Articles | Volume 21, issue 12
https://doi.org/10.5194/acp-21-9289-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-9289-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A large-eddy simulation study of deep-convection initiation through the collision of two sea-breeze fronts
Shizuo Fu
CORRESPONDING AUTHOR
Key Laboratory for Humid Subtropical Eco-Geographical Processes of the
Ministry of Education, Fujian Normal University, Fuzhou, China
School of Geographical Sciences, Fujian Normal University, Fuzhou,
China
Richard Rotunno
National
Center for Atmospheric Research, Boulder, CO, USA
Jinghua Chen
Collaborative Innovation Center on Forecast and Evaluation of
Meteorological Disasters, and Key Laboratory for
Aerosol–Cloud–Precipitation of the China Meteorological Administration,
Nanjing University of Information Science and Technology, Nanjing, China
Xin Deng
College of Agriculture, Fujian Agriculture and Forestry University,
Fuzhou, Fujian, China
Huiwen Xue
Department of Atmospheric and Oceanic Sciences, School of Physics,
Peking University, Beijing, China
Related authors
Shizuo Fu, Richard Rotunno, and Huiwen Xue
Atmos. Chem. Phys., 22, 7727–7738, https://doi.org/10.5194/acp-22-7727-2022, https://doi.org/10.5194/acp-22-7727-2022, 2022
Short summary
Short summary
The convective updrafts near the sea-breeze fronts (SBFs) play important roles in initiating deep convection, but their characteristics are not well understood. By performing large-eddy simulations, we explain why the updrafts near the SBF are larger than but have similar strength to the updrafts ahead of the SBF. The results should also apply to other boundary-layer convergence zones similar to the SBF.
Kaiqi Wang, Kai Bi, Shuling Chen, Markus Hartmann, Zhijun Wu, Jiyu Gao, Xiaoyu Xu, Yuhan Cheng, Mengyu Huang, Yunbo Chen, Huiwen Xue, Bingbing Wang, Yaqiong Hu, Xiongying Zhang, Xincheng Ma, Ruijie Li, Ping Tian, Ottmar Möhler, Heike Wex, Frank Startmann, Jie Chen, and Xianda Gong
EGUsphere, https://doi.org/10.5194/egusphere-2025-1873, https://doi.org/10.5194/egusphere-2025-1873, 2025
Short summary
Short summary
Understanding how ice forms in clouds is crucial for predicting weather and climate; however, accurately measuring the ice-nucleating particles that trigger ice formation remains challenging. We developed an advanced instrument called the Freezing Ice Nucleation Detection Analyzer. By refining temperature control, automating freezing detection, and rigorously testing, we demonstrated that this instrument can reliably measure ice-nucleating particles across diverse conditions.
Haifan Zhang, Xiangyu Lin, Qinghong Zhang, Kai Bi, Chan-Pang Ng, Yangze Ren, Huiwen Xue, Li Chen, and Zhuolin Chang
Atmos. Chem. Phys., 23, 13957–13971, https://doi.org/10.5194/acp-23-13957-2023, https://doi.org/10.5194/acp-23-13957-2023, 2023
Short summary
Short summary
This work is the first study to simultaneously analyze the number concentrations and species of insoluble particles in hailstones. The size distribution of insoluble particles for each species vary greatly in different hailstorms but little in shells. Two classic size distribution modes of organics and dust were fitted for the description of insoluble particles in deep convection. Combining this study with future experiments will lead to refinement of weather and climate models.
Shizuo Fu, Richard Rotunno, and Huiwen Xue
Atmos. Chem. Phys., 22, 7727–7738, https://doi.org/10.5194/acp-22-7727-2022, https://doi.org/10.5194/acp-22-7727-2022, 2022
Short summary
Short summary
The convective updrafts near the sea-breeze fronts (SBFs) play important roles in initiating deep convection, but their characteristics are not well understood. By performing large-eddy simulations, we explain why the updrafts near the SBF are larger than but have similar strength to the updrafts ahead of the SBF. The results should also apply to other boundary-layer convergence zones similar to the SBF.
