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Abstract. Even though desert dust is the most abundant
aerosol by mass in Earth’s atmosphere, atmospheric mod-
els struggle to accurately represent its spatial and temporal
distribution. These model errors are partially caused by fun-
damental difficulties in simulating dust emission in coarse-
resolution models and in accurately representing dust micro-
physical properties. Here we mitigate these problems by de-
veloping a new methodology that yields an improved rep-
resentation of the global dust cycle. We present an analyti-
cal framework that uses inverse modeling to integrate an en-
semble of global model simulations with observational con-
straints on the dust size distribution, extinction efficiency,
and regional dust aerosol optical depth. We then compare the
inverse model results against independent measurements of
dust surface concentration and deposition flux and find that
errors are reduced by approximately a factor of 2 relative to
current model simulations of the Northern Hemisphere dust

cycle. The inverse model results show smaller improvements
in the less dusty Southern Hemisphere, most likely because
both the model simulations and the observational constraints
used in the inverse model are less accurate. On a global basis,
we find that the emission flux of dust with a geometric diame-
ter up to 20 µm (PM20) is approximately 5000 Tg yr−1, which
is greater than most models account for. This larger PM20
dust flux is needed to match observational constraints show-
ing a large atmospheric loading of coarse dust. We obtain
gridded datasets of dust emission, vertically integrated load-
ing, dust aerosol optical depth, (surface) concentration, and
wet and dry deposition fluxes that are resolved by season and
particle size. As our results indicate that this dataset is more
accurate than current model simulations and the MERRA-2
dust reanalysis product, it can be used to improve quantifica-
tions of dust impacts on the Earth system.
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1 Introduction

Desert dust produces a wide range of important impacts on
the Earth system, including through interactions with radi-
ation, clouds, the cryosphere, biogeochemistry, atmospheric
chemistry, and public health (Shao et al., 2011). Despite the
important role of dust in the Earth system, simulations of the
global dust cycle suffer from several key deficiencies. For
instance, models show large differences relative to observa-
tions for critical aspects of the global dust cycle, including
dust size distribution, surface concentration, dust aerosol op-
tical depth (DAOD), and deposition flux (e.g., Huneeus et
al., 2011; Albani et al., 2014; Ansmann et al., 2017; Adebiyi
and Kok, 2020; Wu et al., 2020). Moreover, models strug-
gle to reproduce observed interannual and decadal changes
in the global dust cycle over the observational record (Ma-
howald et al., 2014; Ridley et al., 2014; Smith et al., 2017;
Evan, 2018; Pu and Ginoux, 2018), and it remains unclear
whether atmospheric dust loading will increase or decrease
in response to future climate and land-use changes (Stanelle
et al., 2014; Kok et al., 2018).

One key reason that models struggle to accurately repre-
sent the global dust cycle and its sensitivity to climate and
land-use changes is that dust emission is a complex process
for which the relevant physical parameters vary over short
distances of about 1 m to several kilometers (Okin, 2008;
Bullard et al., 2011; Prigent et al., 2012; Shalom et al., 2020).
As such, large-scale models with typical spatial resolutions
on the order of 100 km are fundamentally ill-equipped to ac-
curately simulate dust emission. Confounding the problem
is the nonlinear scaling of dust emissions with near-surface
wind speed above a threshold value (Gillette, 1979; Shao et
al., 1993; Kok et al., 2012; Martin and Kok, 2017). As such,
dust emissions are especially sensitive to errors in simulating
high-wind events (Cowie et al., 2015; Roberts et al., 2017)
and to variations in the soil properties that set the thresh-
old wind speed. Despite some recent progress, accounting
for the effect of sub-grid-scale wind variability on dust emis-
sions remains a substantial challenge that causes the simu-
lated global dust cycle to be sensitive to model resolution
(Lunt and Valdes, 2002; Cakmur et al., 2004; Comola et al.,
2019), especially at low resolution (Ridley et al., 2013). An-
other substantial challenge for models is the small-scale vari-
ability of vegetation (Raupach et al., 1993; Okin, 2008), sur-
face roughness (Menut et al., 2013), soil texture (Laurent et
al., 2008; Martin and Kok, 2019), mineralogy (Perlwitz et
al., 2015a), and soil moisture (McKenna Neuman and Nick-
ling, 1989; Fécan et al., 1999). These and other soil proper-
ties control both the dust emission threshold and the intensity
of dust emissions once wind exceeds the threshold (Gillette,
1979; Shao, 2001; Kok et al., 2014b). Models lack accurate
high-resolution datasets of pertinent soil properties, which
also limits the use of dust emission parameterizations that in-
corporate the effect of these soil properties (e.g., Darmenova
et al., 2009). As a result of these fundamental challenges in

accurately representing dust emission, most models use both
a source function map (Ginoux et al., 2001) and a global dust
emission tuning constant to produce a global dust cycle that
is in reasonable agreement with measurements (Cakmur et
al., 2006; Huneeus et al., 2011; Albani et al., 2014; Wu et al.,
2020).

