Articles | Volume 21, issue 12
https://doi.org/10.5194/acp-21-9497-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-9497-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Summer aerosol measurements over the East Antarctic seasonal ice zone
Centre for Atmospheric Chemistry, School of Earth, Atmospheric and
Life Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
Ruhi S. Humphries
Climate Science Centre, CSIRO Oceans and Atmosphere, Aspendale, VIC
3195, Australia
Australian Antarctic Program Partnership, University of Tasmania,
Hobart, TAS 7000, Australia
Stephen R. Wilson
Centre for Atmospheric Chemistry, School of Earth, Atmospheric and
Life Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
Scott D. Chambers
ANSTO, Environmental Research, Locked Bag 2001, Kirrawee DC, NSW 2232,
Australia
Alastair G. Williams
ANSTO, Environmental Research, Locked Bag 2001, Kirrawee DC, NSW 2232,
Australia
Alan D. Griffiths
ANSTO, Environmental Research, Locked Bag 2001, Kirrawee DC, NSW 2232,
Australia
Centre for Atmospheric Chemistry, School of Earth, Atmospheric and
Life Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
Ian M. McRobert
Engineering and Technology Program, CSIRO National Research
Collections Australia, Hobart, TAS 7004, Australia
Jason P. Ward
Climate Science Centre, CSIRO Oceans and Atmosphere, Aspendale, VIC
3195, Australia
Melita D. Keywood
Climate Science Centre, CSIRO Oceans and Atmosphere, Aspendale, VIC
3195, Australia
Australian Antarctic Program Partnership, University of Tasmania,
Hobart, TAS 7000, Australia
Sean Gribben
Climate Science Centre, CSIRO Oceans and Atmosphere, Aspendale, VIC
3195, Australia
Related authors
Jhonathan Ramirez-Gamboa, Clare Paton-Walsh, Melita Keywood, Ruhi Humphries, Asher Mouat, Jennifer Kaiser, Malcom Possell, Jack Simmons, and Travis Naylor
Atmos. Chem. Phys., 25, 9937–9955, https://doi.org/10.5194/acp-25-9937-2025, https://doi.org/10.5194/acp-25-9937-2025, 2025
Short summary
Short summary
Tiny air particles (aerosols) influence clouds, sunlight, and air chemistry. Our study examined how these particles form in a plant-rich region of Southeast Australia. We found frequent new particle formation (NPF) events, often linked to pollution plumes. Volatile organic compounds (VOCs) from plants and other factors influence NPF and aerosol growth. Nighttime NPF requires further study. Overall, plant emissions play a key role in aerosol formation in this region.
Asher P. Mouat, Clare Paton-Walsh, Jack B. Simmons, Jhonathan Ramirez-Gamboa, David W. T. Griffith, and Jennifer Kaiser
Atmos. Chem. Phys., 22, 11033–11047, https://doi.org/10.5194/acp-22-11033-2022, https://doi.org/10.5194/acp-22-11033-2022, 2022
Short summary
Short summary
We examine emissions of volatile organic compounds from 2020 wildfires in forested regions of Australia (AU). We find that biomass burning in temperate regions of the US and AU emit similar species in similar proportion, both in natural and lab settings. This suggests studies of wildfires in one region may be used to help improve air quality models in other parts of the world. We observe time series of ozone and nitrogen dioxide. Last, we look at which compounds contribute most to OH reactivity.
Jhonathan Ramirez-Gamboa, Clare Paton-Walsh, Melita Keywood, Ruhi Humphries, Asher Mouat, Jennifer Kaiser, Malcom Possell, Jack Simmons, and Travis Naylor
Atmos. Chem. Phys., 25, 9937–9955, https://doi.org/10.5194/acp-25-9937-2025, https://doi.org/10.5194/acp-25-9937-2025, 2025
Short summary
Short summary
Tiny air particles (aerosols) influence clouds, sunlight, and air chemistry. Our study examined how these particles form in a plant-rich region of Southeast Australia. We found frequent new particle formation (NPF) events, often linked to pollution plumes. Volatile organic compounds (VOCs) from plants and other factors influence NPF and aerosol growth. Nighttime NPF requires further study. Overall, plant emissions play a key role in aerosol formation in this region.
Tahereh Alinejadtabrizi, Yi Huang, Francisco Lang, Steven Siems, Michael Manton, Luis Ackermann, Melita Keywood, Ruhi Humphries, Paul Krummel, Alastair Williams, and Greg Ayers
Atmos. Chem. Phys., 25, 2631–2648, https://doi.org/10.5194/acp-25-2631-2025, https://doi.org/10.5194/acp-25-2631-2025, 2025
Short summary
Short summary
Clouds over the Southern Ocean are crucial to Earth's energy balance, but understanding the factors that control them is complex. Our research examines how weather patterns affect tiny particles called cloud condensation nuclei (CCN), which influence cloud properties. Using data from Kennaook / Cape Grim, we found that winter air from Antarctica brings cleaner conditions with lower CCN, while summer patterns from Australia transport more particles. Precipitation also helps reduce CCN in winter.
