja Omanovic, Brigitta Goger, and Ulrike Lohmann
Atmos. Chem. Phys., 24, 14145–14175, https://doi.org/10.5194/acp-24-14145-2024, https://doi.org/10.5194/acp-24-14145-2024, 2024
Short summary
Short summary
We evaluated the numerical weather model ICON in two horizontal resolutions with two bulk microphysics schemes over hilly and complex terrain in Switzerland and Austria, respectively. We focused on the model's ability to simulate mid-level clouds in summer and winter. By combining observational data from two different field campaigns, we show that an increase in the horizontal resolution and a more advanced cloud microphysics scheme is strongly beneficial for cloud representation.
Cornelis Schwenk and Annette Miltenberger
Atmos. Chem. Phys., 24, 14073–14099, https://doi.org/10.5194/acp-24-14073-2024, https://doi.org/10.5194/acp-24-14073-2024, 2024
Short summary
Short summary
Warm conveyor belts (WCBs) transport moisture into the upper atmosphere, where it acts as a greenhouse gas. This transport is not well understood, and the role of rapidly rising air is unclear. We simulate a WCB and look at fast- and slow-rising air to see how moisture is (differently) transported. We find that for fast-ascending air more ice particles reach higher into the atmosphere and that frozen cloud particles are removed differently than during slow ascent, which has more water vapour.
Jing Yang, Jiaojiao Li, Meilian Chen, Xiaoqin Jing, Yan Yin, Bart Geerts, Zhien Wang, Yubao Liu, Baojun Chen, Shaofeng Hua, Hao Hu, Xiaobo Dong, Ping Tian, Qian Chen, and Yang Gao
Atmos. Chem. Phys., 24, 13833–13848, https://doi.org/10.5194/acp-24-13833-2024, https://doi.org/10.5194/acp-24-13833-2024, 2024
Short summary
Short summary
Detecting unambiguous signatures is vital for examining cloud-seeding impacts, but often, seeding signatures are immersed in natural variability. In this study, reflectivity changes induced by glaciogenic seeding using different AgI concentrations are investigated under various conditions, and a method is developed to estimate the AgI concentration needed to detect unambiguous seeding signatures. The results aid in operational seeding-based decision-making regarding the amount of AgI dispersed.
Florian Sauerland, Niels Souverijns, Anna Possner, Heike Wex, Preben Van Overmeiren, Alexander Mangold, Kwinten Van Weverberg, and Nicole van Lipzig
Atmos. Chem. Phys., 24, 13751–13768, https://doi.org/10.5194/acp-24-13751-2024, https://doi.org/10.5194/acp-24-13751-2024, 2024
Short summary
Short summary
We use a regional climate model, COSMO-CLM², enhanced with a module resolving aerosol processes, to study Antarctic clouds. We prescribe different concentrations of ice-nucleating particles to our model to assess how these clouds respond to concentration changes, validating results with cloud and aerosol observations from the Princess Elisabeth Antarctica station. Our results show that aerosol–cloud interactions vary with temperature, providing valuable insights into Antarctic cloud dynamics.
Yi Li, Xiaoli Liu, and Hengjia Cai
Atmos. Chem. Phys., 24, 13525–13540, https://doi.org/10.5194/acp-24-13525-2024, https://doi.org/10.5194/acp-24-13525-2024, 2024
Short summary
Short summary
The influence of different aerosol modes on cloud processes remains controversial. We modified the aerosol spectra and concentrations to simulate a warm stratiform cloud process in Jiangxi, China, using the WRF-SBM scheme. Research shows that different aerosol spectra have diverse effects on cloud droplet spectra, cloud development, and the correlation between dispersion (ε) and cloud physics quantities. Compared to cloud droplet concentration, ε is more sensitive to the volume radius.
Fabian Hoffmann, Franziska Glassmeier, and Graham Feingold
Atmos. Chem. Phys., 24, 13403–13412, https://doi.org/10.5194/acp-24-13403-2024, https://doi.org/10.5194/acp-24-13403-2024, 2024
Short summary
Short summary
Clouds constitute a major cooling influence on Earth's climate system by reflecting a large fraction of the incident solar radiation back to space. This ability is controlled by the number of cloud droplets, which is governed by the number of aerosol particles in the atmosphere, laying the foundation for so-called aerosol–cloud–climate interactions. In this study, a simple model to understand the effect of aerosol on cloud water is developed and applied.
Andrea Mosso, Thomas Hocking, and Thorsten Mauritsen
Atmos. Chem. Phys., 24, 12793–12806, https://doi.org/10.5194/acp-24-12793-2024, https://doi.org/10.5194/acp-24-12793-2024, 2024
Short summary
Short summary
Clouds play a crucial role in the Earth's energy balance, as they can either warm up or cool down the area they cover depending on their height and depth. They are expected to alter their behaviour under climate change, affecting the warming generated by greenhouse gases. This paper proposes a new method to estimate their overall effect on this warming by simulating a climate where clouds are transparent. Results show that with the model used, clouds have a stabilising effect on climate.
Tao Shi, Yuanjian Yang, Ping Qi, and Simone Lolli
Atmos. Chem. Phys., 24, 12807–12822, https://doi.org/10.5194/acp-24-12807-2024, https://doi.org/10.5194/acp-24-12807-2024, 2024
Short summary
Short summary
This paper explored the formation mechanisms of the amplified canopy urban heat island intensity (ΔCUHII) during heat wave (HW) periods in the megacity of Beijing from the perspectives of mountain–valley breeze and urban morphology. During the mountain breeze phase, high-rise buildings with lower sky view factors (SVFs) had a pronounced effect on the ΔCUHII. During the valley breeze phase, high-rise buildings exerted a dual influence on the ΔCUHII.
Yao-Sheng Chen, Jianhao Zhang, Fabian Hoffmann, Takanobu Yamaguchi, Franziska Glassmeier, Xiaoli Zhou, and Graham Feingold
Atmos. Chem. Phys., 24, 12661–12685, https://doi.org/10.5194/acp-24-12661-2024, https://doi.org/10.5194/acp-24-12661-2024, 2024
Short summary
Short summary
Marine stratocumulus cloud is a type of shallow cloud that covers the vast areas of Earth's surface. It plays an important role in Earth's energy balance by reflecting solar radiation back to space. We used numerical models to simulate a large number of marine stratocumuli with different characteristics. We found that how the clouds develop throughout the day is affected by the level of humidity in the air above the clouds and how closely the clouds connect to the ocean surface.
Alexei Korolev, Zhipeng Qu, Jason Milbrandt, Ivan Heckman, Mélissa Cholette, Mengistu Wolde, Cuong Nguyen, Greg M. McFarquhar, Paul Lawson, and Ann M. Fridlind
Atmos. Chem. Phys., 24, 11849–11881, https://doi.org/10.5194/acp-24-11849-2024, https://doi.org/10.5194/acp-24-11849-2024, 2024
Short summary
Short summary
The phenomenon of high ice water content (HIWC) occurs in mesoscale convective systems (MCSs) when a large number of small ice particles with typical sizes of a few hundred micrometers is found at high altitudes. It was found that secondary ice production in the vicinity of the melting layer plays a key role in the formation and maintenance of HIWC. This study presents a conceptual model of the formation of HIWC in tropical MCSs based on in situ observations and numerical simulation.
Puja Roy, Robert M. Rauber, and Larry Di Girolamo
Atmos. Chem. Phys., 24, 11653–11678, https://doi.org/10.5194/acp-24-11653-2024, https://doi.org/10.5194/acp-24-11653-2024, 2024
Short summary
Short summary
Cloud droplet temperature and lifetime impact cloud microphysical processes such as the activation of ice-nucleating particles. We investigate the thermal and radial evolution of supercooled cloud droplets and their surrounding environments with an aim to better understand observed enhanced ice formation at supercooled cloud edges. This analysis shows that the magnitude of droplet cooling during evaporation is greater than estimated from past studies, especially for drier environments.
Mathieu Lachapelle, Mélissa Cholette, and Julie M. Thériault
Atmos. Chem. Phys., 24, 11285–11304, https://doi.org/10.5194/acp-24-11285-2024, https://doi.org/10.5194/acp-24-11285-2024, 2024
Short summary
Short summary
Hazardous precipitation types such as ice pellets and freezing rain are difficult to predict because they are associated with complex microphysical processes. Using Predicted Particle Properties (P3), this work shows that secondary ice production processes increase the amount of ice pellets simulated while decreasing the amount of freezing rain. Moreover, the properties of the simulated precipitation compare well with those that were measured.
