Articles | Volume 21, issue 11
https://doi.org/10.5194/acp-21-9151-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-9151-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Influence of weather situation on non-CO2 aviation climate effects: the REACT4C climate change functions
Christine Frömming
CORRESPONDING AUTHOR
Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
Volker Grewe
Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
Delft University of Technology, Aerospace Engineering, Section Aircraft Noise and Climate Effects, Delft, the Netherlands
Sabine Brinkop
Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
Patrick Jöckel
Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
Amund S. Haslerud
Center for International Climate and Environmental Research – Oslo (CICERO), Oslo, Norway
Simon Rosanka
Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
Delft University of Technology, Aerospace Engineering, Section Aircraft Noise and Climate Effects, Delft, the Netherlands
now at: Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, IEK-8: Troposphere, Jülich, Germany
Jesper van Manen
Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
Delft University of Technology, Aerospace Engineering, Section Aircraft Noise and Climate Effects, Delft, the Netherlands
now at: Ministry of Infrastructure and Water Management, The Hague, the Netherlands
Sigrun Matthes
Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
Viewed
Total article views: 3,551 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 18 Aug 2020)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
2,711 | 786 | 54 | 3,551 | 307 | 59 | 54 |
- HTML: 2,711
- PDF: 786
- XML: 54
- Total: 3,551
- Supplement: 307
- BibTeX: 59
- EndNote: 54
Total article views: 3,016 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 16 Jun 2021)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
2,437 | 533 | 46 | 3,016 | 165 | 50 | 46 |
- HTML: 2,437
- PDF: 533
- XML: 46
- Total: 3,016
- Supplement: 165
- BibTeX: 50
- EndNote: 46
Total article views: 535 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 18 Aug 2020)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
274 | 253 | 8 | 535 | 142 | 9 | 8 |
- HTML: 274
- PDF: 253
- XML: 8
- Total: 535
- Supplement: 142
- BibTeX: 9
- EndNote: 8
Viewed (geographical distribution)
Total article views: 3,551 (including HTML, PDF, and XML)
Thereof 3,708 with geography defined
and -157 with unknown origin.
Total article views: 3,016 (including HTML, PDF, and XML)
Thereof 3,055 with geography defined
and -39 with unknown origin.
Total article views: 535 (including HTML, PDF, and XML)
Thereof 653 with geography defined
and -118 with unknown origin.
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Cited
22 citations as recorded by crossref.
- Operational Improvements to Reduce the Climate Impact of Aviation—A Comparative Study from EU Project ClimOP Z. Zengerling et al. 10.3390/app13169083
- Effect of Engine Design Parameters on the Climate Impact of Aircraft: A Case Study Based on Short-Medium Range Mission H. Saluja et al. 10.3390/aerospace10121004
- Sustainable aviation in the context of the Paris Agreement: A review of prospective scenarios and their technological mitigation levers S. Delbecq et al. 10.1016/j.paerosci.2023.100920
- Note on the Non-CO2 Mitigation Potential of Hybrid-Electric Aircraft Using “Eco-Switch” M. Niklaß et al. 10.2514/1.C036826
- Differences in microphysical properties of cirrus at high and mid-latitudes E. De La Torre Castro et al. 10.5194/acp-23-13167-2023
- Uncertainties in mitigating aviation non-CO2 emissions for climate and air quality using hydrocarbon fuels D. Lee et al. 10.1039/D3EA00091E
- Predicting the climate impact of aviation for en-route emissions: the algorithmic climate change function submodel ACCF 1.0 of EMAC 2.53 F. Yin et al. 10.5194/gmd-16-3313-2023
- Transport patterns of global aviation NOx and their short-term O3 radiative forcing – a machine learning approach J. Maruhashi et al. 10.5194/acp-22-14253-2022
- Concept of climate-charged airspaces: a potential policy instrument for internalizing aviation's climate impact of non-CO2 effects M. Niklaß et al. 10.1080/14693062.2021.1950602
- Decision-making strategies implemented in SolFinder 1.0 to identify eco-efficient aircraft trajectories: application study in AirTraf 3.0 F. Castino et al. 10.5194/gmd-17-4031-2024
- The ozone radiative forcing of nitrogen oxide emissions from aviation can be estimated using a probabilistic approach P. Rao et al. 10.1038/s43247-024-01691-2
- Validating Dynamic Sectorization for Air Traffic Control Due to Climate Sensitive Areas: Designing Effective Air Traffic Control Strategies N. Ahrenhold et al. 10.3390/aerospace10050405
- Regional and seasonal impact of hydrogen propulsion systems on potential contrail cirrus cover S. Kaufmann et al. 10.1016/j.aeaoa.2024.100298
- Biofuels in Aviation: Exploring the Impact of Sustainable Aviation Fuels in Aircraft Engines R. Khujamberdiev & H. Cho 10.3390/en17112650
- A Python library for computing individual and merged non-CO2 algorithmic climate change functions: CLIMaCCF V1.0 S. Dietmüller et al. 10.5194/gmd-16-4405-2023
- Alternative climate metrics to the Global Warming Potential are more suitable for assessing aviation non-CO2 effects L. Megill et al. 10.1038/s43247-024-01423-6
- A multi-method assessment of the regional sensitivities between flight altitude and short-term O3 climate warming from aircraft NO x emissions J. Maruhashi et al. 10.1088/1748-9326/ad376a
- Case Study for Testing the Validity of NOx-Ozone Algorithmic Climate Change Functions for Optimising Flight Trajectories P. Rao et al. 10.3390/aerospace9050231
- Atmospheric chemistry regimes in intercontinental air traffic corridors: Ozone versus NOx sensitivity R. Derwent et al. 10.1016/j.atmosenv.2024.120521
- The impact of weather patterns and related transport processes on aviation's contribution to ozone and methane concentrations from NO<sub><i>x</i></sub> emissions S. Rosanka et al. 10.5194/acp-20-12347-2020
- Analysis of Aircraft Routing Strategies for North Atlantic Flights by Using AirTraf 2.0 H. Yamashita et al. 10.3390/aerospace8020033
- Climate Impact Mitigation Potential of European Air Traffic in a Weather Situation with Strong Contrail Formation B. Lührs et al. 10.3390/aerospace8020050
19 citations as recorded by crossref.