Dafina Kikaj, Edward Chung, Alan D. Griffiths, Scott D. Chambers, Grant Forster, Angelina Wenger, Penelope Pickers, Chris Rennick, Simon O'Doherty, Joseph Pitt, Kieran Stanley, Dickon Young, Leigh S. Fleming, Karina Adcock, Emmal Safi, and Tim Arnold
Atmos. Meas. Tech., 18, 151–175, https://doi.org/10.5194/amt-18-151-2025, https://doi.org/10.5194/amt-18-151-2025, 2025
Short summary
Short summary
We present a protocol to improve confidence in atmospheric radon measurements, enabling site comparisons and integration with greenhouse gas data. As a natural tracer, radon provides an independent check of transport model performance. This standardized method enhances radon’s use as a metric for model evaluation. Beyond UK observatories, it can support broader networks like ICOS and WMO/GAW, advancing global atmospheric research.
Sonya L. Fiddes, Matthew T. Woodhouse, Marc D. Mallet, Liam Lamprey, Ruhi S. Humphries, Alain Protat, Simon P. Alexander, Hakase Hayashida, Samuel G. Putland, Branka Miljevic, and Robyn Schofield
EGUsphere, https://doi.org/10.5194/egusphere-2024-3125, https://doi.org/10.5194/egusphere-2024-3125, 2024
Short summary
Short summary
The interaction between natural marine aerosols, clouds and radiation in the Southern Ocean is a major source of uncertainty in climate models. We evaluate the Australian climate model using aerosol observations and find it underestimates aerosol number often by over 50 %. Model changes were tested to improve aerosol concentrations, but some of our changes had severe negative effects on the larger climate system, highlighting issues in aerosol-cloud interaction modelling.
Claudia Grossi, Daniel Rabago, Scott Chambers, Carlos Sáinz, Roger Curcoll, Peter P. S. Otáhal, Eliška Fialová, Luis Quindos, and Arturo Vargas
Atmos. Meas. Tech., 16, 2655–2672, https://doi.org/10.5194/amt-16-2655-2023, https://doi.org/10.5194/amt-16-2655-2023, 2023
Short summary
Short summary
The automatic and low-maintenance radon flux system Autoflux, completed with environmental soil and atmosphere sensors, has been theoretically and experimentally characterized and calibrated under laboratory conditions to be used as transfer standard for in situ measurements. It will offer for the first time long-term measurements to validate radon flux maps used by the climate and the radiation protection communities for assessing the radon gas emissions in the atmosphere.
Ruhi S. Humphries, Melita D. Keywood, Jason P. Ward, James Harnwell, Simon P. Alexander, Andrew R. Klekociuk, Keiichiro Hara, Ian M. McRobert, Alain Protat, Joel Alroe, Luke T. Cravigan, Branka Miljevic, Zoran D. Ristovski, Robyn Schofield, Stephen R. Wilson, Connor J. Flynn, Gourihar R. Kulkarni, Gerald G. Mace, Greg M. McFarquhar, Scott D. Chambers, Alastair G. Williams, and Alan D. Griffiths
Atmos. Chem. Phys., 23, 3749–3777, https://doi.org/10.5194/acp-23-3749-2023, https://doi.org/10.5194/acp-23-3749-2023, 2023
Short summary
Short summary
Observations of aerosols in pristine regions are rare but are vital to constraining the natural baseline from which climate simulations are calculated. Here we present recent seasonal observations of aerosols from the Southern Ocean and contrast them with measurements from Antarctica, Australia and regionally relevant voyages. Strong seasonal cycles persist, but striking differences occur at different latitudes. This study highlights the need for more long-term observations in remote regions.
Gerald G. Mace, Sally Benson, Ruhi Humphries, Peter M. Gombert, and Elizabeth Sterner
Atmos. Chem. Phys., 23, 1677–1685, https://doi.org/10.5194/acp-23-1677-2023, https://doi.org/10.5194/acp-23-1677-2023, 2023
Short summary
Short summary
The number of cloud droplets per unit volume is a significantly important property of clouds that controls their reflective properties. Computer models of the Earth's atmosphere and climate have low skill at predicting the reflective properties of Southern Ocean clouds. Here we investigate the properties of those clouds using satellite data and find that the cloud droplet number and cloud albedo in the Southern Ocean are related to the oceanic phytoplankton abundance near Antarctica.
Asher P. Mouat, Clare Paton-Walsh, Jack B. Simmons, Jhonathan Ramirez-Gamboa, David W. T. Griffith, and Jennifer Kaiser
Atmos. Chem. Phys., 22, 11033–11047, https://doi.org/10.5194/acp-22-11033-2022, https://doi.org/10.5194/acp-22-11033-2022, 2022
Short summary
Short summary
We examine emissions of volatile organic compounds from 2020 wildfires in forested regions of Australia (AU). We find that biomass burning in temperate regions of the US and AU emit similar species in similar proportion, both in natural and lab settings. This suggests studies of wildfires in one region may be used to help improve air quality models in other parts of the world. We observe time series of ozone and nitrogen dioxide. Last, we look at which compounds contribute most to OH reactivity.