Andrew DeLaFrance, Lynn A. McMurdie, Angela K. Rowe, and Andrew J. Heymsfield
Atmos. Chem. Phys., 24, 11191–11206, https://doi.org/10.5194/acp-24-11191-2024, https://doi.org/10.5194/acp-24-11191-2024, 2024
Short summary
Short summary
Using a numerical model, the process whereby falling ice crystals accumulate supercooled liquid water droplets is investigated to elucidate its effects on radar-based measurements and surface precipitation. We demonstrate that this process accounted for 55% of the precipitation during a wintertime storm and is uniquely discernable from other ice crystal growth processes in Doppler velocity measurements. These results have implications for measurements from airborne and spaceborne platforms.
Toshi Matsui, Daniel Hernandez-Deckers, Scott E. Giangrande, Thiago S. Biscaro, Ann Fridlind, and Scott Braun
Atmos. Chem. Phys., 24, 10793–10814, https://doi.org/10.5194/acp-24-10793-2024, https://doi.org/10.5194/acp-24-10793-2024, 2024
Short summary
Short summary
Using computer simulations and real measurements, we discovered that storms over the Amazon were narrower but more intense during the dry periods, producing heavier rain and more ice particles in the clouds. Our research showed that cumulus bubbles played a key role in creating these intense storms. This study can improve the representation of the effect of continental and ocean environments on tropical regions' rainfall patterns in simulations.
Ravi Kumar Reddy Addula, Ingrid de Almeida Ribeiro, Valeria Molinero, and Baron Peters
Atmos. Chem. Phys., 24, 10833–10848, https://doi.org/10.5194/acp-24-10833-2024, https://doi.org/10.5194/acp-24-10833-2024, 2024
Short summary
Short summary
Ice nucleation from supercooled droplets is important in many weather and climate modeling efforts. For experiments where droplets are steadily supercooled from the freezing point, our work combines nucleation theory and survival probability analysis to predict the nucleation spectrum, i.e., droplet freezing probabilities vs. temperature. We use the new framework to extract approximately consistent rate parameters from experiments with different cooling rates and droplet sizes.
Jianhao Zhang, Yao-Sheng Chen, Takanobu Yamaguchi, and Graham Feingold
Atmos. Chem. Phys., 24, 10425–10440, https://doi.org/10.5194/acp-24-10425-2024, https://doi.org/10.5194/acp-24-10425-2024, 2024
Short summary
Short summary
Quantifying cloud response to aerosol perturbations presents a major challenge in understanding the human impact on climate. Using a large number of process-resolving simulations of marine stratocumulus, we show that solar heating drives a negative feedback mechanism that buffers the persistent negative trend in cloud water adjustment after sunrise. This finding has implications for the dependence of the cloud cooling effect on the timing of deliberate aerosol perturbations.
Aaron Wang, Steve Krueger, Sisi Chen, Mikhail Ovchinnikov, Will Cantrell, and Raymond A. Shaw
Atmos. Chem. Phys., 24, 10245–10260, https://doi.org/10.5194/acp-24-10245-2024, https://doi.org/10.5194/acp-24-10245-2024, 2024
Short summary
Short summary
We employ two methods to examine a laboratory experiment on clouds with both ice and liquid phases. The first assumes well-mixed properties; the second resolves the spatial distribution of turbulence and cloud particles. Results show that while the trends in mean properties generally align, when turbulence is resolved, liquid droplets are not fully depleted by ice due to incomplete mixing. This underscores the threshold of ice mass fraction in distinguishing mixed-phase clouds from ice clouds.
Theresa Kiszler, Davide Ori, and Vera Schemann
Atmos. Chem. Phys., 24, 10039–10053, https://doi.org/10.5194/acp-24-10039-2024, https://doi.org/10.5194/acp-24-10039-2024, 2024
Short summary
Short summary
Microphysical processes impact the phase-partitioning of clouds. In this study we evaluate these processes while focusing on low-level Arctic clouds. To achieve this we used an extensive simulation set in combination with a new diagnostic tool. This study presents our findings on the relevance of these processes and their behaviour under different thermodynamic regimes.
Shuaiqi Tang, Hailong Wang, Xiang-Yu Li, Jingyi Chen, Armin Sorooshian, Xubin Zeng, Ewan Crosbie, Kenneth L. Thornhill, Luke D. Ziemba, and Christiane Voigt
Atmos. Chem. Phys., 24, 10073–10092, https://doi.org/10.5194/acp-24-10073-2024, https://doi.org/10.5194/acp-24-10073-2024, 2024
Short summary
Short summary
We examined marine boundary layer clouds and their interactions with aerosols in the E3SM single-column model (SCM) for a case study. The SCM shows good agreement when simulating the clouds with high-resolution models. It reproduces the relationship between cloud droplet and aerosol particle number concentrations as produced in global models. However, the relationship between cloud liquid water and droplet number concentration is different, warranting further investigation.
Tim Lüttmer, Peter Spichtinger, and Axel Seifert
EGUsphere, https://doi.org/10.5194/egusphere-2024-2157, https://doi.org/10.5194/egusphere-2024-2157, 2024
Short summary
Short summary
We investigate ice formation pathways in idealized convective clouds using a novel microphysics scheme, that distinguishes between five ice classes each with their unique formation mechanism. Ice crystals from rime splintering forms the lowermost layer of ice crystals around the updraft core. The majority of ice crystals in the anvil of the convective cloud stems from frozen droplets. Ice stemming from homogeneous and deposition nucleation was only relevant in the overshoot.
Suf Lorian and Guy Dagan
Atmos. Chem. Phys., 24, 9323–9338, https://doi.org/10.5194/acp-24-9323-2024, https://doi.org/10.5194/acp-24-9323-2024, 2024
Short summary
Short summary
We examine the combined effect of aerosols and sea surface temperature (SST) on clouds under equilibrium conditions in cloud-resolving radiative–convective equilibrium simulations. We demonstrate that the aerosol–cloud interaction's effect on top-of-atmosphere energy gain strongly depends on the underlying SST, while the shortwave part of the spectrum is significantly more sensitive to SST. Furthermore, increasing aerosols influences upper-troposphere stability and thus anvil cloud fraction.
Jianqi Zhao, Xiaoyan Ma, Johannes Quaas, and Hailing Jia
Atmos. Chem. Phys., 24, 9101–9118, https://doi.org/10.5194/acp-24-9101-2024, https://doi.org/10.5194/acp-24-9101-2024, 2024
Short summary
Short summary
We explore aerosol–cloud interactions in liquid-phase clouds over eastern China and its adjacent ocean in winter based on the WRF-Chem–SBM model, which couples a spectral-bin microphysics scheme and an online aerosol module. Our study highlights the differences in aerosol–cloud interactions between land and ocean and between precipitation clouds and non-precipitation clouds, and it differentiates and quantifies their underlying mechanisms.
Ann Kristin Naumann, Monika Esch, and Bjorn Stevens
EGUsphere, https://doi.org/10.5194/egusphere-2024-2268, https://doi.org/10.5194/egusphere-2024-2268, 2024
Short summary
Short summary
This study explores how uncertainties in the representation of microphysical processes affect the tropical condensate distribution in the global storm-resolving model ICON. The results point to the importance of the fall speed of hydrometeor particles and to a simple relationship: the faster a condensate falls, the less there is of it. Implications for the energy balance and precipitation properties are discussed.
Shiye Huang, Jing Yang, Qian Chen, Jiaojiao Li, Qilin Zhang, and Fengxia Guo
EGUsphere, https://doi.org/10.5194/egusphere-2024-2013, https://doi.org/10.5194/egusphere-2024-2013, 2024
Short summary
Short summary
Aerosol and secondary ice production are both vital to charge separation in thunderstorms, but the relative importance of different SIP processes to cloud electrification under different aerosol conditions is not well understood. In this study, we show in a clean environment, the shattering of freezing drops has the greatest effect on the charging rate, while in a polluted environment, both rime splintering and the shattering of freezing drops have a significant effect on cloud electrification.
Thomas D. DeWitt and Timothy J. Garrett
Atmos. Chem. Phys., 24, 8457–8472, https://doi.org/10.5194/acp-24-8457-2024, https://doi.org/10.5194/acp-24-8457-2024, 2024
Short summary
Short summary
There is considerable disagreement on mathematical parameters that describe the number of clouds of different sizes as well as the size of the largest clouds. Both are key defining characteristics of Earth's atmosphere. A previous study provided an incorrect explanation for the disagreement. Instead, the disagreement may be explained by prior studies not properly accounting for the size of their measurement domain. We offer recommendations for how the domain size can be accounted for.