A second key problem limiting the accuracy of model sim-
ulations of the global dust cycle is that models struggle to
adequately describe dust properties such as dust size, shape,
mineralogy, and optical properties. All these dust proper-
ties have recently been shown to be inaccurately represented
in many models (Kok, 2011b; Perlwitz et al., 2015b; Pérez
Garcia-Pando et al., 2016; Ansmann et al., 2017; Di Bia-
gio et al., 2017, 2019; Adebiyi and Kok, 2020; Huang et al.,
2020). These model errors in dust properties occur because
parameterizations are not always kept consistent with up-to-
date experimental and observational constraints. In addition,
models need to use fixed values for such physical variables
and can thus only represent the uncertainties inherent in such
constraints through computationally expensive perturbed pa-
rameter ensembles (Bellouin et al., 2007; Lee et al., 2016).

The nature of these challenges in accurately representing
the global dust cycle is such that they are difficult to over-
come from advances in modeling alone (e.g., Stevens, 2015;
Kok et al., 2017; Adebiyi et al., 2020). We therefore develop
a new methodology to obtain an improved representation of
the present-day global dust cycle. Our approach builds on
previous work that used a combination of observational and
modeling results to constrain the dust size distribution, ex-
tinction efficiency, and dust aerosol optical depth (Ridley et
al., 2016; Kok et al., 2017; Adebiyi and Kok, 2020; Ade-
biyi et al., 2020). We present an analytical framework that
uses inverse modeling to integrate these observational con-
straints on dust properties and abundance with an ensemble
of global model simulations. Our procedure determines the
optimal emissions from different major source regions and
particle size ranges that result in the best match against these
observational constraints on the dust size distribution, extinc-
tion efficiency, and regional dust aerosol optical depth. Our
methodology propagates uncertainties in these observational
constraints and due to the spread in simulations in the model
ensemble. As such, our approach mitigates the consequences
of the fundamental difficulty that models have in representing
the magnitude and spatiotemporal variability of dust emis-
sion and in representing the properties of dust and the un-
certainties in those properties. Moreover, whereas the assim-
ilation of observations in reanalysis products creates incon-
sistencies between the different components of the dust cycle
(i.e., emission, loading, and deposition are not internally con-
sistent), our framework integrates observational constraints
in a self-consistent manner.

We detail our approach in Sect. 2, after which we summa-
rize independent measurements used to evaluate our repre-
sentation of the global dust cycle in Sect. 3, and present re-
sults and discussion in Sects. 4 and 5. We find that our proce-
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dure results in a substantially improved representation of the
Northern Hemisphere global dust cycle and modest improve-
ments for the Southern Hemisphere. We provide a dataset
representing the global dust cycle in the present climate
(2004–2008) that is resolved by particle size and season. Be-
cause comparisons against independent measurements indi-
cate that this dataset is more accurate than those obtained by
an aerosol reanalysis product and by a large number of cli-
mate and chemical transport model simulations, this dataset
can be used to obtain more accurate quantifications of the
wide range of dust impacts on the Earth system.

2 Methods

We seek to obtain an improved representation of the global
dust cycle by integrating observationally informed con-
straints on dust properties and abundance with an ensem-
ble of simulations of the spatial distribution of dust emitted
from different source regions. We achieved this with an ana-
lytical framework that uses optimal estimation to determine
how many units of dust loading from different size ranges
and main source regions are required to maximize agree-
ment against observational constraints on the dust size dis-
tribution and dust aerosol optical depth near source regions
(see Fig. 1). We then compare the results against indepen-
dent measurements of dust surface concentration and depo-
sition flux (Sect. 3.1). Although our methodology can be con-
sidered inverse modeling in that it inverts observational con-
straints to force a model, the methodology used here differs
substantially from standard inverse modeling studies used
in atmospheric and oceanic sciences (e.g., Bennett, 2002;
Dubovik et al., 2008; Escribano et al., 2016; Brasseur and
Jacob, 2017; Chen et al., 2019) in that it uses a bootstrap pro-
cedure to integrate several different observational constraints
on dust microphysical properties and abundance and to prop-
agate and quantify uncertainties. We summarize the method-
ology in the next few paragraphs and then describe each step
in detail in the sections that follow.