Scott D. Chambers, Alan D. Griffiths, Alastair G. Williams, Ot Sisoutham, Viacheslav Morosh, Stefan Röttger, Florian Mertes, and Annette Röttger
Adv. Geosci., 57, 63–80, https://doi.org/10.5194/adgeo-57-63-2022, https://doi.org/10.5194/adgeo-57-63-2022, 2022
Short summary
Short summary
There is a growing need in health and climate research for high-quality radon observations. A variety of radon monitors, with different uncertainties, operate across global networks. Better compatibility between the measurements is required. Here we describe a novel, portable two-filter radon monitor with a calibration traceable to the International System of Units, and demonstrate the transfer of a traceable calibration from this instrument to a separate monitor under field conditions.
Peter Sperlich, Gordon W. Brailsford, Rowena C. Moss, John McGregor, Ross J. Martin, Sylvia Nichol, Sara Mikaloff-Fletcher, Beata Bukosa, Magda Mandic, C. Ian Schipper, Paul Krummel, and Alan D. Griffiths
Atmos. Meas. Tech., 15, 1631–1656, https://doi.org/10.5194/amt-15-1631-2022, https://doi.org/10.5194/amt-15-1631-2022, 2022
Short summary
Short summary
We tested an in situ analyser for carbon and oxygen isotopes in atmospheric CO2 at Baring Head, New Zealand’s observatory for Southern Ocean baseline air. The analyser was able to resolve regional signals of the terrestrial carbon cycle, although the analysis of small events was limited by analytical uncertainty. Further improvement of the instrument performance would be desirable for the robust analysis of distant signals and to resolve the small variability in Southern Ocean baseline air.
Zhenyi Chen, Robyn Schofield, Melita Keywood, Sam Cleland, Alastair G. Williams, Alan Griffiths, Stephen Wilson, Peter Rayner, and Xiaowen Shu
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-104, https://doi.org/10.5194/acp-2022-104, 2022
Revised manuscript not accepted
Short summary
Short summary
This study studied the marine boundary layer (MBL) process and aerosol properties in the Southern Ocean using miniMPL, ceilometer and sodar. Compared to the gradient method, the Image Edge Detection Algorithm provides more reliable boundary layer height estimations, especially when a convective MBL with stratification existed. The diurnal characteristic of BLH with the veering of the wind vector was also observed. Under the continental sources, the MBL maintained a well-mixed layer of 0.3 km.
Sonya L. Fiddes, Matthew T. Woodhouse, Steve Utembe, Robyn Schofield, Simon P. Alexander, Joel Alroe, Scott D. Chambers, Zhenyi Chen, Luke Cravigan, Erin Dunne, Ruhi S. Humphries, Graham Johnson, Melita D. Keywood, Todd P. Lane, Branka Miljevic, Yuko Omori, Alain Protat, Zoran Ristovski, Paul Selleck, Hilton B. Swan, Hiroshi Tanimoto, Jason P. Ward, and Alastair G. Williams
Atmos. Chem. Phys., 22, 2419–2445, https://doi.org/10.5194/acp-22-2419-2022, https://doi.org/10.5194/acp-22-2419-2022, 2022
Short summary
Short summary
Coral reefs have been found to produce the climatically relevant chemical compound dimethyl sulfide (DMS). It has been suggested that corals can modify their environment via the production of DMS. We use an atmospheric chemistry model to test this theory at a regional scale for the first time. We find that it is unlikely that coral-reef-derived DMS has an influence over local climate, in part due to the proximity to terrestrial and anthropogenic aerosol sources.
Clémence Rose, Martine Collaud Coen, Elisabeth Andrews, Yong Lin, Isaline Bossert, Cathrine Lund Myhre, Thomas Tuch, Alfred Wiedensohler, Markus Fiebig, Pasi Aalto, Andrés Alastuey, Elisabeth Alonso-Blanco, Marcos Andrade, Begoña Artíñano, Todor Arsov, Urs Baltensperger, Susanne Bastian, Olaf Bath, Johan Paul Beukes, Benjamin T. Brem, Nicolas Bukowiecki, Juan Andrés Casquero-Vera, Sébastien Conil, Konstantinos Eleftheriadis, Olivier Favez, Harald Flentje, Maria I. Gini, Francisco Javier Gómez-Moreno, Martin Gysel-Beer, Anna Gannet Hallar, Ivo Kalapov, Nikos Kalivitis, Anne Kasper-Giebl, Melita Keywood, Jeong Eun Kim, Sang-Woo Kim, Adam Kristensson, Markku Kulmala, Heikki Lihavainen, Neng-Huei Lin, Hassan Lyamani, Angela Marinoni, Sebastiao Martins Dos Santos, Olga L. Mayol-Bracero, Frank Meinhardt, Maik Merkel, Jean-Marc Metzger, Nikolaos Mihalopoulos, Jakub Ondracek, Marco Pandolfi, Noemi Pérez, Tuukka Petäjä, Jean-Eudes Petit, David Picard, Jean-Marc Pichon, Veronique Pont, Jean-Philippe Putaud, Fabienne Reisen, Karine Sellegri, Sangeeta Sharma, Gerhard Schauer, Patrick Sheridan, James Patrick Sherman, Andreas Schwerin, Ralf Sohmer, Mar Sorribas, Junying Sun, Pierre Tulet, Ville Vakkari, Pieter Gideon van Zyl, Fernando Velarde, Paolo Villani, Stergios Vratolis, Zdenek Wagner, Sheng-Hsiang Wang, Kay Weinhold, Rolf Weller, Margarita Yela, Vladimir Zdimal, and Paolo Laj
Atmos. Chem. Phys., 21, 17185–17223, https://doi.org/10.5194/acp-21-17185-2021, https://doi.org/10.5194/acp-21-17185-2021, 2021
Short summary
Short summary
Aerosol particles are a complex component of the atmospheric system the effects of which are among the most uncertain in climate change projections. Using data collected at 62 stations, this study provides the most up-to-date picture of the spatial distribution of particle number concentration and size distribution worldwide, with the aim of contributing to better representation of aerosols and their interactions with clouds in models and, therefore, better evaluation of their impact on climate.