Sarah Wilson Kemsley, Paulo Ceppi, Hendrik Andersen, Jan Cermak, Philip Stier, and Peer Nowack
Atmos. Chem. Phys., 24, 8295–8316, https://doi.org/10.5194/acp-24-8295-2024, https://doi.org/10.5194/acp-24-8295-2024, 2024
Short summary
Short summary
Aiming to inform parameter selection for future observational constraint analyses, we incorporate five candidate meteorological drivers specifically targeting high clouds into a cloud controlling factor framework within a range of spatial domain sizes. We find a discrepancy between optimal domain size for predicting locally and globally aggregated cloud radiative anomalies and identify upper-tropospheric static stability as an important high-cloud controlling factor.
Ye Liu, Yun Qian, Larry K. Berg, Zhe Feng, Jianfeng Li, Jingyi Chen, and Zhao Yang
Atmos. Chem. Phys., 24, 8165–8181, https://doi.org/10.5194/acp-24-8165-2024, https://doi.org/10.5194/acp-24-8165-2024, 2024
Short summary
Short summary
Deep convection under various large-scale meteorological patterns (LSMPs) shows distinct precipitation features. In southeastern Texas, mesoscale convective systems (MCSs) contribute significantly to precipitation year-round, while isolated deep convection (IDC) is prominent in summer and fall. Self-organizing maps (SOMs) reveal convection can occur without large-scale lifting or moisture convergence. MCSs and IDC events have distinct life cycles influenced by specific LSMPs.
Xiaoran Guo, Jianping Guo, Tianmeng Chen, Ning Li, Fan Zhang, and Yuping Sun
Atmos. Chem. Phys., 24, 8067–8083, https://doi.org/10.5194/acp-24-8067-2024, https://doi.org/10.5194/acp-24-8067-2024, 2024
Short summary
Short summary
The prediction of downhill thunderstorms (DSs) remains elusive. We propose an objective method to identify DSs, based on which enhanced and dissipated DSs are discriminated. A radar wind profiler (RWP) mesonet is used to derive divergence and vertical velocity. The mid-troposphere divergence and prevailing westerlies enhance the intensity of DSs, whereas low-level divergence is observed when the DS dissipates. The findings highlight the key role that an RWP mesonet plays in the evolution of DSs.
Sina Hofer, Klaus Gierens, and Susanne Rohs
Atmos. Chem. Phys., 24, 7911–7925, https://doi.org/10.5194/acp-24-7911-2024, https://doi.org/10.5194/acp-24-7911-2024, 2024
Short summary
Short summary
We try to improve the forecast of ice supersaturation (ISS) and potential persistent contrails using data on dynamical quantities in addition to temperature and relative humidity in a modern kind of regression model. Although the results are improved, they are not good enough for flight routing. The origin of the problem is the strong overlap of probability densities conditioned on cases with and without ice-supersaturated regions (ISSRs) in the important range of 70–100 %.
Harri Kokkola, Juha Tonttila, Silvia Calderón, Sami Romakkaniemi, Antti Lipponen, Aapo Peräkorpi, Tero Mielonen, Edward Gryspeerdt, Timo H. Virtanen, Pekka Kolmonen, and Antti Arola
EGUsphere, https://doi.org/10.5194/egusphere-2024-1964, https://doi.org/10.5194/egusphere-2024-1964, 2024
Short summary
Short summary
Understanding how atmospheric aerosols affect clouds is a scientific challenge. One question is how aerosols affects the amount cloud water. We used a cloud-scale model to study these effects on marine clouds. The study showed that variations in cloud properties and instrument noise can cause bias in satellite derived cloud water content. However, our results suggest that for similar weather conditions with well-defined aerosol concentrations, satellite data can reliably track these effects.
Claudia Christine Stephan and Bjorn Stevens
EGUsphere, https://doi.org/10.5194/egusphere-2024-2020, https://doi.org/10.5194/egusphere-2024-2020, 2024
Short summary
Short summary
Tropical precipitation cluster area and intensity distributions follow power laws, but the physical processes responsible for this behavior remain unknown. We analyze global simulations that realistically represent precipitation processes. We consider Earth-like planets as well as virtual planets to realize different types of large-scale dynamics. Our finding is that power laws in Earth’s precipitation cluster statistics stem from the robust power laws in Earth’s atmospheric wind field.
Luís Filipe Escusa dos Santos, Hannah C. Frostenberg, Alejandro Baró Pérez, Annica M. L. Ekman, Luisa Ickes, and Erik S. Thomson
EGUsphere, https://doi.org/10.5194/egusphere-2024-1891, https://doi.org/10.5194/egusphere-2024-1891, 2024
Short summary
Short summary
The Arctic is experiencing enhanced surface warming. The observed decline in Arctic sea-ice extent is projected to lead to an increase in Arctic shipping activity which may lead to further climatic feedbacks. We investigate, using an atmospheric model and results from marine engine experiments which focused on fuel sulfur content reduction and exhaust wet scrubbing, how ship exhaust particles influence the properties of Arctic clouds. Implications for radiative surface processes are discussed.
Naser Mahfouz, Johannes Mülmenstädt, and Susannah Burrows
Atmos. Chem. Phys., 24, 7253–7260, https://doi.org/10.5194/acp-24-7253-2024, https://doi.org/10.5194/acp-24-7253-2024, 2024
Short summary
Short summary
Climate models are our primary tool to probe past, present, and future climate states unlike the more recent observation record. By constructing a hypothetical model configuration, we show that present-day correlations are insufficient to predict a persistent uncertainty in climate projection (how much sun because clouds will reflect in a changing climate). We hope our result will contribute to the scholarly conversation on better utilizing observations to constrain climate uncertainties.
Britta Schäfer, Robert Oscar David, Paraskevi Georgakaki, Julie Thérèse Pasquier, Georgia Sotiropoulou, and Trude Storelvmo
Atmos. Chem. Phys., 24, 7179–7202, https://doi.org/10.5194/acp-24-7179-2024, https://doi.org/10.5194/acp-24-7179-2024, 2024
Short summary
Short summary
Mixed-phase clouds, i.e., clouds consisting of ice and supercooled water, are very common in the Arctic. However, how these clouds form is often not correctly represented in standard weather models. We show that both ice crystal concentrations in the cloud and precipitation from the cloud can be improved in the model when aerosol concentrations are prescribed from observations and when more processes for ice multiplication, i.e., the production of new ice particles from existing ice, are added.
Nan Sun, Gaopeng Lu, and Yunfei Fu
Atmos. Chem. Phys., 24, 7123–7135, https://doi.org/10.5194/acp-24-7123-2024, https://doi.org/10.5194/acp-24-7123-2024, 2024
Short summary
Short summary
Microphysical characteristics of convective overshooting are essential but poorly understood, and we examine them by using the latest data. (1) Convective overshooting events mainly occur over NC (Northeast China) and northern MEC (Middle and East China). (2) Radar reflectivity of convective overshooting over NC accounts for a higher proportion below the zero level, while the opposite is the case for MEC and SC (South China). (3) Droplets of convective overshooting are large but sparse.
Liu Yang, Saisai Ding, Jing-Wu Liu, and Su-Ping Zhang
Atmos. Chem. Phys., 24, 6809–6824, https://doi.org/10.5194/acp-24-6809-2024, https://doi.org/10.5194/acp-24-6809-2024, 2024
Short summary
Short summary
Advection fog occurs when warm and moist air moves over a cold sea surface. In this situation, the temperature of the foggy air usually drops below the sea surface temperature (SST), particularly at night. High-resolution simulations show that the cooling effect of longwave radiation from the top of the fog layer permeates through the fog, resulting in a cooling of the surface air below SST. This study emphasizes the significance of monitoring air temperature to enhance sea fog forecasting.
Nadja Omanovic, Sylvaine Ferrachat, Christopher Fuchs, Jan Henneberger, Anna J. Miller, Kevin Ohneiser, Fabiola Ramelli, Patric Seifert, Robert Spirig, Huiying Zhang, and Ulrike Lohmann
Atmos. Chem. Phys., 24, 6825–6844, https://doi.org/10.5194/acp-24-6825-2024, https://doi.org/10.5194/acp-24-6825-2024, 2024
Short summary
Short summary
We present simulations with a high-resolution numerical weather prediction model to study the growth of ice crystals in low clouds following glaciogenic seeding. We show that the simulated ice crystals grow slower than observed and do not consume as many cloud droplets as measured in the field. This may have implications for forecasting precipitation, as the ice phase is crucial for precipitation at middle and high latitudes.