We first divided the world into nine major source regions
(Fig. 2a) and obtained an ensemble of global model simula-
tions of how a unit of dust mass loading (1 Tg) of different
particle sizes from each of these source regions is distributed
across the atmosphere (Sect. 2.1). We then used constraints
on the globally averaged dust size distribution (Adebiyi and
Kok, 2020) and the size-resolved dust extinction efficiency
(Kok et al., 2017) to determine the column-integrated dust
aerosol optical depth produced by a single unit of bulk dust
loading (1 Tg) from each source region (Sect. 2.2). Then, we
used an inverse model to determine the optimum number of
units of loading that must be generated by each source re-
gion to best match joint observational–modeling constraints
on the DAOD for 15 regions (Fig. 2b) near major dust
sources (Sect. 2.3). The calculations in Sect. 2.2 and 2.3
are performed iteratively because the fractional contribution

to global dust loading from each source region affects the
agreement against the constraint on the globally averaged
dust size distribution. Since we have more regional DAOD
constraints than we have source regions, the problem is over-
constrained, allowing for lower uncertainties in our results.

We summed the optimal dust loadings of the nine source
regions to obtain the main properties of the global dust cy-
cle resolved by particle size, season, and location. Specifi-
cally, we obtained the dust emission flux, loading, concentra-
tion, deposition flux, and DAOD (Sect. 2.4), which we added
to the Dust Constraints from joint Experimental–Modeling–
Observational Analysis (DustCOMM) dataset (Adebiyi et
al., 2020). Throughout these calculations, we used a boot-
strap procedure to propagate uncertainties in the observa-
tional constraints on dust properties and abundance, as well
as uncertainties due to the spread in our ensemble of model
simulations of the spatial distributions of a unit of dust load-
ing, concentration, and deposition (Sect. 2.5).

Our methodology uses a large number of variables, which
are all listed in the Glossary for clarity. To further help dis-
tinguish between different variables, we denote input vari-
ables obtained directly from global model simulations with
the accent “∼” (yellow boxes in Fig. 1). These fields are
seasonally averaged and either two-dimensional (2D; θ , φ)
or three-dimensional (3D; θ ,φP ), where θ , φ, and P re-
spectively denote longitude, latitude, and the vertical pres-
sure level (see Table 1). Moreover, all model fields are “nor-
malized”, meaning that they represent values produced per
unit (1 Tg) of global loading of dust in a given particle size
bin k from a given source region r and for a given sea-
son s (seasons are taken as December–January–February –
DJF, March–April–May – MAM, June–July–August – JJA,
and September–October–November – SON). We further use
the accent “–” to denote an observational constraint on dust
properties or dust abundance (blue boxes in Fig. 1). These
include constraints on the globally averaged dust size dis-
tribution ( dV atm(D)

dD ), the size-resolved extinction efficiency
(Qext(D)), and the regional DAOD (τ p

s ). All these fields have
a quantified uncertainty, which we propagated through our
analysis using the bootstrap procedure discussed in Sect. 2.5.
Finally, the accent “^” denotes a product that results from
our analysis, such as the 3D dust concentration, resolved by
particle size and season (white and green boxes in Fig. 1).
Such variables are thus generated by combining normalized
model simulations with observational constraints on the dust
size distribution, size-resolved extinction efficiency, and the
DAOD near source regions.

2.1 Dividing the world into nine main source regions

The first step in our methodology is to divide the world into
its major source regions. Most dust is emitted from the so-
called “dust belt” of northern Africa, the Middle East, cen-
tral Asia, and the Chinese and Mongolian deserts (Prospero
et al., 2002). In addition, dust is emitted in smaller quanti-
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Figure 1. Schematic of the methodology used to obtain an improved representation of the global dust cycle. Yellow boxes denote inputs
from an ensemble of global model simulations, blue boxes denote inputs from observational constraints on dust properties and abundance,
and white boxes denote the inverse model. We report the resulting representation of the global dust cycle in the present paper (green boxes)
and the partitioning of the global dust cycle by source region (magenta boxes) in our companion paper (Kok et al., 2021a). The subscripts
r , s, and k respectively refer to the originating source region, the season, and a model’s particle size bin. Other variables are defined in the
main text and the Glossary.

ties from Australia, southern Africa, and North and South
America. Correspondingly, we divided the world into nine
source regions that together account for the overwhelming
majority (>99 %) of desert dust emissions simulated in mod-
els (Fig. 2a). Our analysis includes both natural and anthro-
pogenic (land-use) emissions of dust in those source regions
because our analysis is based on observations that by nature
integrate both (but see further discussion in Sect. 5.1). How-
ever, our analysis explicitly does not include high-latitude
dust sources, which produce dust through different mech-
anisms and with different properties than desert dust, yet
likely dominate the dust loading for some high-latitude re-
gions (Prospero et al., 2012; Bullard et al., 2016; Tobo et
al., 2019; Bachelder et al., 2020). The nine source regions
partially follow the definition in Mahowald (2007), with the
main difference that we divided the North African source re-
gion, which accounts for approximately half of global dust
emissions (Wu et al., 2020), into western North Africa, east-
ern North Africa, and the Sahel. Similar dust source regions
were also used in more recent studies (Ginoux et al., 2012;
Di Biagio et al., 2017).