- Operational Improvements to Reduce the Climate Impact of Aviation—A Comparative Study from EU Project ClimOP Z. Zengerling et al. 10.3390/app13169083
- Effect of Engine Design Parameters on the Climate Impact of Aircraft: A Case Study Based on Short-Medium Range Mission H. Saluja et al. 10.3390/aerospace10121004
- Sustainable aviation in the context of the Paris Agreement: A review of prospective scenarios and their technological mitigation levers S. Delbecq et al. 10.1016/j.paerosci.2023.100920
- Note on the Non-CO2 Mitigation Potential of Hybrid-Electric Aircraft Using “Eco-Switch” M. Niklaß et al. 10.2514/1.C036826
- Differences in microphysical properties of cirrus at high and mid-latitudes E. De La Torre Castro et al. 10.5194/acp-23-13167-2023
- Uncertainties in mitigating aviation non-CO2 emissions for climate and air quality using hydrocarbon fuels D. Lee et al. 10.1039/D3EA00091E
- Predicting the climate impact of aviation for en-route emissions: the algorithmic climate change function submodel ACCF 1.0 of EMAC 2.53 F. Yin et al. 10.5194/gmd-16-3313-2023
- Transport patterns of global aviation NOx and their short-term O3 radiative forcing – a machine learning approach J. Maruhashi et al. 10.5194/acp-22-14253-2022
- Concept of climate-charged airspaces: a potential policy instrument for internalizing aviation's climate impact of non-CO2 effects M. Niklaß et al. 10.1080/14693062.2021.1950602
- Decision-making strategies implemented in SolFinder 1.0 to identify eco-efficient aircraft trajectories: application study in AirTraf 3.0 F. Castino et al. 10.5194/gmd-17-4031-2024
- The ozone radiative forcing of nitrogen oxide emissions from aviation can be estimated using a probabilistic approach P. Rao et al. 10.1038/s43247-024-01691-2
- Validating Dynamic Sectorization for Air Traffic Control Due to Climate Sensitive Areas: Designing Effective Air Traffic Control Strategies N. Ahrenhold et al. 10.3390/aerospace10050405
- Regional and seasonal impact of hydrogen propulsion systems on potential contrail cirrus cover S. Kaufmann et al. 10.1016/j.aeaoa.2024.100298
- Biofuels in Aviation: Exploring the Impact of Sustainable Aviation Fuels in Aircraft Engines R. Khujamberdiev & H. Cho 10.3390/en17112650
- A Python library for computing individual and merged non-CO2 algorithmic climate change functions: CLIMaCCF V1.0 S. Dietmüller et al. 10.5194/gmd-16-4405-2023
- Alternative climate metrics to the Global Warming Potential are more suitable for assessing aviation non-CO2 effects L. Megill et al. 10.1038/s43247-024-01423-6
- A multi-method assessment of the regional sensitivities between flight altitude and short-term O3 climate warming from aircraft NO x emissions J. Maruhashi et al. 10.1088/1748-9326/ad376a
- Case Study for Testing the Validity of NOx-Ozone Algorithmic Climate Change Functions for Optimising Flight Trajectories P. Rao et al. 10.3390/aerospace9050231
- Atmospheric chemistry regimes in intercontinental air traffic corridors: Ozone versus NOx sensitivity R. Derwent et al. 10.1016/j.atmosenv.2024.120521
3 citations as recorded by crossref.
- The impact of weather patterns and related transport processes on aviation's contribution to ozone and methane concentrations from NO<sub><i>x</i></sub> emissions S. Rosanka et al. 10.5194/acp-20-12347-2020
- Analysis of Aircraft Routing Strategies for North Atlantic Flights by Using AirTraf 2.0 H. Yamashita et al. 10.3390/aerospace8020033
- Climate Impact Mitigation Potential of European Air Traffic in a Weather Situation with Strong Contrail Formation B. Lührs et al. 10.3390/aerospace8020050
Latest update: 17 Nov 2024
Short summary
The influence of weather situations on non-CO2 aviation climate impact is investigated to identify systematic weather-related sensitivities. If aircraft avoid the most sensitive areas, climate impact might be reduced. Enhanced significance is found for emission in relation to high-pressure systems, jet stream, polar night, and tropopause altitude. The results represent a comprehensive data set for studies aiming at weather-dependent flight trajectory optimization to reduce total climate impact.
The influence of weather situations on non-CO2 aviation climate impact is investigated to...
Altmetrics
Final-revised paper
Preprint