Ruhi S. Humphries, Melita D. Keywood, Sean Gribben, Ian M. McRobert, Jason P. Ward, Paul Selleck, Sally Taylor, James Harnwell, Connor Flynn, Gourihar R. Kulkarni, Gerald G. Mace, Alain Protat, Simon P. Alexander, and Greg McFarquhar
Atmos. Chem. Phys., 21, 12757–12782, https://doi.org/10.5194/acp-21-12757-2021, https://doi.org/10.5194/acp-21-12757-2021, 2021
Short summary
Short summary
The Southern Ocean region is one of the most pristine in the world and serves as an important proxy for the pre-industrial atmosphere. Improving our understanding of the natural processes in this region is likely to result in the largest reductions in the uncertainty of climate and earth system models. In this paper we present a statistical summary of the latitudinal gradient of aerosol and cloud condensation nuclei concentrations obtained from five voyages spanning the Southern Ocean.
Kevin J. Sanchez, Gregory C. Roberts, Georges Saliba, Lynn M. Russell, Cynthia Twohy, J. Michael Reeves, Ruhi S. Humphries, Melita D. Keywood, Jason P. Ward, and Ian M. McRobert
Atmos. Chem. Phys., 21, 3427–3446, https://doi.org/10.5194/acp-21-3427-2021, https://doi.org/10.5194/acp-21-3427-2021, 2021
Short summary
Short summary
Measurements of particles and their properties were made from aircraft over the Southern Ocean. Aerosol transported from the Antarctic coast is shown to greatly enhance particle concentrations over the Southern Ocean. The occurrence of precipitation was shown to be associated with the lowest particle concentrations over the Southern Ocean. These particles are important due to their ability to enhance cloud droplet concentrations, resulting in more sunlight being reflected by the clouds.
Bo Zhang, Hongyu Liu, James H. Crawford, Gao Chen, T. Duncan Fairlie, Scott Chambers, Chang-Hee Kang, Alastair G. Williams, Kai Zhang, David B. Considine, Melissa P. Sulprizio, and Robert M. Yantosca
Atmos. Chem. Phys., 21, 1861–1887, https://doi.org/10.5194/acp-21-1861-2021, https://doi.org/10.5194/acp-21-1861-2021, 2021
Short summary
Short summary
We simulate atmospheric 222Rn using the GEOS-Chem model to improve understanding of 222Rn emissions and characterize convective transport in the model. We demonstrate the potential of a customized global 222Rn emission scenario to improve simulated surface 222Rn concentrations and seasonality. We assess convective transport using observed 222Rn vertical profiles. Results have important implications for using chemical transport models to interpret the transport of trace gases and aerosols.
Cited articles
Aguado, E. and Burt, J. E.: Atmospheric Circulation and Pressure
Distributions, in: Understanding Weather and Climate, Pearson, London, UK, 565 pp., 2015.
Alexander, S. P. and Protat, A.: Vertical Profiling of Aerosols With a
Combined Raman-Elastic Backscatter Lidar in the Remote Southern Ocean Marine
Boundary Layer (43–66∘ S, 132–150∘ E), J. Geophys.
Res.-Atmos., 124, 12107–12125, https://doi.org/10.1029/2019jd030628, 2019.
Alroe, J., Cravigan, L. T., Miljevic, B., Johnson, G. R., Selleck, P., Humphries, R. S., Keywood, M. D., Chambers, S. D., Williams, A. G., and Ristovski, Z. D.: Marine productivity and synoptic meteorology drive summer-time variability in Southern Ocean aerosols, Atmos. Chem. Phys., 20, 8047–8062, https://doi.org/10.5194/acp-20-8047-2020, 2020.
Atkinson, H. M., Huang, R.-J., Chance, R., Roscoe, H. K., Hughes, C., Davison, B., Schönhardt, A., Mahajan, A. S., Saiz-Lopez, A., Hoffmann, T., and Liss, P. S.: Iodine emissions from the sea ice of the Weddell Sea, Atmos. Chem. Phys., 12, 11229–11244, https://doi.org/10.5194/acp-12-11229-2012, 2012.
Ayers, G. P. and Gras, J. L.: Seasonal relationship between cloud
condensation nuclei and aerosol methanesulphonate in marine air, Nature,
353, 834–835, https://doi.org/10.1038/353834a0, 1991.
Brechtel, F. J., Kreidenweis, S. M., and Swan, H. B.: Air mass
characteristics, aerosol particle number concentrations, and number size
distributions at Macquarie Island during the First Aerosol Characterization
Experiment (ACE 1), J. Geophys. Res.-Atmos., 103, 16351–16367,
https://doi.org/10.1029/97JD03014, 1998.