Xin Zhang, Yan Yin, Ronald van der A, Henk Eskes, Jos van Geffen, Yunyao Li, Xiang Kuang, Jeff L. Lapierre, Kui Chen, Zhongxiu Zhen, Jianlin Hu, Chuan He, Jinghua Chen, Rulin Shi, Jun Zhang, Xingrong Ye, and Hao Chen
Atmos. Chem. Phys., 22, 5925–5942, https://doi.org/10.5194/acp-22-5925-2022, https://doi.org/10.5194/acp-22-5925-2022, 2022
Short summary
Short summary
The importance of convection to the ozone and nitrogen oxides (NOx) produced from lightning has long been an open question. We utilize the high-resolution chemistry model with ozonesondes and space observations to discuss the effects of convection over southeastern China, where few studies have been conducted. Our results show the transport and chemistry contributions for various storms and demonstrate the ability of TROPOMI to estimate the lightning NOx production over small-scale convection.
Shian Guo and Huiwen Xue
Atmos. Chem. Phys., 21, 69–85, https://doi.org/10.5194/acp-21-69-2021, https://doi.org/10.5194/acp-21-69-2021, 2021
Short summary
Short summary
Observations in previous studies show that cloud droplets carry electric charges. We are curious about whether the electric interaction enhances the collision of cloud droplets. The effect of the electric charge and atmospheric electric field on the raindrop-formation process is studied numerically. Results indicate that a cloud with a small droplet size is more sensitive to an electric charge and field, which could significantly trigger droplet collision and accelerate raindrop formation.
Cited articles
American Meteorological Society: Dryline, Glossary of Meteorology, available at: http://glossary.ametsoc.org/wiki/dryline, last access: 20 December 2020a.
American Meteorological Society: Gust front, Glossary of Meteorology,
available at: http://glossary.ametsoc.org/wiki/gust_front, last access: 20 December 2020b.
Antonelli, M. and Rotunno, R.: Large-eddy simulation of the onset of the sea
breeze, J. Atmos. Sci., 64, 4445–4457, https://doi.org/10.1175/2007jas2261.1, 2007.
Arnott, N. R., Richardson, Y. P., Wurman, J. M., and Rasmussen, E. M.:
Relationship between a weakening cold front, misocyclones, and cloud
development on 10 June 2002 during IHOP, Mon. Weather Rev., 134, 311–335,
https://doi.org/10.1175/MWR3065.1, 2006.
Bai, L., Meng, Z., Huang, Y., Zhang, Y., Niu, S., and Su, T.: Convection
Initiation Resulting From the Interaction Between a Quasi-Stationary Dryline
and Intersecting Gust Fronts: A Case Study, J. Geophys. Res.-Atmos., 124,
2379–2396, https://doi.org/10.1029/2018JD029832, 2019.
Bai, L., Chen, G., and Huang, L.: Convection Initiation in Monsoon Coastal
Areas (South China), Geophys. Res. Lett., 47, e2020GL087035,
https://doi.org/10.1029/2020GL087035, 2020.
Beringer, J., Tapper, N. J., and Keenan, T. D.: Evolution of maritime
continet thunderstorms under varying meteorological conditions over the Tiwi
Islands, Int. J. Climatol., 21, 1021–1036, https://doi.org/10.1002/joc.622, 2001.
Birch, C. E., Parker, D. J., Marsham, J. H., Copsey, D., and Garcia-Carreras,
L.: A seamless assessment of the role of convection in the water cycle of
the west African Monsoon, J. Geophys. Res.-Atmos., 119, 2890–2912, https://doi.org/10.1002/2013JD020887, 2014.
Birch, C. E., Roberts, M. J., Garcia-Carreras, L., Ackerley, D., Reeder, M.
J., Lock, A. P., and Schiemann, R.: Sea-breeze dynamics and convection
initiation: The influence of convective parameterization in weather and
climate model biases, J. Climate, 28, 8093–8108,
https://doi.org/10.1175/JCLI-D-14-00850.1, 2015.