Matthew W. Christensen, Peng Wu, Adam C. Varble, Heng Xiao, and Jerome D. Fast
Atmos. Chem. Phys., 24, 6455–6476, https://doi.org/10.5194/acp-24-6455-2024, https://doi.org/10.5194/acp-24-6455-2024, 2024
Short summary
Short summary
Clouds are essential to keep Earth cooler by reflecting sunlight back to space. We show that an increase in aerosol concentration suppresses precipitation in clouds, causing them to accumulate water and expand in a polluted environment with stronger turbulence and radiative cooling. This process enhances their reflectance by 51 %. It is therefore prudent to account for cloud fraction changes in assessments of aerosol–cloud interactions to improve predictions of climate change.
Jing Yang, Shiye Huang, Tianqi Yang, Qilin Zhang, Yuting Deng, and Yubao Liu
Atmos. Chem. Phys., 24, 5989–6010, https://doi.org/10.5194/acp-24-5989-2024, https://doi.org/10.5194/acp-24-5989-2024, 2024
Short summary
Short summary
This study contributes to filling the dearth of understanding the impacts of different secondary ice production (SIP) processes on the cloud electrification in cold-season thunderstorms. The results suggest that SIP, especially the rime-splintering process and the shattering of freezing drops, has significant impacts on the charge structure of the storm. In addition, the modeled radar composite reflectivity and flash rate are improved after implementing the SIP processes in the model.
Ulrike Proske, Sylvaine Ferrachat, and Ulrike Lohmann
Atmos. Chem. Phys., 24, 5907–5933, https://doi.org/10.5194/acp-24-5907-2024, https://doi.org/10.5194/acp-24-5907-2024, 2024
Short summary
Short summary
Climate models include treatment of aerosol particles because these influence clouds and radiation. Over time their representation has grown increasingly detailed. This complexity may hinder our understanding of model behaviour. Thus here we simplify the aerosol representation of our climate model by prescribing mean concentrations, which saves run time and helps to discover unexpected model behaviour. We conclude that simplifications provide a new perspective for model study and development.
Wenhui Zhao, Yi Huang, Steven Siems, Michael Manton, and Daniel Harrison
Atmos. Chem. Phys., 24, 5713–5736, https://doi.org/10.5194/acp-24-5713-2024, https://doi.org/10.5194/acp-24-5713-2024, 2024
Short summary
Short summary
We studied how shallow clouds and rain behave over the Great Barrier Reef (GBR) using a detailed weather model. We found that the shape of the land, especially mountains, and particles in the air play big roles in influencing these clouds. Surprisingly, the sea's temperature had a smaller effect. Our research helps us understand the GBR's climate and how various factors can influence it, where the importance of the local cloud in thermal coral bleaching has recently been identified.
Sidiki Sanogo, Olivier Boucher, Nicolas Bellouin, Audran Borella, Kevin Wolf, and Susanne Rohs
Atmos. Chem. Phys., 24, 5495–5511, https://doi.org/10.5194/acp-24-5495-2024, https://doi.org/10.5194/acp-24-5495-2024, 2024
Short summary
Short summary
Relative humidity relative to ice (RHi) is a key variable in the formation of cirrus clouds and contrails. This study shows that the properties of the probability density function of RHi differ between the tropics and higher latitudes. In line with RHi and temperature variability, aircraft are likely to produce more contrails with bioethanol and liquid hydrogen as fuel. The impact of this fuel change decreases with decreasing pressure levels but increases from high latitudes to the tropics.
Zane Dedekind, Ulrike Proske, Sylvaine Ferrachat, Ulrike Lohmann, and David Neubauer
Atmos. Chem. Phys., 24, 5389–5404, https://doi.org/10.5194/acp-24-5389-2024, https://doi.org/10.5194/acp-24-5389-2024, 2024
Short summary
Short summary
Ice particles precipitating into lower clouds from an upper cloud, the seeder–feeder process, can enhance precipitation. A numerical modeling study conducted in the Swiss Alps found that 48 % of observed clouds were overlapping, with the seeder–feeder process occurring in 10 % of these clouds. Inhibiting the seeder–feeder process reduced the surface precipitation and ice particle growth rates, which were further reduced when additional ice multiplication processes were included in the model.
Marje Prank, Juha Tonttila, Xiaoxia Shang, Sami Romakkaniemi, and Tomi Raatikainen
EGUsphere, https://doi.org/10.5194/egusphere-2024-876, https://doi.org/10.5194/egusphere-2024-876, 2024
Short summary
Short summary
Large primary bioparticles such as pollen can be abundant in the atmosphere. In humid conditions pollens can rupture and release a large number of fine sub-pollen particles (SPPs). The paper investigates what kind of birch pollen concentrations are needed for the pollen and SPPs to start playing a noticeable role in cloud processes and alter precipitation formation. In the studied cases only the largest observed pollen concentrations were able to noticeably alter the precipitation formation.
Liine Heikkinen, Daniel G. Partridge, Sara Blichner, Wei Huang, Rahul Ranjan, Paul Bowen, Emanuele Tovazzi, Tuukka Petäjä, Claudia Mohr, and Ilona Riipinen
Atmos. Chem. Phys., 24, 5117–5147, https://doi.org/10.5194/acp-24-5117-2024, https://doi.org/10.5194/acp-24-5117-2024, 2024
Short summary
Short summary
The organic vapor condensation with water vapor (co-condensation) in rising air below clouds is modeled in this work over the boreal forest because the forest air is rich in organic vapors. We show that the number of cloud droplets can increase by 20 % if considering co-condensation. The enhancements are even larger if the air contains many small, naturally produced aerosol particles. Such conditions are most frequently met in spring in the boreal forest.
Kevin Wolf, Nicolas Bellouin, and Olivier Boucher
Atmos. Chem. Phys., 24, 5009–5024, https://doi.org/10.5194/acp-24-5009-2024, https://doi.org/10.5194/acp-24-5009-2024, 2024
Short summary
Short summary
The contrail formation potential and its tempo-spatial distribution are estimated for the North Atlantic flight corridor. Meteorological conditions of temperature and relative humidity are taken from the ERA5 re-analysis and IAGOS. Based on IAGOS flight tracks, crossing length, size, orientation, frequency of occurrence, and overlap of persistent contrail formation areas are determined. The presented conclusions might provide a guide for statistical flight track optimization to reduce contrails.
Franziska Hellmuth, Tim Carlsen, Anne Sophie Daloz, Robert Oscar David, and Trude Storelvmo
EGUsphere, https://doi.org/10.5194/egusphere-2024-754, https://doi.org/10.5194/egusphere-2024-754, 2024
Short summary
Short summary
This article compares the occurrence of supercooled liquid-containing clouds (sLCCs) and their link to surface snowfall in CloudSat-CALIPSO, ERA5, and CMIP6 models. Significant discrepancies were found, with ERA5 and CMIP6 consistently overestimating sLCC and snowfall frequency. This bias is likely due to cloud microphysics parameterization. This conclusion has implications for accurately representing cloud phase and snowfall in future climate projections.
Lucas J. Sterzinger and Adele L. Igel
Atmos. Chem. Phys., 24, 3529–3540, https://doi.org/10.5194/acp-24-3529-2024, https://doi.org/10.5194/acp-24-3529-2024, 2024
Short summary
Short summary
Using idealized large eddy simulations, we find that clouds forming in the Arctic in environments with low concentrations of aerosol particles may be sustained by mixing in new particles through the cloud top. Observations show that higher concentrations of these particles regularly exist above cloud top in concentrations that are sufficient to promote this sustenance.
Andreas Bier, Simon Unterstrasser, Josef Zink, Dennis Hillenbrand, Tina Jurkat-Witschas, and Annemarie Lottermoser
Atmos. Chem. Phys., 24, 2319–2344, https://doi.org/10.5194/acp-24-2319-2024, https://doi.org/10.5194/acp-24-2319-2024, 2024
Short summary
Short summary
Using hydrogen as aviation fuel affects contrails' climate impact. We study contrail formation behind aircraft with H2 combustion. Due to the absence of soot emissions, contrail ice crystals are assumed to form only on ambient particles mixed into the plume. The ice crystal number, which strongly varies with temperature and aerosol number density, is decreased by more than 80 %–90 % compared to kerosene contrails. However H2 contrails can form at lower altitudes due to higher H2O emissions.