We use an ensemble of global chemical transport and
climate models (see Table 1) to obtain simulations of the
emission, transport, and deposition of dust from each of

the nine source regions. Specifically, we use simulations
from the Community Earth System Model (CESM; Hur-
rell et al., 2013; Scanza et al., 2018), IMPACT (Ito et al.,
2020), ModelE2.1 (Miller et al., 2006; Kelley et al., 2020),
GEOS/GOCART (Rienecker et al., 2008; Colarco et al.,
2010), MONARCH (Pérez et al., 2011; Badia et al., 2017;
Klose et al., 2021), and INCA/IPSL-CM6 (Boucher et al.,
2020). These six models were forced with three different re-
analysis meteorology datasets (Table 1), which helped sam-
ple the uncertainty due to the exact reanalysis meteorology
used that past work indicates is substantial (Largeron et al.,
2015; Smith et al., 2017; Evan, 2018). Most of the six models
were run for the years 2004–2008 or a subset thereof to co-
incide with the analysis period of regional DAOD in Ridley
et al. (2016), which provided most of observational DAOD
constraints used in this study (see Table 1). Sensitivity tests
indicated that using different years from each simulation re-
sulted in differences of less than 10 % in the inverse model
results. Each model either ran a separate simulation for each
source region or used “tagged” dust tracers from each source
region. The exact setup of each model is described in the
Supplement.

Our inverse model uses several results derived from model
simulations (Fig. 1). First, for each model we obtained the
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Figure 2. Coordinates of (a) the nine main source regions and (b) the 15 observed regions with constraints on the regional dust aerosol optical
depth (DAOD), (c) dust surface concentration measurements, and (d) deposition flux measurements used in this study. The coordinates of
the nine source regions are as follows: (1) western North Africa (20◦W–7.5◦ E; 18◦ N–37.5◦ N), (2) eastern North Africa (7.5–35◦ E; 18–
37.5◦ N), (3) the Sahel (20◦W–35◦ E; 0–18◦ N), (4) the Middle East and central Asia (which includes the Horn of Africa; 35–75◦ E for
0–35◦ N, and 35–70◦ E for 35–50◦ N), (5) East Asia (70–120◦ E; 35–50◦ N), (6) North America (130–80◦W; 20–45◦ N), (7) Australia
(110–160◦ E; 10–40◦ S), (8) South America (80–20◦W; 0–60◦ S), and (9) southern Africa (0–40◦ E; 0–40◦ S). The coordinates and seasonal
DAOD of the 15 observed regions are listed in Table 2. Symbols in (c) and (d) denote groupings of observations by different regions. Made
with Natural Earth.

normalized seasonally averaged column loading l̃r,s,k (θ,φ),
which is the spatial distribution of a unit (1 Tg) of loading
originating from source region r for season s and particle
size bin k. As such, the units of this field are per square me-
ter (Tg m−2 loading per Tg of loading from source r), and we
show annual averages of the normalized bulk dust loading for
each model and source region in Fig. S1. Additionally, we
obtained the normalized 3D concentration (C̃r,k,s (θ,φ,P );
m−3) and the 2D dust emission (F̃r,k,s (θ,φ); m−2 yr−1) and
(dry and wet) deposition fluxes (D̃r,k,s (θ,φ); m−2 yr−1) that
are associated with a unit of global dust loading for each
source region, season, and particle size bin. All model fields
were regridded using a modified Akima cubic Hermite inter-
polation (Akima, 1970) to a common resolution of 1.9◦ lat-
itude by 2.5◦ longitude with 48 vertical levels (see Adebiyi
et al., 2020, for further details). As explained further below,
since our inverse model only uses normalized model fields
per particle size, our results are independent of model tuning
of global dust emissions or the simulated relative contribu-
tions of the major source regions defined here (Fig. 1). Our
results are also not affected by model errors in representing
dust mass extinction efficiency or the emitted dust size dis-
tribution.