Carnotcycle: How to convert relative humidity to absolute humidity:
https://carnotcycle.wordpress.com/2012/08/04/how-to-convert-relative-humidity-to-absolute-humidity/,
last access: 7 July 2020.
Carslaw, K. S., Lee, L. A., Reddington, C. L., Pringle, K. J., Rap, A.,
Forster, P. M., Mann, G. W., Spracklen, D. V., Woodhouse, M. T., Regayre, L.
A., and Pierce, J. R.: Large contribution of natural aerosols to uncertainty
in indirect forcing, Nature, 503, 67–71, https://doi.org/10.1038/nature12674, 2013.
Carslaw, K. S., Gordon, H., Hamilton, D. S., Johnson, J. S., Regayre, L. A.,
Yoshioka, M., and Pringle, K. J.: Aerosols in the Pre-industrial Atmosphere,
Current Climate Change Reports, 3, 1–15, https://doi.org/10.1007/s40641-017-0061-2, 2017.
Chambers, S. D., Hong, S.-B., Williams, A. G., Crawford, J., Griffiths, A. D., and Park, S.-J.: Characterising terrestrial influences on Antarctic air masses using Radon-222 measurements at King George Island, Atmos. Chem. Phys., 14, 9903–9916, https://doi.org/10.5194/acp-14-9903-2014, 2014.
Chambers, S. D., Preunkert, S., Weller, R., Hong, S.-B., Humphries, R. S.,
Tositti, L., Angot, H., Legrand, M., Williams, A. G., Griffiths, A. D.,
Crawford, J., Simmons, J., Choi, T. J., Krummel, P. B., Molloy, S., Loh, Z.,
Galbally, I., Wilson, S., Magand, O., Sprovieri, F., Pirrone, N., and
Dommergue, A.: Characterizing Atmospheric Transport Pathways to Antarctica
and the Remote Southern Ocean Using Radon-222, Front. Earth Sci., 6, 190,
https://doi.org/10.3389/feart.2018.00190, 2018.
Charlson, R. J., Lovelock, J. E., Andreae, M. O., and Warren, S. G.: Oceanic
phytoplankton, atmospheric sulphur, cloud albedo and climate, Nature, 326,
655–661, https://doi.org/10.1038/326655a0, 1987.
Constantin, A. and Johnson, R. S.: On the modelling of large-scale
atmospheric flow, Journal of Differential Equations, 285, 751–798,
https://doi.org/10.1016/j.jde.2021.03.019, 2021.
Dall'Osto, M., Ovadnevaite, J., Paglione, M., Beddows, D. C. S., Ceburnis,
D., Cree, C., Cortés, P., Zamanillo, M., Nunes, S. O., Pérez, G. L.,
Ortega-Retuerta, E., Emelianov, M., Vaqué, D., Marrasé, C., Estrada,
M., Sala, M. M., Vidal, M., Fitzsimons, M. F., Beale, R., Airs, R., Rinaldi,
M., Decesari, S., Cristina Facchini, M., Harrison, R. M., O'Dowd, C., and
Simó, R.: Antarctic sea ice region as a source of biogenic organic
nitrogen in aerosols, Sci. Rep. UK, 7, 6047, https://doi.org/10.1038/s41598-017-06188-x,
2017.
Davison, B., O'Dowd, C., Hewitt, C. N., Smith, M. H., Harrison, R. M., Peel,
D. A., Wolf, E., Mulvaney, R., Schwikowski, M., and Baltensperger, U.:
Dimethyl sulfide and its oxidation products in the atmosphere of the
Atlantic and southern oceans, Atmos. Environ., 30, 1895–1906,
https://doi.org/10.1016/1352-2310(95)00428-9, 1996.
Deppeler, S. L. and Davidson, A. T.: Southern Ocean Phytoplankton in a
Changing Climate, Front. Mar. Sci., 4, 40, https://doi.org/10.3389/fmars.2017.00040,
2017.
Draxler, R. R. and Hess, G. D.: An overview of the HYSPLIT_4
modelling system for trajectories, dispersion and deposition, Aust.
Meteorol. Mag., 47, 295–308, 1998.
Driedonks, A. and Tennekes, H.: Entrainment effects in the well-mixed
atmospheric boundary layer, Bound.-Lay. Meteorol., 30, 75–105, 1984.
ERA-Interim:
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim,
last access: 25 March 2019.
Fossum, K. N., Ovadnevaite, J., Ceburnis, D., Dall'Osto, M., Marullo, S.,
Bellacicco, M., Simó, R., Liu, D., Flynn, M., Zuend, A., and O'Dowd, C.:
Summertime Primary and Secondary Contributions to Southern Ocean Cloud
Condensation Nuclei, Sci. Rep., 8, 13844,
https://doi.org/10.1038/s41598-018-32047-4, 2018.
Gabric, A., Matrai, P., Jones, G., and Middleton, J.: The Nexus between
Sea Ice and Polar Emissions of Marine Biogenic Aerosols, B. Am. Meteorol.
Soc., 99, 61–81, https://doi.org/10.1175/bams-d-16-0254.1, 2018.
Gras, J. L.: CN, CCN and particle size in Southern Ocean air at Cape Grim,
Atmos. Res., 35, 233–251, https://doi.org/10.1016/0169-8095(94)00021-5, 1995.