Prasanth Prabhakaran, Fabian Hoffmann, and Graham Feingold
Atmos. Chem. Phys., 24, 1919–1937, https://doi.org/10.5194/acp-24-1919-2024, https://doi.org/10.5194/acp-24-1919-2024, 2024
Short summary
Short summary
In this study, we explore the impact of deliberate aerosol perturbation in the northeast Pacific region using large-eddy simulations. Our results show that cloud reflectivity is sensitive to the aerosol sprayer arrangement in the pristine system, whereas in the polluted system it is largely proportional to the total number of aerosol particles injected. These insights would aid in assessing the efficiency of various aerosol injection strategies for climate intervention applications.
Cited articles
Adams, A. M., Prospero, J. M., and Zhang, C.: CALIPSO-Derived
Three-Dimensional Structure of Aerosol over the Atlantic Basin and Adjacent
Continents, J. Climate, 25, 6862–6879, https://doi.org/10.1175/JCLI-D-11-00672.1, 2012.
Albrecht, B. A.: Aerosols, Cloud Microphysics, and Fractional Cloudiness,
Science, 245, 1227–1230, https://doi.org/10.1126/science.245.4923.1227, 1989.
Altaratz, O., Koren, I., Reisin, T., Kostinski, A., Feingold, G., Levin, Z., and Yin, Y.: Aerosols' influence on the interplay between condensation, evaporation and rain in warm cumulus cloud, Atmos. Chem. Phys., 8, 15–24, https://doi.org/10.5194/acp-8-15-2008, 2008.
Andreae, M. O., Chapuis, A., Cros, B., Fontan, J., Helas, G., Justice, C.,
Kaufman, Y. J., Minga, A., and Nganga, D.: Ozone and Aitken nuclei over
equatorial Africa: Airborne observations during DECAFE 88, J. Geophys. Res.,
97, 6137–6148, https://doi.org/10.1029/91JD00961, 1992.
Andreae, M. O., Rosenfeld, D., Artaxo, P., Costa, A. A., Frank, G. P.,
Longo, K. M., and Silva-Dias, M. A. F.: Smoking Rain Clouds over the Amazon,
Science, 303, 1337–1342, https://doi.org/10.1126/science.1092779, 2004.
Atwater, M. A.: Planetary Albedo Changes Due to Aerosols, Science, 170,
64–66, https://doi.org/10.1126/science.170.3953.64, 1970.
Azorin-Molina, C., Tijm, S., Ebert, E. E., Vicente-Serrano, S. M., and
Estrela, M. J.: Sea breeze Thunderstorms in the Eastern Iberian Peninsula.
Neighborhood Verification of HIRLAM and HARMONIE Precipitation Forecasts,
Atmos. Res., 139, 101–115, https://doi.org/10.1016/j.atmosres.2014.01.010, 2014.
Banta, R. M., Pichugina, Y. L., Brewer, W. A., Choukulkar, A., Lantz, K. O.,
Olson, J. B., Kenyon, J., Fernando, H. J. S., Krishnamurthy, R., Stoelinga,
M. J., Sharp, J., Darby, L. S., Turner, D. D., Baidar, S., and Sandberg, S.
P.: Characterizing NWP Model Errors Using Doppler-Lidar Measurements of
Recurrent Regional Diurnal Flows: Marine-Air Intrusions into the Columbia
River Basin, Mon. Weather Rev., 148, 929–953, https://doi.org/10.1175/MWR-D-19-0188.1, 2020.
Bergemann, M. and Jakob, C.: How Important is Tropospheric Humidity for
Coastal Rainfall in the Tropics?, Geophys. Res. Lett., 43, 5860–5868,
https://doi.org/10.1002/2016GL069255, 2016.
Bergemann, M., Khouider, B., and Jakob, C.: Coastal Tropical Convection in a
Stochastic Modeling Framework, J. Adv. Model. Earth Sy., 9, 2561–2582,
https://doi.org/10.1002/2017MS001048, 2017.
Boyle, J. and Klein, S. A.: Impact of Horizontal Resolution on Climate Model
forecasts of Tropical Precipitation and Diabatic Heating for the TWP-ICE
Period, J. Geophys. Res., 115, D23113, https://doi.org/10.1029/2010JD014262, 2010.
Brown, A. L., Vincent, C. L., Lane, T. P., Short, E., and Nguyen, H.:
Scatterometer Estimates of the Tropical Sea-Breeze Circulation near Darwin,
with Comparison to Regional Models, Q. J. Roy. Meteor. Soc., 143, 2818–2831,
https://doi.org/10.1002/qj.3131, 2017.
Chakraborty, S., Fu, R., Wright, J. S., and Massie, S. T.: Relationships
between convective structure and transport of aerosols to the upper
troposphere deduced from satellite observations, J. Geophys. Res.-Atmos.,
120, 6515–6536, https://doi.org/10.1002/2015JD023528, 2015.
Charlson, R. J. and Pilat, M. J.: Climate: The Influence of Aerosols, J.
Appl. Meteorol. Clim., 8, 1001–1002, https://doi.org/10.1175/1520-0450(1969)008<1001:CTIOA>2.0.CO;2, 1969.
Chen, G., Zhu, X., Sha, W., Iwasaki, T., Seko, H., Saito, K., Iwai, H., and
Ishii, S.: Toward Improved Forecasts of Sea-Breeze Horizontal Convective
Rolls at Super High Resolutions. Part I: Configuration and Verification of a
Down-Scaling Simulation System (DS3), Mon. Weather Rev., 143, 1849–1872,
https://doi.org/10.1175/MWR-D-14-00212.1, 2015.
Coakley Jr., J. A., Cess, R. D., and Yurevich, F. B.: The Effect of
Tropospheric Aerosols on the Earth's Radiation Budget: A Parameterization
for Climate Models, J. Atmos. Sci., 40, 116–138, https://doi.org/10.1175/1520-0469(1983)040<0116:TEOTAO>2.0.CO;2, 1983.
Cotton, W. R., Pielke Sr., R. A., Walko, R. L., Liston, G. E., Tremback, C.
J., Jiang, H., McAnelly, R. L., Harrington, J. Y., Nicholls, M. E., Carrio,
G. G., and McFadden, J. P.: RAMS 2001: Current Status and Future Directions,
Meteorol. Atmos. Phys., 82, 5–29, https://doi.org/10.1007/s00703-001-0584-9, 2003.
Crosman, E. T. and Horel, J. D.: Sea and Lake Breezes: A Review of Numerical
Studies, Bound.-Lay. Meteorol., 137, 1–29,
https://doi.org/10.1007/s10546-010-9517-9, 2010.
Dagan, G., Koren, I., Altaratz, O., and Heiblum, R. H.: Time-dependent, non-monotonic response of warm convective cloud fields to changes in aerosol loading, Atmos. Chem. Phys., 17, 7435–7444, https://doi.org/10.5194/acp-17-7435-2017, 2017.
DeMott, P. J., Prenni, A. J., Liu, X., Kreidenweis, S. M., Petters, M. D., Twohy, C. H., Richardson, M. S., Eidhammer, T., and Rogers, D. C.: Predicting global atmospheric ice nuclei distributions and their impacts on climate, Proc. Natl. Acad. Sci. USA, 107, 11217–11222, https://doi.org/10.1073/pnas.0910818107, 2010.
Drager, A. J., Grant, L. D., and van den Heever, S. C.: Cold Pool Responses
to Changes in Soil Moisture, J. Adv. Model. Earth Sy., 12, e2019MS001922, https://doi.org/10.1029/2019MS001922, 2020.
Emanuel, K. A.: Atmospheric Convection, 1st edn., Oxford University Press, ISBN 978-0-19-506630-2, 1994.
Fan, J., Yuan, T., Comstock, J. M., Ghan, S., Khain, A., Leung, L. R., Li,
Z., Martins, V. J., and Ovchinnikov, M.: Dominant Role by Vertical Wind
Shear in Regulating Aerosol Effects on Deep Convective Clouds, J. Geophys.
Res., 114, D22206, https://doi.org/10.1029/2009JD012352, 2009.
Fan, J., Rosenfeld, D., Zhang, Y., Giangrande, S. E., Li, Z., Machado, L. A.
T., Martin, S. T., Yang, Y., Wang, J., Artaxo, P., Barbosa, H. M. J., Braga,
R. C., Comstock, J. M., Feng, Z., Gao, W., Gomes, H. B., Mei, F.,
Pöhlker, C., Pöhlker, M. L., Pöschl, U., and de Souza, R. A. F.:
Substantial Convection and Precipitation Enhancements by Ultrafine Aerosol
Particles, Science, 359, 411–418, https://doi.org/10.1126/science.aan8461, 2018.
