Supplement of

Influence of weather situation on non-CO$_2$ aviation climate effects: the REACT4C climate change functions

Christine Frömming et al.

Correspondence to: Christine Frömming (christine.froemming@dlr.de)

The copyright of individual parts of the supplement might differ from the article licence.
Fig. S1: Contrail-cirrus climate change functions for weather situation W1 for the pressure levels 200, 250, 300 and 400 hPa and the emission times 6, 12, and 18 UTC [10^{-15} K/km].
Fig. S2: Contrail-cirrus climate change functions for weather situation W2 for the pressure levels 200, 250, 300 and 400 hPa and the emission times 6, 12, and 18 UTC [10^{-12}K/km].
Fig. S3: Contrail-cirrus climate change functions for weather situation W3 for the pressure levels 200, 250, 300 and 400 hPa and the emission times 6, 12, and 18 UTC [10^{-15}K/km].
Fig. S4: Contrail-cirrus climate change functions for weather situation W4 for the pressure levels 200, 250, 300 and 400 hPa and the emission times 6, 12, and 18 UTC [10^{-15}K/km].
Fig. S5: Contrail-cirrus climate change functions for weather situation W5 for the pressure levels 200, 250, 300 and 400 hPa and the emission times 6, 12, and 18 UTC [10^-15 K/km].
Fig. S6: Contrail-cirrus climate change functions for weather situation S1 for the pressure levels 200, 250, 300 and 400 hPa and the emission times 6, 12, and 18 UTC \([10^{-15} \text{ K/km}]\).
Fig. S7: Contrail-cirrus climate change functions for weather situation S2 for the pressure levels 200, 250, 300 and 400 hPa and the emission times 6, 12, and 18 UTC $[10^{15} \text{K/km}]$.
Fig. S8: Contrail-cirrus climate change functions for weather situation S3 for the pressure levels 200, 250, 300 and 400 hPa and the emission times 6, 12, and 18 UTC $[10^{-15}\text{ K/km}]$.
Fig. S9: Total NO\textsubscript{x} climate change functions for weather situation W1 for the pressure levels 200, 250, 300 and 400 hPa and 12 UTC \([10^{-14} \text{ K/kg(NO}_2\text{)]}\).

Fig. S10: Total NO\textsubscript{x} climate change functions for weather situation W2 for the pressure levels 200, 250, 300 and 400 hPa and 12 UTC \([10^{-14} \text{ K/kg(NO}_2\text{)]}\).

Fig. S11: Total NO\textsubscript{x} climate change functions for weather situation W3 for the pressure levels 200, 250, 300 and 400 hPa and 12 UTC \([10^{-14} \text{ K/kg(NO}_2\text{)]}\).
Fig. S12: Total NO\textsubscript{x} climate change functions for weather situation W4 for the pressure levels 200, 250, 300 and 400 hPa and 12 UTC [10-14 K/kg(NO\textsubscript{2})].

Fig. S13: Total NO\textsubscript{x} climate change functions for weather situation W5 for the pressure levels 200, 250, 300 and 400 hPa and 12 UTC [10-14 K/kg(NO\textsubscript{2})].

Fig. S14: Total NO\textsubscript{x} climate change functions for weather situation S1 for the pressure levels 200, 250, 300 and 400 hPa and 12 UTC [10-14 K/kg(NO\textsubscript{2})].
Fig. S15: Total NO\textsubscript{x} climate change functions for weather situation S2 for the pressure levels 200, 250, 300 and 400 hPa and 12 UTC [10-14 K/kg(NO\textsubscript{2})].

Fig. S16: Total NO\textsubscript{x} climate change functions for weather situation S3 for the pressure levels 200, 250, 300 and 400 hPa and 12 UTC [10-14 K/kg(NO\textsubscript{2})].
Fig. S17: \(\text{H}_2\text{O} \) climate change functions for weather situation W1 for the pressure levels 200, 250, 300 and 400 hPa and 12 UTC [10\(^{-17}\) K/kg(fuel)].

Fig. S18: \(\text{H}_2\text{O} \) climate change functions for weather situation W2 for the pressure levels 200, 250, 300 and 400 hPa and 12 UTC [10\(^{-17}\) K/kg(fuel)].

Fig. S19: \(\text{H}_2\text{O} \) climate change functions for weather situation W3 for the pressure levels 200, 250, 300 and 400 hPa and 12 UTC [10\(^{-17}\) K/kg(fuel)].
Fig. S20: H_2O climate change functions for weather situation W4 for the pressure levels 200, 250, 300 and 400 hPa and 12 UTC [10^{-17} K/kg(fuel)].

Fig. S21: H_2O climate change functions for weather situation W5 for the pressure levels 200, 250, 300 and 400 hPa and 12 UTC [10^{-17} K/kg(fuel)].

Fig. S22: H_2O climate change functions for weather situation S1 for the pressure levels 200, 250, 300 and 400 hPa and 12 UTC [10^{-17} K/kg(fuel)].
Fig. S23: H_2O climate change functions for weather situation $S2$ for the pressure levels 200, 250, 300 and 400 hPa and 12 UTC [$10^{-17} \text{K/kg(fuel)}$].

Fig. S24: H_2O climate change functions for weather situation $S3$ for the pressure levels 200, 250, 300 and 400 hPa and 12 UTC [$10^{-17} \text{K/kg(fuel)}$].