Blanchard, D. O. and Lopez, R. E.: Spatial patterns of convection in South
Florida, Mon. Weather Rev., 113, 1282–1299,
https://doi.org/10.1175/1520-0493(1985)113<1282:SPOCIS>2.0.CO;2, 1985.
Bluestein, H. B.: Surface Boundaries of the Southern Plains: Their Role in
the Initiation of Convective Storms, in: Synoptic-Dynamic Meteorology and
Weather Analysis and Forecasting, 5–33, American Meteorological Society, 2008.
Böing, S. J., Jonker, H. J. J., Siebesma, A. P., and Grabowski, W. W.:
Influence of the subcloud layer on the development of a deep convective
ensemble, J. Atmos. Sci., 69, 2682–2698, https://doi.org/10.1175/JAS-D-11-0317.1, 2012.
Bryan, G. H. and Fritsch, J. M.: A Benchmark Simulation for Moist
Nonhydrostatic Numerical Models, Mon. Weather Rev., 130, 2917–2928,
https://doi.org/10.1175/1520-0493(2002)130<2917:absfmn>2.0.co;2, 2002.
Carbone, R. E., Wilson, J. W., Keenan, T. D., and Hacker, J. M.: Tropical
Island Convection in the Absence of Significant Topography, Part I: Life
Cycle of Diurnally Forced Convection, Mon. Weather Rev., 128, 3459–3480,
https://doi.org/10.1175/1520-0493(2000)128<3459:ticita>2.0.co;2, 2000.
Crook, N. A.: Sensitivity of moist convection forced by boundary layer
processes to low-level thermodynamic fields, Mon. Weather Rev., 124,
1767–1785, 1996.
Crosman, E. T. and Horel, J. D.: Sea and lake breezes: A review of numerical
studies, Bound.-Lay. Meteorol., 137, 1–29, https://doi.org/10.1007/s10546-010-9517-9, 2010.
Crosman, E. T. and Horel, J. D.: Idealized Large-Eddy Simulations of Sea and
Lake Breezes: Sensitivity to Lake Diameter, Heat Flux and Stability,
Bound.-Lay. Meteorol., 144, 309–328, https://doi.org/10.1007/s10546-012-9721-x,
2012.
Cuxart, J., Jiménez, M. A., Prtenjak Telišman, M., and Grisogono, B.:
Study of a sea-breeze case through momentum, temperature, and turbulence
budgets, J. Appl. Meteorol. Clim., 53, 2589–2609,
https://doi.org/10.1175/JAMC-D-14-0007.1, 2014.
Dailey, P. S. and Fovell, R. G.: Numerical Simulation of the Interaction
between the Sea-Breeze Front and Horizontal Convective Rolls, Part I:
Offshore Ambient Flow, Mon. Weather Rev., 127, 858–878,
https://doi.org/10.1175/1520-0493(1999)127<0858:nsotib>2.0.co;2, 1999.
Dawe, J. T. and Austin, P. H.: Statistical analysis of an LES shallow cumulus cloud ensemble using a cloud tracking algorithm, Atmos. Chem. Phys., 12, 1101–1119, https://doi.org/10.5194/acp-12-1101-2012, 2012.
Deardorff, J. W.: Stratocumulus-capped mixed layers derived from a
three-dimensional model, Bound.-Lay. Meteorol., 18, 495–527,
https://doi.org/10.1007/BF00119502, 1980.
Doswell, C. A., Brooks, H. E., and Maddox, R. A.: Flash flood forecasting: An
ingredients-based methodology, Weather Forecast., 11, 560–581,
https://doi.org/10.1175/1520-0434(1996)011<0560:FFFAIB>2.0.CO;2, 1996.
Drobinski, P. and Dubos, T.: Linear breeze scaling: from large-scale
land/sea breezes to mesoscale inland breezes, Q. J. Roy. Meteor. Soc., 135,
1766–1775, https://doi.org/10.1002/qj.496, 2009.