Feingold, G., Tzivion (Tzitzvashvili), S., and Leviv, Z.: Evolution of
Raindrop Spectra. Part I: Solution to the Stochastic Collection/Breakup
Equation Using the Method of Moments, J. Atmos. Sci., 45, 3387–3399, https://doi.org/10.1175/1520-0469(1988)045<3387:EORSPI>2.0.CO;2, 1988.
Feingold, G., Walko, R. L., Stevens, B., and Cotton, W. R.: Simulations of
marine stratocumulus using a new microphysical parameterization scheme,
Atmos. Res., 47–48, 505–528, https://doi.org/10.1016/S0169-8095(98)00058-1, 1998.
Feingold, G., Jiang, H., and Harrington, J. Y.: On smoke suppression of clouds in Amazonia, Geophys. Res. Lett., 32, L02804, https://doi.org/10.1029/2004GL021369, 2005.
Feingold, G., McComiskey, A., Yamaguchi, T., Johnson, J. S., Carslaw, K. S.,
and Schmidt, K. S.: New approaches to quantifying aerosol influence on the
cloud radiative effect, P. Natl. Acad. Sci. USA, 113, 5812–5819,
https://doi.org/10.1073/pnas.1514035112, 2016.
Giangrande, S. E., Bartholomew, M. J., Pope, M., Collis, S., and Jensen, M.
P.: A Summary of Precipitation Characteristics from the 2006-11 Northern
Australian Wet Seasons as Revealed by ARM Disdrometer Research Facilities
(Darwin, Australia), J. Appl. Meteorol. Clim., 53, 1213–1231, https://doi.org/10.1175/JAMC-D-13-0222.1, 2014.
Glassmeier, F., Hoffmann, F., Johnson, J. S., Yamaguchi, T., Carslaw, K. S., and Feingold, G.: An emulator approach to stratocumulus susceptibility, Atmos. Chem. Phys., 19, 10191–10203, https://doi.org/10.5194/acp-19-10191-2019, 2019.
Grabowski, W. W. and Morrison, H.: Untangling Microphysical Impacts on Deep
Convection Applying a Novel Modeling Methodology. Part II: Double-Moment
Microphysics, J. Atmos. Sci., 73, 3749–3770, https://doi.org/10.1175/JAS-D-15-0367.1, 2016.
Grabowski, W. W. and Morrison, H.: Do Ultrafine Cloud Condensation Nuclei
Invigorate Deep Convection?, J. Atmos. Sci., 77, 2567–2583, https://doi.org/10.1175/JAS-D-20-0012.1, 2020.
Grant, L. D. and van den Heever, S. C.: Aerosol-Cloud-Land Surface Interactions within Tropical Sea Breeze Convection, J. Geophys. Res.-Atmos., 119, 8340–8361, https://doi.org/10.1002/2014JD021912, 2014.
Grant, L. D. and van den Heever, S. C.: Cold Pool and Precipitation
Responses to Aerosol Loading: Modulation by Dry Layers, J. Atmos. Sci, 72,
1398–1408, https://doi.org/10.1175/JAS-D-14-0260.1, 2015.
Hadi, T. W., Horinouchi, T., Tsuda, T., Hashiguchi, H., and Fukao, S.:
Sea-Breeze Circulation over Jakarta, Indonesia: A Climatology Based on
Boundary Layer Radar Observations, Mon. Weather Rev., 130, 2153–2166, 2002.
Harrington, J. Y.: The effects of Radiative and Microphysical Processes on
Simulation of Warm and Transition Season Arctic Stratus, Colorado State
University, 9819393, 1997.
Hill, G. E.: Factors Controlling the Size and Spacing of Cumulus Clouds as
Revealed by Numerical Experiments, J. Atmos. Sci., 31, 646–673, https://doi.org/10.1175/1520-0469(1974)031<0646:FCTSAS>2.0.CO;2, 1974.
Hohenegger, C. and Stevens, B.: The role of the permanent wilting point in
controlling the spatial distribution of precipitation, P. Natl. Acad. Sci. USA, 115, 5692, https://doi.org/10.1073/pnas.1718842115, 2018.
Igel, A. L. and van den Heever, S. C.: Invigoration or Enervation of
Convective Clouds by Aerosols?, Geophys. Res. Lett., 48, e2021GL093804, https://doi.org/10.1029/2021GL093804, 2021.
Igel, A. L., van den Heever, S. C., and Johnson, J. S.: Meteorological and
Land Surface Properties Impacting Sea Breeze Extent and Aerosol Distribution
in a Dry Environment: Factors Impacting Sea Breezes, J. Geophys. Res.-Atmos., 123, 22–37, https://doi.org/10.1002/2017JD027339, 2018.
Jiang, H. and Feingold, G.: Effect of aerosol on warm convective clouds:
Aerosol-Cloud-Surface Flux Feedbacks in a New Coupled Large Eddy Model, J.
Geophys. Res., 111, D01202, https://doi.org/10.1029/2005JD006138, 2006.
Johnson, J. S., Cui, Z., Lee, L. A., Gosling, J. P., Blyth, A. M., and Carslaw, K. S.: Evaluating uncertainty in convective cloud microphysics using statistical emulation, J. Adv. Model. Earth Syst., 7, 162–187, https://doi.org/10.1002/2014MS000383, 2015
Kacarab, M., Thornhill, K. L., Dobracki, A., Howell, S. G., O'Brien, J. R., Freitag, S., Poellot, M. R., Wood, R., Zuidema, P., Redemann, J., and Nenes, A.: Biomass burning aerosol as a modulator of the droplet number in the southeast Atlantic region, Atmos. Chem. Phys., 20, 3029–3040, https://doi.org/10.5194/acp-20-3029-2020, 2020.
Keenan, T. D. and Carbone, R. E.: Propagation and Diurnal Evolution of Warm
Season Cloudiness in the Australian and Maritime Continent Region, Mon.
Weather Rev., 136, 973–994, https://doi.org/10.1175/2007MWR2152.1, 2008.
Khain, A., Rosenfeld, D., and Pokrovsky, A.: Aerosol Impact on the Dynamics
and Microphysics of Deep Convective Clouds, Q. J. Roy. Meteor. Soc., 131,
2639-2663, https://doi.org/10.1256/qj.04.62, 2005.
Khain, A. P., BenMoshe, N., and Pokrovsky, A.: Factors Determining the
Impact of Aerosols on Surface Precipitation from Clouds: An Attempt at
Classification, J. Atmos. Sci., 65, 1721–1748, https://doi.org/10.1175/2007jas2515.1, 2008.
Kidd, C., Dawkins, E., and Huffman, G.: Comparison of Precipitation Derived
from the ECMWF Operational Forecast Model and Satellite Precipitation
Datasets, J. Hydrometeorol., 14, 1463–1482, https://doi.org/10.1175/JHM-D-12-0182.1, 2013.
Klemp, J. B. and Wilhelmson, R. B.: The Simulation of Three-Dimensional
Convective Storm Dynamics, J. Atmos. Sci., 35, 1070–1096, https://doi.org/10.1175/1520-0469(1978)035<1070:TSOTDC>2.0.CO;2, 1978.
Kogan, Y. and Martin, W. J.: Parameterization of Bulk Condensation in
Numerical Cloud Models, J. Atmos. Sci., 51, 1728–1739, https://doi.org/10.1175/1520-0469(1994)051<1728:POBCIN>2.0.CO;2, 1994.
Koren, I., Kaufman, Y. J., Remer, L. A., and Martins, J. V.: Measurement of the Effect of Amazon Smoke on Inhibition of Cloud Formation, Science, 303, 1342–1345, https://doi.org/10.1126/science.1089424, 2004.
Koren, I., Kaufman, Y. J., Rosenfeld, D., Remer, L. A., and Rudich, Y.:
Aerosol Invigoration and Restructuring of Atlantic Convective Clouds,
Geophys. Res. Lett., 32, L14828, https://doi.org/10.1029/2005GL023187, 2005.
Lebo, Z. J. and Morrison, H.: Dynamical Effects of Aerosol Perturbations on
Simulated Idealized Squall Lines, Mon. Weather Rev., 142, 991–1009,
https://doi.org/10.1175/MWR-D-13-00156.1, 2014.