Gras, J. L. and Keywood, M.: Cloud condensation nuclei over the Southern Ocean: wind dependence and seasonal cycles, Atmos. Chem. Phys., 17, 4419–4432, https://doi.org/10.5194/acp-17-4419-2017, 2017.
Hong, S.-B., Yoon, Y. J., Becagli, S., Gim, Y., Chambers, S. D., Park,
K.-T., Park, S.-J., Traversi, R., Severi, M., Vitale, V., Kim, J.-H., Jang,
E., Crawford, J., and Griffiths, A. D.: Seasonality of aerosol chemical
composition at King Sejong Station (Antarctic Peninsula) in 2013, Atmos.
Environ., 223, 117185, https://doi.org/10.1016/j.atmosenv.2019.117185, 2020.
Hoppel, W. A., Fitzgerald, J. W., Frick, G. M., Larson, R. E., and Mack, E.
J.: Aerosol size distributions and optical properties found in the marine
boundary layer over the Atlantic Ocean, J. Geophys. Res., 95, 3659–3686,
https://doi.org/10.1029/JD095iD04p03659, 1990.
Humphries, R. S., Schofield, R., Keywood, M. D., Ward, J., Pierce, J. R., Gionfriddo, C. M., Tate, M. T., Krabbenhoft, D. P., Galbally, I. E., Molloy, S. B., Klekociuk, A. R., Johnston, P. V., Kreher, K., Thomas, A. J., Robinson, A. D., Harris, N. R. P., Johnson, R., and Wilson, S. R.: Boundary layer new particle formation over East Antarctic sea ice – possible Hg-driven nucleation?, Atmos. Chem. Phys., 15, 13339–13364, https://doi.org/10.5194/acp-15-13339-2015, 2015.
Humphries, R. S., Klekociuk, A. R., Schofield, R., Keywood, M., Ward, J., and Wilson, S. R.: Unexpectedly high ultrafine aerosol concentrations above East Antarctic sea ice, Atmos. Chem. Phys., 16, 2185–2206, https://doi.org/10.5194/acp-16-2185-2016, 2016.
Humphries, R. S., McRobert, I. M., Ponsonby, W. A., Ward, J. P., Keywood, M.
D., Loh, Z. M., Krummel, P. B., and Harnwell, J.: Identification of platform
exhaust on the RV Investigator, Atmos. Meas. Tech., 12, 3019-3038,
10.5194/amt-12-3019-2019, 2019.
Humphries, R., Simmons, J. B., McRobert, I., Ward, J., Keywood, M., Chambers, S. D., Griffiths, A. D., Williams, A. G., and Wilson, S. R.: Polar Cell Aerosol Nucleation – atmospheric measurements from the RV Investigator voyage IN2017_V01: https://doi.org/10.25919/xs0b-an24 (last access: 2 June 2021), 2020.
Humphries, R. S., Keywood, M. D., Gribben, S., McRobert, I. M., Ward, J. P., Selleck, P., Taylor, S., Harnwell, J., Flynn, C., Kulkarni, G. R., Mace, G. G., Protat, A., Alexander, S. P., and McFarquhar, G.: Southern Ocean latitudinal gradients of Cloud Condensation Nuclei, Atmos. Chem. Phys. Discuss. [preprint], https://doi.org/10.5194/acp-2020-1246, in review, 2021.
Hyder, P., Edwards, J. M., Allan, R. P.,
Hewitt, H. T., Bracegirdle, T. J., Gregory, J. M., Wood, R. A., Meijers, A.
J. S., Mulcahy, J., Field, P., Furtado, K., Bodas-Salcedo, A., Williams, K.
D., Copsey, D., Josey, S. A., Liu, C., Roberts, C. D., Sanchez, C., Ridley,
J., Thorpe, L., Hardiman, S. C., Mayer, M., Berry, D. I., and Belcher, S.
E.: Critical Southern Ocean climate model biases traced to atmospheric model
cloud errors, Nat. Commun., 9, 3625, https://doi.org/10.1038/s41467-018-05634-2,
2018.
Kay, J. E., Wall, C., Yettella, V., Medeiros, B., Hannay, C., Caldwell, P.,
and Bitz, C.: Global Climate Impacts of Fixing the Southern Ocean Shortwave
Radiation Bias in the Community Earth System Model (CESM), J. Climate, 29, 4617–4636, https://doi.org/10.1175/JCLI-D-15-0358.1, 2016.
Laing, A. E. and Evans, J.-L.: Chapter 3: Global Circulation, in: Introduction to Tropical Meteorology, 2 Edn., edited by: Laing, A. E. and Evans, J.-L., University Corporation for Atmospheric Research, Boulder, available at: http://ftp.comet.ucar.edu/memory-stick/tropical/textbook_2nd_edition/navmenu.php_tab_4.htm, last access: 16 June 2021.
Law, C. S., Smith, M. J., Harvey, M. J., Bell, T. G., Cravigan, L. T., Elliott, F. C., Lawson, S. J., Lizotte, M., Marriner, A., McGregor, J., Ristovski, Z., Safi, K. A., Saltzman, E. S., Vaattovaara, P., and Walker, C. F.: Overview and preliminary results of the Surface Ocean Aerosol Production (SOAP) campaign, Atmos. Chem. Phys., 17, 13645–13667, https://doi.org/10.5194/acp-17-13645-2017, 2017.