Feng, Z., Hagos, S., Rowe, A. K., Burleyson, C. D., Martini, M. N., and De Szoeke, S. P.: Mechanisms of convective cloud organization by cold pools
over tropical warm ocean during the AMIE/DYNAMO field campaign, J. Adv. Model. Earth Sy., 7, 357–381, https://doi.org/10.1002/2014MS000384, 2015.
Finnigan, J. J., Shaw, R. H., and Patton, E. G.: Turbulence structure above a
vegetation canopy, J. Fluid Mech., 637, 387–424,
https://doi.org/10.1017/S0022112009990589, 2009.
Fovell, R. G.: Convective initiation ahead of the sea-breeze front, Mon. Weather Rev., 133, 264–278, https://doi.org/10.1175/mwr-2852.1, 2005.
Frye, J. D. and Mote, T. L.: Convection Initiation along Soil Moisture
Boundaries in the Southern Great Plains, Mon. Weather Rev., 138, 1140–1151,
https://doi.org/10.1175/2009MWR2865.1, 2010.
Fu, S.: DCI through the collision of sea-breeze fronts, https://doi.org/10.17605/OSF.IO/JZETH, 2021.
Fu, S., Deng, X., Li, Z., and Xue, H.: Radiative effect of black carbon
aerosol on a squall line case in North China, Atmos. Res., 197, 407–414,
https://doi.org/10.1016/j.atmosres.2017.07.026, 2017.
Fu, S., Rotunno, R., and Xue, H.: Response of orographic precipitation to
subsaturated low-level layers, J. Atmos. Sci., 76, 3753–3771,
https://doi.org/10.1175/JAS-D-19-0115.1, 2019.
Garcia-Carreras, L., Parker, D. J., and Marsham, J. H.: What is the mechanism
for the modification of convective cloud distributions by land
surface-induced flows?, J. Atmos. Sci., 68, 619–634,
https://doi.org/10.1175/2010jas3604.1, 2011.
Geerts, B., Damiani, R., and Haimov, S.: Finescale vertical structure of a
cold front as revealed by an airborne Doppler radar, Mon. Weather Rev., 134,
251–271, https://doi.org/10.1175/MWR3056.1, 2006.
Glenn, I. B. and Krueger, S. K.: Connections matter: Updraft merging in
organized tropical deep convection, Geophys. Res. Lett., 44, 7087–7094,
https://doi.org/10.1002/2017GL074162, 2017.
Guillod, B. P., Orlowsky, B., Miralles, D. G., Teuling, A. J., and
Seneviratne, S. I.: Reconciling spatial and temporal soil moisture effects
on afternoon rainfall, Nat. Commun., 6, 6443, https://doi.org/10.1038/ncomms7443, 2015.
Hanesiak, J. M., Raddatz, R. L., and Lobban, S.: Local initiation of deep
convection on the Canadian prairie provinces, Bound.-Lay. Meteorol., 110,
455–470, https://doi.org/10.1023/B:BOUN.0000007242.89023.e5, 2004.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay,
P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5
Global Reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049,
https://doi.org/10.1002/qj.3803, 2020.
Huang, Y., Meng, Z., Li, W., Bai, L., and Meng, X.: General Features of
Radar-Observed Boundary Layer Convergence Lines and Their Associated
Convection Over a Sharp Vegetation-Contrast Area, Geophys. Res. Lett., 46,
2865–2873, https://doi.org/10.1029/2018GL081714, 2019.
Iwai, H., Murayama, Y., Ishii, S., Mizutani, K., Ohno, Y., and Hashiguchi,
T.: Strong Updraft at a Sea-Breeze Front and Associated Vertical Transport
of Near-Surface Dense Aerosol Observed by Doppler Lidar and Ceilometer,
Bound.-Lay. Meteorol., 141, 117–142, https://doi.org/10.1007/s10546-011-9635-z, 2011.