Lee, L. A., Carslaw, K. S., Pringle, K. J., Mann, G. W., and Spracklen, D. V.: Emulation of a complex global aerosol model to quantify sensitivity to uncertain parameters, Atmos. Chem. Phys., 11, 12253–12273, https://doi.org/10.5194/acp-11-12253-2011, 2011.
Lee, S. S., Donner, L. J., Phillips, V. T. J., and Ming, Y.: The Dependence
of Aerosol Effects on Clouds and Precipitation on Cloud-System Organization,
Shear and Stability, J. Geophys. Res., 113, D16202, https://doi.org/10.1029/2007JD009224, 2008.
Lee, T. J.: The Impact of Vegetation on the Atmospheric Boundary Layer and
Convective Storms, Colorado State University, https://mountainscholar.org/bitstream/handle/10217/234871/FACF_0509_Bluebook_DIP.pdf?sequence=1 (last access: 1 July 2021), 1992.
Liu, H., Guo, J., Koren, I., Altaratz, O., Dagan, G., Wang, Y., Jiang, J. H., Zhai, P., and Yung, Y. L.:
Non-Monotonic Aerosol Effect on Precipitation in Convective Clouds over Tropical Oceans, Sci. Rep., 9, 7809, https://doi.org/10.1038/s41598-019-44284-2, 2019.
Marinescu, P. J., van den Heever, S. C., Saleeby, S. M., Kreidenweis, S. M.,
and DeMott, P. J.: The Microphysical Roles of Lower-Tropospheric versus
Midtropospheric Aerosol Particles in Mature-Stage MCS Precipitation, J.
Atmos. Sci., 74, 3657–3678, https://doi.org/10.1175/JAS-D-16-0361.1, 2017.
Marinescu, P. J., van den Heever, S. C., Heikenfeld, M., Barrett, A. I.,
Barthlott, C., Hoose, C., Fan, J., Fridlind, A. M., Matsui, T.,
Miltenberger, A. K., Stier, P., Vie, B., White, B. A., and Zhang, Y.:
Impacts of Varying Concentrations of Cloud Condensation Nuclei on Deep
Convective Cloud Updrafts-A Multimodel Assessment, J. Atmos. Sci., 78,
1147–1172, https://doi.org/10.1175/JAS-D-20-0200.1, 2021.
Marshall, L., Johnson, J. S., Mann, G. W., Lee, L., Dhomse, S. S., Regayre,
L., Yoshioka, M., Carslaw, K. S., and Schmidt, A.: Exploring How Eruption
Source Parameters Affect Volcanic Radiative Forcing Using Statistical
Emulation, J. Geophys. Res.-Atmos., 124, 964–985, https://doi.org/10.1029/2018JD028675, 2019.
McCormick, R. A. and Ludwig, J. H.: Climate Modification by Atmospheric
Aerosols, Science, 156, 1358–1359, https://doi.org/10.1126/science.156.3780.1358, 1967.
Menut, L., Flamant, C., Turquety, S., Deroubaix, A., Chazette, P., and Meynadier, R.: Impact of biomass burning on pollutant surface concentrations in megacities of the Gulf of Guinea, Atmos. Chem. Phys., 18, 2687–2707, https://doi.org/10.5194/acp-18-2687-2018, 2018.
Mesinger, F. and Arakawa, A.: Numerical methods used in atmospheric models,
WMO/ICSU Joint Organizing Committee, 64 pp., https://library.wmo.int/index.php?lvl=notice_display&id=6944#.YtXhTcHMKgI (last access: 1 July 2021), 1976.
Meyers, M. P., Walko, R. L., Harrington, J. Y., and Cotton, W. R.: New RAMS
cloud Microphysics Parameterization. Part II: The Two-Moment Scheme, Atmos.
Res., 45, 3–39, https://doi.org/10.1016/S0169-8095(97)00018-5, 1997.
Miller, S. T. K., Keim, B. D., Talbot, R. W., and Mao, H.: Sea breeze:
Structure, forecasting, and impacts, Rev. Geophys., 41, 1011, https://doi.org/10.1029/2003RG000124, 2003.
Miltenberger, A. K., Field, P. R., Hill, A. A., Rosenberg, P., Shipway, B. J., Wilkinson, J. M., Scovell, R., and Blyth, A. M.: Aerosol–cloud interactions in mixed-phase convective clouds – Part 1: Aerosol perturbations, Atmos. Chem. Phys., 18, 3119–3145, https://doi.org/10.5194/acp-18-3119-2018, 2018.
Mitchell Jr., J. M.: The Effect of Atmospheric Aerosols on Climate with
Special Reference to Temperature near the Earth's Surface, J. Appl.
Meteorol. Clim., 10, 703–714, https://doi.org/10.1175/1520-0450(1971)010<0703:TEOAAO>2.0.CO;2, 1971.
Morris, M. D. and Mitchell, T. J.: Exploratory designs for computational
experiments, J. Stat. Plan. Infer., 43, 381–402, https://doi.org/10.1016/0378-3758(94)00035-T, 1995.
Nesbitt, S. W. and Zipser, E. J.: The Diurnal Cycle of Rainfall and
Convective Intensity according to Three Years of TRMM Measurements, J.
Climate, 16, 1456–1475, https://doi.org/10.1175/1520-0442(2003)016<1456:TDCORA>2.0.CO;2, 2003.
Niyogi, D., Chang, H.-I., Chen, F., Gu, L., Kumar, A., Menon, S., and
Pielke Sr., R. A.: Potential impacts of aerosol–land–atmosphere interactions on the Indian monsoonal rainfall characteristics, Nat. Hazards, 42, 345–359, https://doi.org/10.1007/s11069-006-9085-y, 2007.
O'Hagan, A.: Bayesian analysis of computer code outputs: A tutorial, Reliab.
Eng. Syst. Safe., 91, 1290–1300, https://doi.org/10.1016/j.ress.2005.11.025, 2006.
Park, J. M., van den Heever, S. C., Igel, A. L., Grant, L. D., Johnson, J.
S., Saleeby, S. M., Miller, S. D., and Reid, J. S.: Data associated with “Environmental controls on tropical sea breeze convection and resulting aerosol redistribution”, Colorado State University Libraries, Fort Collins [data set], https://doi.org/10.25675/10217/199723, 2020a.
Park, J. M., van den Heever, S. C., Igel, A. L., Grant, L. D., Johnson, J.
S., Saleeby, S. M., Miller, S. D., and Reid, J. S.: Environmental Controls
on Tropical Sea Breeze Convection and Resulting Aerosol Redistribution, J.
Geophys. Res.-Atmos., 125, e2019JD031699, https://doi.org/10.1029/2019JD031699, 2020b.
Perez, G. M. P. and Silva Dias, M. A. F.: Long-term study of the occurrence
and time of passage of sea breeze in São Paulo, 1960–2009, Int. J.
Climatol., 37, 1210–1220, https://doi.org/10.1002/joc.5077, 2017.
Qian, J.-H.: Why Precipitation Is Mostly Concentrated over Islands in the
Maritime Continent, J. Atmos. Sci., 65, 1428–1441, https://doi.org/10.1175/2007JAS2422.1, 2008.
Qian, T., Epifanio, C. C., and Zhang, F.: Topographic Effects on the
Tropical Land and Sea Breeze, J. Atmos. Sci., 69, 130–149, https://doi.org/10.1175/JAS-D-11-011.1, 2012.
Rasmussen, C. E. and Williams, C. K. I.: Gaussian processes for machine
learning, MIT Press, Cambridge, Mass, 248 pp., ISBN 026218253X, 2006.
Reid, J. S., Xian, P., Hyer, E. J., Flatau, M. K., Ramirez, E. M., Turk, F. J., Sampson, C. R., Zhang, C., Fukada, E. M., and Maloney, E. D.: Multi-scale meteorological conceptual analysis of observed active fire hotspot activity and smoke optical depth in the Maritime Continent, Atmos. Chem. Phys., 12, 2117–2147, https://doi.org/10.5194/acp-12-2117-2012, 2012.
Reynolds, R. W., Smith, T. M., Liu, C., Chelton, D. B., Casey, K. S., and Schlax, M. G.: Daily high‐resolution‐blended analyses for sea surface temperature. J. Climate, 20, 5473–5496, https://doi.org/10.1175/2007JCLI1824.1, 2007.
Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng,
C.-J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin,
J. K., Walker, J. P., Lohmann, D., and Toll, D.: The Global Land Data
Assimilation System, B. Am. Meteorol. Soc., 85, 381–394, https://doi.org/10.1175/BAMS-85-3-381, 2004.
