Articles | Volume 21, issue 10
https://doi.org/10.5194/acp-21-8127-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-8127-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Improved representation of the global dust cycle using observational constraints on dust properties and abundance
Department of Atmospheric and Oceanic Sciences, University of
California, Los Angeles, CA 90095, USA
Adeyemi A. Adebiyi
Department of Atmospheric and Oceanic Sciences, University of
California, Los Angeles, CA 90095, USA
Samuel Albani
Department of Environmental and Earth Sciences, University of
Milano-Bicocca, Milan, Italy
Laboratoire des Sciences du Climat et de l'Environnement,
CEA-CNRS-UVSQ-UPSaclay, Gif-sur-Yvette, France
Yves Balkanski
Laboratoire des Sciences du Climat et de l'Environnement,
CEA-CNRS-UVSQ-UPSaclay, Gif-sur-Yvette, France
Ramiro Checa-Garcia
Laboratoire des Sciences du Climat et de l'Environnement,
CEA-CNRS-UVSQ-UPSaclay, Gif-sur-Yvette, France
Mian Chin
Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space
Flight Center, Greenbelt, MD 20771, USA
Peter R. Colarco
Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space
Flight Center, Greenbelt, MD 20771, USA
Douglas S. Hamilton
Department of Earth and Atmospheric Sciences, Cornell University,
Ithaca, NY 14850, USA
Yue Huang
Department of Atmospheric and Oceanic Sciences, University of
California, Los Angeles, CA 90095, USA
Akinori Ito
Yokohama Institute for Earth Sciences, JAMSTEC, Yokohama, Kanagawa
236-0001, Japan
Martina Klose
Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain
present address: Department Troposphere Research, Institute of Meteorology and Climate Research
(IMK-TRO), Karlsruhe Institute of
Technology (KIT), Karlsruhe, Germany
Danny M. Leung
Department of Atmospheric and Oceanic Sciences, University of
California, Los Angeles, CA 90095, USA
Longlei Li
Department of Earth and Atmospheric Sciences, Cornell University,
Ithaca, NY 14850, USA
Natalie M. Mahowald
Department of Earth and Atmospheric Sciences, Cornell University,
Ithaca, NY 14850, USA
Ron L. Miller
NASA Goddard Institute for Space Studies, New York, NY 10025, USA
Vincenzo Obiso
Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain
NASA Goddard Institute for Space Studies, New York, NY 10025, USA
Carlos Pérez García-Pando
Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain
ICREA, Catalan Institution for Research and Advanced Studies, 08010
Barcelona, Spain
Adriana Rocha-Lima
Physics Department, UMBC, Baltimore, Maryland, USA
Joint Center Joint Center for Earth Systems Technology, UMBC,
Baltimore, Maryland, USA
Jessica S. Wan
Department of Earth and Atmospheric Sciences, Cornell University,
Ithaca, NY 14850, USA
present address: Scripps Institution of Oceanography, University of
California San Diego, La Jolla, CA 92093, USA
Chloe A. Whicker
Department of Atmospheric and Oceanic Sciences, University of
California, Los Angeles, CA 90095, USA
Data sets
DustCOMM data for improved representation of the global dust cycle using observational constraints on dust properties and abundance Jasper F. Kok, Adeyemi A. Adebiyi, Samuel Albani, Yves Balkanski, Ramiro Checa-Garcia, Mian Chin, Peter R. Colarco, Douglas S. Hamilton, Yue Huang, Akinori Ito, Martina Klose, Danny M. Leung, Longlei Li, Natalie M. Mahowald, Ron L. Miller, Vincenzo Obiso, Carlos Pérez García-Pando, Adriana Rocha-Lima, Jessica S. Wan, and Chloe A. Whicker https://doi.org/10.15144/S4WC77
Short summary
Desert dust interacts with virtually every component of the Earth system, including the climate system. We develop a new methodology to represent the global dust cycle that integrates observational constraints on the properties and abundance of desert dust with global atmospheric model simulations. We show that the resulting representation of the global dust cycle is more accurate than what can be obtained from a large number of current climate global atmospheric models.
Desert dust interacts with virtually every component of the Earth system, including the climate...
Altmetrics
Final-revised paper
Preprint