Kang, S.-L. and Bryan, G. H.: A Large-Eddy Simulation Study of Moist
Convection Initiation over Heterogeneous Surface Fluxes, Mon. Weather Rev.,
139, 2901–2917, https://doi.org/10.1175/mwr-d-10-05037.1, 2011.
Khairoutdinov, M. and Randall, D.: High-resolution simulation of
shallow-to-deep convection transition over land, J. Atmos. Sci., 63,
3421–3436, https://doi.org/10.1175/JAS3810.1, 2006.
Kingsmill, D. E.: Convection Initiation Associated with a Sea-Breeze Front,
Mon. Weather Rev., 123, 2913–2933, 1995.
Kraus, H., Hacker, J. M., and Hartmann, J.: An observational aircraft-based
study of sea-breeze frontogenesis, Bound.-Lay. Meteorol., 53, 223–265,
https://doi.org/10.1007/BF00154443, 1990.
Laird, N. F., Kristovich, D. A. R., Rauber, R. M., Ochs, H. T., and Miller,
L. J.: The Cape Canaveral Sea and River Breezes: Kinematic Structure and
Convective Initiation, Mon. Weather Rev., 123, 2942–2956,
https://doi.org/10.1175/1520-0493(1995)123<2942:tccsar>2.0.co;2, 1995.
Markowski, P. and Richardson, Y.: Mesoscale Meteorology in Midlatitudes, Wiley-Blackwell, 430 pp., 2010.
Markowski, P., Hannon, C., and Rasmussen, E.: Observations of convection
initiation “failure” from the 12 June 2002 IHOP deployment, Mon. Weather Rev., 134, 375–405, https://doi.org/10.1175/MWR3059.1, 2006.
Marsham, J. H., Dixon, N. S., Garcia-Carreras, L., Lister, G. M. S., Parker,
D. J., Knippertz, P., and Birch, C. E.: The role of moist convection in the
West African monsoon system: Insights from continental-scale
convection-permitting simulations, Geophys. Res. Lett., 40, 1843–1849,
https://doi.org/10.1002/grl.50347, 2013.
Miao, Q. and Geerts, B.: Finescale vertical structure and dynamics of some
dryline boundaries observed in IHOP, Mon. Weather Rev., 135, 4161–4184,
https://doi.org/10.1175/2007MWR1982.1, 2007.
Miller, S. T. K., Keim, B. D., Talbot, R. W., and Mao, H.: Sea breeze:
Structure, forecasting, and impacts, Rev. Geophys., 41, 1011, https://doi.org/10.1029/2003RG000124, 2003.
Nicholls, M. E., Pielke, R. A., and Cotton, W. R.: A two-dimensional
numerical investigation of the interaction between sea breezes and deep
convection over the Florida Peninsula, Mon. Weather Rev., 119, 298–323,
https://doi.org/10.1175/1520-0493(1991)119<0298:ATDNIO>2.0.CO;2, 1991.
Patton, E. G., Sullivan, P. P., and Moeng, C. H.: The influence of idealized
heterogeneity on wet and dry planetary boundary layers coupled to the land
surface, J. Atmos. Sci., 62, 2078–2097, https://doi.org/10.1175/JAS3465.1, 2005.
Reif, D. W. and Bluestein, H. B.: A 20-year climatology of nocturnal
convection initiation over the Central and Southern Great Plains during the
warm season, Mon. Weather Rev., 145, 1615–1639, https://doi.org/10.1175/mwr-d-16-0340.1,
2017.
Rieck, M., Hohenegger, C., and van Heerwaarden, C. C.: The influence of land
surface heterogeneities on cloud size development, Mon. Weather Rev., 142,
3830–3846, https://doi.org/10.1175/mwr-d-13-00354.1, 2014.
Rizza, U., Miglietta, M. M., Anabor, V., Degrazia, G. A., and Maldaner, S.:
Large-eddy simulation of sea breeze at an idealized peninsular site,
J. Marine Syst., 148, 167–182, https://doi.org/10.1016/j.jmarsys.2015.03.001, 2015.
Rotunno, R., Klemp, J. B., and Weisman, M. L.: A theory for strong,
long-lived squall lines, J. Atmos. Sci., 45, 463–485,
https://doi.org/10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2, 1988.