Rosenfeld, D., Lohmann, U., Raga, G. B., O'Dowd, C. D., Kulmala, M., Fuzzi,
S., Reissell, A., and Andreae, M. O.: Flood or Drought: How Do Aerosols
Affect Precipitation?, Science, 321, 1309–1313, https://doi.org/10.1126/science.1160606, 2008.
Saide, P. E., Spak, S. N., Pierce, R. B., Otkin, J. A., Schaack, T. K.,
Heidinger, A. K., da Silva, A. M., Kacenelenbogen, M., Redemann, J., and
Carmichael, G. R.: Central American biomass burning smoke can increase
tornado severity in the U.S.: Smoke can increase tornado severity, Geophys.
Res. Lett., 42, 956–965, https://doi.org/10.1002/2014GL062826, 2015.
Saleeby, S. M. and Cotton, W. R.: A Large-Droplet Mode and Prognostic Number
Concentration of Cloud Droplets in the Colorado State University Regional
Atmospheric Modeling System (RAMS). Part I: Module Descriptions and
Supercell Test Simulations, J. Appl. Meteorol. Clim., 43, 182–195,
https://doi.org/10.1175/1520-0450(2004)043<0182:ALMAPN>2.0.CO;2, 2004.
Saleeby, S. M. and van den Heever, S. C.: Developments in the CSU-RAMS
Aerosol Model: Emissions, Nucleation, Regeneration, Deposition, and
Radiation, J. Appl. Meteorol. Clim., 52, 2601–2622, https://doi.org/10.1175/JAMC-D-12-0312.1, 2013.
Saleeby, S. M., Herbener, S. R., van den Heever, S. C., and L'Ecuyer, T.:
Impacts of Cloud Droplet-Nucleating Aerosols on Shallow Tropical Convection,
J. Atmos. Sci., 72, 1369–1385, https://doi.org/10.1175/JAS-D-14-0153.1, 2015.
Saltelli, A., Tarantola, S., and Chan, K. P.-S.: A Quantitative
Model-Independent Method for Global Sensitivity Analysis of Model Output,
Technometrics, 41, 39–56, https://doi.org/10.1080/00401706.1999.10485594, 1999.
Seiki, T. and Nakajima, T.: Aerosol Effects of the Condensation Process on a
Convective Cloud Simulation, J. Atmos. Sci., 71, 833–853, https://doi.org/10.1175/JAS-D-12-0195.1, 2014.
Sheffield, A. M., Saleeby, S. M., and Heever, S. C.: Aerosol-induced
mechanisms for cumulus congestus growth, J. Geophys. Res.-Atmos., 120,
8941–8952, https://doi.org/10.1002/2015JD023743, 2015.
Short, E.: Verifying Operational Forecasts of Land-Sea-Breeze and Boundary
Layer Mixing Processes, Weather Forecast., 35, 1427–1445, https://doi.org/10.1175/WAF-D-19-0244.1, 2020.
Smagorinsky, J.: General Circulation Experiments with the Primitive
Equations: I. The Basic Experiment, Mon. Weather Rev., 91, 99–164,
https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2, 1963.
Storer, R. L. and van den Heever, S. C.: Microphysical Processes Evident in
Aerosol Forcing of Tropical Deep Convective Clouds, J. Atmos. Sci., 70,
430–446, https://doi.org/10.1175/JAS-D-12-076.1, 2013.
Storer, R. L., van den Heever, S. C, and Stephens, G. L.: Modeling Aerosol
Impacts on Convective Storms in Different Environments, J. Atmos. Sci., 67,
3904–3915, https://doi.org/10.1175/2010JAS3363.1, 2010.
Storer, R. L., van den Heever, S. C., and L'Ecuyer, T. S.: Observations of
aerosol-induced convective invigoration in the tropical east Atlantic, J.
Geophys. Res.-Atmos., 119, 3963–3975, https://doi.org/10.1002/2013JD020272, 2014.
Tao, W.-K., Li, X., Khain, A., Matsui, T., Lang, S., and Simpson, J.: Role
of atmospheric aerosol concentration on deep convective precipitation:
Cloud-resolving model simulations, J. Geophys. Res., 112, D24S18, https://doi.org/10.1029/2007JD008728, 2007.
Tao, W.-K., Chen, J.-P., Li, Z., Wang, C., and Zhang, C.: Impact of aerosols
on convective clouds and precipitation: Aerosol Impact on Convective Clouds,
Rev. Geophys., 50, RG2001, https://doi.org/10.1029/2011RG000369, 2012.
Twomey, S.: Pollution and the planetary albedo, Atmos. Environ., 8,
1251–1256, https://doi.org/10.1016/0004-6981(74)90004-3, 1974.
van den Heever, S. C., Carrió, G. G., Cotton, W. R., DeMott, P. J., and
Prenni, A. J.: Impacts of Nucleating Aerosol on Florida Storms. Part I:
Mesoscale Simulations, J. Atmos. Sci., 63, 1752–1775, https://doi.org/10.1175/JAS3713.1, 2006.
Varble, A.: Erroneous Attribution of Deep Convective Invigoration to Aerosol Concentration, J. Atmos. Sci., 75, 1351–1368, https://doi.org/10.1175/JAS-D-17-0217.1, 2018.
Walko, R. L., Cotton, W. R., Meyers, M. P., and Harrington, J. Y.: New RAMS cloud microphysics parameterization Part I: the single-moment scheme, Atmos. Res., 38, 29–62, 1995.
Walko, R. L., Band, L. E., Baron, J., Kittel, T. G. F., Lammers, R., Lee, T.
J., Ojima, D., Pielke Sr., R. A., Taylor, C., Tague, C., Tremback, C. J., and
Vidale, P. L.: Coupled Atmosphere-Biophysics-Hydrology Models for
Environmental Modeling, J. Appl. Meteorol. Clim., 39, 931–944, https://doi.org/10.1175/1520-0450(2000)039<0931:CABHMF>2.0.CO;2, 2000.
Wang, J., Ge, C., Yang, Z., Hyer, E. J., Reid, J. S., Chew, B.-N., Mahmud,
M., Zhang, Y., and Zhang, M.: Mesoscale modeling of smoke transport over the
Southeast Asian Maritime Continent: Interplay of sea breeze, trade wind,
typhoon, and topography, Atmos. Res., 122, 486–503, https://doi.org/10.1016/j.atmosres.2012.05.009, 2013.
Wang, S. and Sobel, A. H.: Factors Controlling Rain on Small Tropical
Islands: Diurnal Cycle, Large-Scale Wind Speed, and Topography, J. Atmos.
Sci., 74, 3515–3532, https://doi.org/10.1175/JAS-D-16-0344.1, 2017.
Wellmann, C., Barrett, A. I., Johnson, J. S., Kunz, M., Vogel, B., Carslaw,
K. S., and Hoose, C.: Using Emulators to Understand the Sensitivity of Deep
Convective Clouds and Hail to Environmental Conditions, J. Adv. Model. Earth
Sy., 10, 3103–3122, https://doi.org/10.1029/2018MS001465, 2018.
Wellmann, C., Barrett, A. I., Johnson, J. S., Kunz, M., Vogel, B., Carslaw, K. S., and Hoose, C.: Comparing the impact of environmental conditions and microphysics on the forecast uncertainty of deep convective clouds and hail, Atmos. Chem. Phys., 20, 2201–2219, https://doi.org/10.5194/acp-20-2201-2020, 2020.
Yu, H., Liu, S. C., and Dickinson, R. E.: Radiative effects of aerosols on
the evolution of the atmospheric boundary layer, J. Geophys. Res., 107, AAC
3-1–AAC 3-14, https://doi.org/10.1029/2001JD000754, 2002.
Zhang, Y., Fu, R., Yu, H., Dickinson, R. E., Juarez, R. N., Chin, M., and
Wang, H.: A regional climate model study of how biomass burning aerosol
impacts land-atmosphere interactions over the Amazon, J. Geophys. Res., 113,
D14S15, https://doi.org/10.1029/2007JD009449, 2008.
Short summary
This study explores how increased aerosol particles impact tropical sea breeze cloud systems under different environments and how a range of environments modulate these cloud responses. Overall, sea breeze flows and clouds that develop therein become weaker due to interactions between aerosols, sunlight, and land surface. In addition, surface rainfall also decreases with more aerosol particles. Weakening of cloud and rain with more aerosols is found irrespective of 130 different environments.
This study explores how increased aerosol particles impact tropical sea breeze cloud systems...
Altmetrics
Final-revised paper
Preprint