Legrand, M., Yang, X., Preunkert, S., and Theys, N.: Year-round records of
sea salt, gaseous, and particulate inorganic bromine in the atmospheric
boundary layer at coastal (Dumont d'urville) and central (concordia) East
Antarctic sites, J. Geophys. Res., 121, 997–1023, https://doi.org/10.1002/2015JD024066,
2016.
McCoy, I. L., McCoy, D. T., Wood, R., Regayre, L., Watson-Parris, D.,
Grosvenor, D. P., Mulcahy, J. P., Hu, Y., Bender, F. A.-M., Field, P. R.,
Carslaw, K. S., and Gordon, H.: The hemispheric contrast in cloud
microphysical properties constrains aerosol forcing, P. Natl. Acad. Sci. USA, 117, 18998–19006, https://doi.org/10.1073/pnas.1922502117,
2020.
McGill, R., Tukey, J. W., and Larsen, W. A.: Variations of Box Plots, The
American Statistician, 32, 12–16, https://doi.org/10.2307/2683468, 1978.
Myhre, G., D. Shindell, F.-M. Bréon, W. Collins, J. Fuglestvedt, J.
Huang, D. Koch, J.-F. Lamarque, D. Lee, B. Mendoza, T. Nakajima, A. Robock,
G. Stephens, T. Takemura, H. Zhang.: Anthropogenic and Natural Radiative
Forcing., in: Climate Change 2013: The Physical Science Basis. Contribution
of Working Group I to the Fifth Assessment Report of the Intergovernmental
Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York,
Neiburger, M., Edinger, J. G., and Bonner, W. D.: Understanding Our
Atmospheric Environment, W. H. Freeman and Company, San Fransisco, USA, 304 pp., 1971.
Nylen, T. H., Fountain, A. G., and Doran, P. T.: Climatology of katabatic
winds in the McMurdo dry valleys, southern Victoria Land, Antarctica, J.
Geophys. Res.-Atmos., 109, D3, https://doi.org/10.1029/2003jd003937, 2004.
O'Dowd, C. D., Lowe, J. A., Smith, M. H., Davison, B., Hewitt, C. N., and
Harrison, R. M.: Biogenic Sulphur Emissions and Inferred
Non-Sea-Salt-Sulphate Cloud Condensation Nuclei in and around Antarctica,
J. Geophys. Res.-Atmos., 102, 12839–12854,
https://doi.org/10.1029/96jd02749, 1997.
Parish, T. R. and Cassano, J. J.: The Role of Katabatic Winds on the
Antarctic Surface Wind Regime, Mon. Weather Rev., 131, 317–333,
https://doi.org/10.1175/1520-0493(2003)131<0317:Trokwo>2.0.Co;2, 2003.
Penner, J. E., Zhou, C., and Xu, L.: Consistent estimates from satellites
and models for the first aerosol indirect forcing, Geophys. Res. Lett., 39, 13,
https://doi.org/10.1029/2012GL051870, 2012.
Pook, M.: The Roaring Forties sometimes purr, in: Australian Antarctic
Magazine, 4, Australian Antarctic Division, Hobart, https://www.antarctica.gov.au/magazine/issue-4-spring-2002/feature2/the-roaring-forties-sometimes-purr/ (last access: 15 June 2021), 2002.
Quinn, P. K., Coffman, D. J., Kapustin, V. N., Bates, T. S., and Covert, D.
S.: Aerosol optical properties in the marine boundary layer during the First
Aerosol Characterization Experiment (ACE 1) and the underlying chemical and
physical aerosol properties, J. Geophys. Res.-Atmos., 103, 16547–16563,
https://doi.org/10.1029/97jd02345, 1998.
R Core Team: R: A language and environmental for statisitical computing, R
Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/, 2020.
Regayre, L. A., Pringle, K. J., Booth, B. B. B., Lee, L. A., Mann, G. W.,
Browse, J., Woodhouse, M. T., Rap, A., Reddington, C. L., and Carslaw, K.
S.: Uncertainty in the magnitude of aerosol-cloud radiative forcing over
recent decades, Geophys. Res. Lett., 41, 9040–9049,
https://doi.org/10.1002/2014GL062029, 2014.
Regayre, L. A., Schmale, J., Johnson, J. S., Tatzelt, C., Baccarini, A., Henning, S., Yoshioka, M., Stratmann, F., Gysel-Beer, M., Grosvenor, D. P., and Carslaw, K. S.: The value of remote marine aerosol measurements for constraining radiative forcing uncertainty, Atmos. Chem. Phys., 20, 10063–10072, https://doi.org/10.5194/acp-20-10063-2020, 2020.
Revell, L. E., Kremser, S., Hartery, S., Harvey, M., Mulcahy, J. P., Williams, J., Morgenstern, O., McDonald, A. J., Varma, V., Bird, L., and Schuddeboom, A.: The sensitivity of Southern Ocean aerosols and cloud microphysics to sea spray and sulfate aerosol production in the HadGEM3-GA7.1 chemistry–climate model, Atmos. Chem. Phys., 19, 15447–15466, https://doi.org/10.5194/acp-19-15447-2019, 2019.