Rousseau-Rizzi, R., Kirshbaum, D. J., and Yau, M. K.: Initiation of Deep
Convection over an Idealized Mesoscale Convergence Line, J. Atmos. Sci., 74,
835–853, https://doi.org/10.1175/JAS-D-16-0221.1, 2017.
Schlemmer, L. and Hohenegger, C.: The formation of wider and deeper clouds
as a result of cold-pool dynamics, J. Atmos. Sci., 71, 2842–2858,
https://doi.org/10.1175/JAS-D-13-0170.1, 2014.
Schmidt, H. and Schumann, U.: Coherent structure of the convective boundary
layer derived from large-eddy simulations, J. Fluid Mech., 200, 511–562,
https://doi.org/10.1017/S0022112089000753, 1989.
Shephered, J. M., Ferrier, B. S., and Ray, P. S.: Rainfall morphology in
Florida convergence zones: A numerical study, Mon. Weather Rev., 129, 177–197, https://doi.org/10.1175/1520-0493(2001)129<0177:rmifcz>2.0.co;2, 2001.
Skamarock, W. C. and Klemp, J. B.: Efficiency and accuracy of the
Klemp-Wilhelmson time-splitting technique, Mon. Weather Rev., 122, 2623–2630, https://doi.org/10.1175/1520-0493(1994)122<2623:EAAOTK>2.0.CO;2, 1994.
Soderholm, J., McGowan, H., Richter, H., Walsh, K., Weckwerth, T., and
Coleman, M.: The coastal convective interactions experiment (CCIE):
Understanding the role of sea breezes for hailstorm hotspots in Eastern
Australia, B. Am. Meteorol. Soc., 97, 1687–1698,
https://doi.org/10.1175/BAMS-D-14-00212.1, 2016.
Tang, S. L. and Kirshbaum, D. J.: On the sensitivity of deep-convection
initiation to horizontal grid resolution, Q. J. Roy. Meteor. Soc., 146,
1085–1105, https://doi.org/10.1002/qj.3726, 2020.
Taylor, C. M., Gounou, A., Guichard, F., Harris, P. P., Ellis, R. J.,
Couvreux, F., and De Kauwe, M.: Frequency of sahelian storm initiation
enhanced over mesoscale soil-moisture patterns, Nat. Geosci., 4, 430–433,
https://doi.org/10.1038/ngeo1173, 2011.
van Heerwaarden, C. C. and de Arellano, J. V. G.: Relative humidity as an
indicator for cloud formation over heterogeneous land surfaces, J. Atmos.
Sci., 65, 3263–3277, https://doi.org/10.1175/2008JAS2591.1, 2008.
Wakimoto, R. M. and Atkins, N. T.: Observations of the sea-breeze front
during CaPE, Part I: single-Dopper, satellite, and cloud photogrammetry
analysis, Mon. Weather Rev., 122, 1092–1114,
https://doi.org/10.1175/1520-0493(1994)122<1092:OOTSBF>2.0.CO;2, 1994.
Wakimoto, R. M. and Murphey, H. V.: Analysis of convergence boundaries
observed during IHOP_2002, Mon. Weather Rev., 138, 2737–2760,
https://doi.org/10.1175/2010MWR3266.1, 2010.
Wakimoto, R. M., Murphey, H. V., Browell, E. V., and Ismail, S.: The “triple
point” on 24 May 2002 during IHOP, Part I: Airborne Doppler and LASE
analyses of the frontal boundaries and convection initiation, Mon. Weather Rev., 134, 231–250, https://doi.org/10.1175/MWR3066.1, 2006.
Wang, Y. C., Pan, H. L., and Hsu, H. H.: Impacts of the triggering function
of cumulus parameterization on warm-season diurnal rainfall cycles at the
Atmospheric Radiation Measurement Southern Great Plains Site, J. Geophys.