Rinaldi, M., Decesari, S., Finessi, E., Giulianelli, L., Carbone, C., Fuzzi,
S., O'Dowd, C. D., Ceburnis, D., and Facchini, M. C.: Primary and Secondary
Organic Marine Aerosol and Oceanic Biological Activity: Recent Results and
New Perspectives for Future Studies, Adv. Meteorol., 2010, 310682,
https://doi.org/10.1155/2010/310682, 2010.
Sanchez, K. J., Roberts, G. C., Saliba, G., Russell, L. M., Twohy, C., Reeves, J. M., Humphries, R. S., Keywood, M. D., Ward, J. P., and McRobert, I. M.: Measurement report: Cloud processes and the transport of biological emissions affect southern ocean particle and cloud condensation nuclei concentrations, Atmos. Chem. Phys., 21, 3427–3446, https://doi.org/10.5194/acp-21-3427-2021, 2021.
Schmale, J., Baccarini, A., Thurnherr, I., Henning, S., Efraim, A., Regayre,
L., Bolas, C., Hartmann, M., Welti, A., Lehtipalo, K., Aemisegger, F.,
Tatzelt, C., Landwehr, S., Modini, R. L., Tummon, F., Johnson, J., Harris,
N., Schnaiter, M., Toffoli, A., Derkani, M., Bukowiecki, N., Stratmann, F.,
Dommen, J., Baltensperger, U., Wernli, H., Rosenfeld, D., Gysel-Beer, M.,
and Carslaw, K.: Overview of the Antarctic Circumnavigation Expedition:
Study of Preindustrial-like Aerosols and Their Climate Effects (ACE-SPACE),
B. Am. Meteorol. Soc., 100, 2260–2283, https://doi.org/10.1175/bams-d-18-0187.1, 2019.
Scarchilli, C., Frezzotti, M., and Ruti, P. M.: Snow precipitation at four ice
core sites in East Antarctica: provenance, seasonality and blocking
factors, Clim. Dynam., 37, 2107–2125,
https://doi.org/10.1007/s00382-010-0946-4, 2011.
Shaw, G. E.: Antarctic aerosols: A review, Rev. Geophys., 26,
89–112,
https://doi.org/https://doi.org/10.1029/RG026i001p00089, 1988.
Shindell, D. T., Lamarque, J.-F., Schulz, M., Flanner, M., Jiao, C., Chin, M., Young, P. J., Lee, Y. H., Rotstayn, L., Mahowald, N., Milly, G., Faluvegi, G., Balkanski, Y., Collins, W. J., Conley, A. J., Dalsoren, S., Easter, R., Ghan, S., Horowitz, L., Liu, X., Myhre, G., Nagashima, T., Naik, V., Rumbold, S. T., Skeie, R., Sudo, K., Szopa, S., Takemura, T., Voulgarakis, A., Yoon, J.-H., and Lo, F.: Radiative forcing in the ACCMIP historical and future climate simulations, Atmos. Chem. Phys., 13, 2939–2974, https://doi.org/10.5194/acp-13-2939-2013, 2013.
Whittlestone, S. and Zahorowski, W.: Baseline radon detectors for shipboard
use: Development and deployment in the First Aerosol Characterization
Experiment (ACE 1), J. Geophys. Res.-Atmos., 103, 16743–16751,
https://doi.org/10.1029/98JD00687, 1998.
Yan, J., Jung, J., Lin, Q., Zhang, M., Xu, S., and Zhao, S.: Effect of sea
ice retreat on marine aerosol emissions in the Southern Ocean, Antarctica,
Sci. Total Environ., 745, 140773,
https://doi.org/10.1016/j.scitotenv.2020.140773, 2020.
Yu, L., Zhong, S., and Sun, B.: The Climatology and Trend of Surface Wind
Speed over Antarctica and the Southern Ocean and the Implication to Wind
Energy Application, Atmosphere, 11, 108
https://doi.org/10.3390/atmos11010108, 2020.
Zahorowski, W., Griffiths, A. D., Chambers, S. D., Williams, A. G., Law, R.
M., Crawford, J., and Werczynski, S.: Constraining annual and seasonal
radon-222 flux density from the Southern Ocean using radon-222
concentrations in the boundary layer at Cape Grim, Tellus B, 65, 19622, https://doi.org/10.3402/tellusb.v65i0.19622, 2013.
Zhang, H., Zhou, X., Zou, J., Wang, W., Xue, L., Ding, Q., Wang, X., Zhang,
N., Ding, A., Sun, J., and Wang, W.: A Review on the Methods for Observing
the Substance and Energy Exchange between Atmosphere Boundary Layer and Free
Troposphere, Atmosphere, 9, 460, https://doi.org/10.3390/atmos9120460, 2018.
Short summary
Aerosols have a climate forcing effect in the Earth's atmosphere. Few measurements exist of aerosols in the Southern Ocean, a region key to our understanding of this effect. In this study, aerosol measurements from a summer 2017 campaign in the East Antarctic seasonal ice zone are examined. Higher concentrations of aerosols were found in dry air with origins from above the Antarctic continent compared to other periods of the voyage.
Aerosols have a climate forcing effect in the Earth's atmosphere. Few measurements exist of...
Altmetrics
Final-revised paper
Preprint