Res.-Atmos., 120, 10681–10702, https://doi.org/10.1002/2015JD023337, 2015.
Weckwerth, T. M.: The Effect of Small-Scale Moisture Variability on
Thunderstorm Initiation, Mon. Weather Rev., 128, 4017–4030,
https://doi.org/10.1175/1520-0493(2000)129<4017:TEOSSM>2.0.CO;2, 2000.
Weckwerth, T. M. and Parsons, D. B.: A Review of Convection Initiation and
Motivation for IHOP_2002, Mon. Weather Rev., 134, 5–22,
https://doi.org/10.1175/MWR3067.1, 2006.
Weil, J. C., Sullivan, P. P., and Moeng, C. H.: The use of large-eddy
simulations in Lagrangian particle dispersion models, J. Atmos. Sci., 61,
2877–2887, https://doi.org/10.1175/JAS-3302.1, 2004.
Wieringa, J.: Representative roughness parameters for homogeneous terrain,
Bound.-Lay. Meteorol., 63, 323–363, https://doi.org/10.1007/BF00705357, 1993.
Wilson, J. W. and Roberts, R. D.: Summary of convective storm initiaiton and
evolution during IHOP: Observational and modeling perspective, Mon. Weather Rev., 134, 23–47, https://doi.org/10.1175/MWR3069.1, 2006.
Wilson, J. W. and Schreiber, W. E.: Initiation of convective storms at
Radar-Observed Boundary-Layer Convective lines, Mon. Weather Rev., 114,
2516–2536, 1986.
Wood, R., Stromberg, I. M., and Jonas, P. R.: Aircraft observations of
sea-breeze frontal structure, Q. J. Roy. Meteor. Soc., 125, 1959–1995,
1999.
Yang, F., Ovchinnikov, M., and Shaw, R. A.: Long-lifetime ice particles in
mixed-phase stratiform clouds: Quasi-steady and recycled growth, J. Geophys.
Res.-Atmos., 120, 11617–11635, https://doi.org/10.1002/2015JD023679, 2015.
Yang, Y., He, G. W., and Wang, L. P.: Effects of subgrid-scale modeling on
Lagrangian statistics in large-eddy simulation, J. Turbul., 9, N8,
https://doi.org/10.1080/14685240801905360, 2008.
Zhang, M., Meng, Z., Huang, Y., and Wang, D.: The mechanism and
predictability of an elevated convection initiation event in a weak-lifting
environment in central-eastern China, Mon. Weather Rev., 147, 1823–1841,
https://doi.org/10.1175/MWR-D-18-0400.1, 2019.
Zhang, Y., Stevens, B., and Ghil, M.: On the diurnal cycle and susceptibility
to aerosol concentration in a stratocumulus-topped mixed layer, Q. J. Roy. Meteor. Soc., 131, 1567–1583, https://doi.org/10.1256/qj.04.103, 2005.
Zhu, L., Meng, Z., Zhang, F., and Markowski, P. M.: The influence of sea- and land-breeze circulations on the diurnal variability in precipitation over a tropical island, Atmos. Chem. Phys., 17, 13213–13232, https://doi.org/10.5194/acp-17-13213-2017, 2017.
Ziegler, C. L. and Rasmussen, E. N.: The initiation of moist convection at
the dryline: Forecasting issues from a case study perspective, Weather
Forecast., 13, 1106–1131, https://doi.org/10.1175/1520-0434(1998)013<1106:tiomca>2.0.co;2, 1998.
Short summary
Deep-convection initiation (DCI) determines when and where deep convection develops and hence affects both weather and climate. However, our understanding of DCI is still limited. Here, we simulate DCI over a peninsula using large-eddy simulation and high-output frequency. We find that DCI is accomplished through the development of multiple generations of convection, and the earlier generation affects the later generation by producing downdrafts and cold pools.
Deep-convection initiation (DCI) determines when and where deep convection develops and hence...
Altmetrics
Final-revised paper
Preprint