We restricted our analysis to dust with a diameter D ≤
Dmax = 20 µm because there are insufficient measurements
to constrain the abundance of coarser dust particles in
the atmosphere (Adebiyi and Kok, 2020). Note, however,
that the few measurements that have been made of dust
with D>20 µm suggest that it is abundant over and near
source regions such as North Africa and accounts for a
non-negligible fraction of shortwave and longwave extinc-
tion (Ryder et al., 2019). As such, more measurements of
“super-coarse” (D>10 µm) and “giant” (D>62.5 µm) dust
are needed, which would allow the analysis presented here
to be extended to larger particle sizes in the future. Since
some of the models in our ensemble do not account for dust
with D up to 20 µm, we use the procedure in Adebiyi et
al. (2020; see their Sect. 2.3.1) to extend these models to
20 µm. Specifically, we use the normalized 12–20 µm particle
size bin simulated by the GEOS/GOCART model to estimate
what CESM and GISS ModelE2.1 would have simulated for
an additional particle size bin extending to 20 µm (see addi-
tional details in the Supplement). We chose this bin specifi-
cally from the GEOS/GOCART model because it shows the
best agreement against the observational constraint on re-
gional DAOD (Fig. 3).
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Table 1. Overview of global model setups used in this study.

Model Model Spatial resolutionb Dust particle size bin Simulation Meteorological
number name (long× lat× level) diameter ranges (µm) periodc dataset used

1 CESM/CAM4 2.5◦× 1.9◦× 56 levels 0.1–1; 1.0–2.5; 2.5–5; 5–10; 10–20a 2004–2008 ERA-Interim
2 IMPACT 2.5◦× 2.0◦× 59 levels 0.1–1.26; 1.26–2.5; 2.5–5; 5–20 2004–2005 MERRA2
3 GISS ModelE2.1 2.5◦× 2.0◦× 40 levels 0.2–0.36; 0.36–0.6; 0.6–1.2; 1.2–2; 2–4; 4–8; 8–16; 16–20a 2004–2008 NCEP
4 GEOS/GOCART 1.25◦× 1.0◦× 72 levels 0.2–2; 2–3.6; 3.6–6; 6–12; 12–20 2004–2008 MERRA2
5 MONARCH 1.4◦× 1.0◦× 48 levels 0.2–0.36; 0.36–0.6; 0.6–1.2; 1.2–2; 2–3.6; 3.6–6; 6–12; 12–20 2004–2008 ERA-Interim
6 INCA 2.5◦× 1.27◦× 79 levels 0.2–2; 2–3.6; 3.6–6; 6–12; 12–20 2010–2014 ERA-Interim

a Denotes an additional bin added to the original model output in order to extend the particle diameter range to Dmax = 20 µm. This additional bin was derived from the
GEOS/GOCART 12–20 µm particle size bin (see main text). b All model fields were regridded to a common resolution of 2.5◦ longitude by 1.9◦ latitude. c A multiyear
mean for each season was used.

2.2 Constraining the spatially resolved DAOD
corresponding to a unit (1 Tg) of bulk dust loading

We next implemented an inverse model to determine the opti-
mal bulk dust loading that must be generated by each source
region to produce the best match against constraints on re-
gional DAOD. This inverse model thus requires the spatial
pattern of DAOD produced per unit bulk dust loading from
each source region, which is the Jacobian matrix of DAOD
with respect to dust loading. We obtained this DAOD pro-
duced per unit (1 Tg) of bulk dust loading by combining the
simulated distributions of a unit of size-resolved dust loading
(l̃r,s,k (θφ)) with constraints on the globally averaged dust
size distribution and extinction efficiency (Kok et al., 2017;
Adebiyi and Kok, 2020). The calculations of the Jacobian
matrix (this section) and the optimal bulk loading per source
region (next section) are performed iteratively because each
source region’s fractional contribution to global dust loading
affects the agreement against the constraint on the globally
averaged dust size distribution.

The DAOD produced per unit of bulk dust loading origi-
nating from source region r in season s is (Kok et al., 2017)

Jr,s (θ,φ)=
∂τ̆r,s (θ,φ)

∂L̆r,s
=

Nbins∑
k=1

εk f̆r,s,k l̃r,s,k (θ,φ) (1)

where L̆r,s is the globally integrated bulk dust loading gen-
erated by source region r in season s, τ̆r,s (θ,φ) is the spatial
distribution of DAOD due to dust from source region r in sea-
son s, Jr,s is the Jacobian matrix (Tg−1) of τ̆r,s with respect
to L̆r,s , Nbins is the number of particle size bins in a global
model simulation (or derived from the simulated modes), εk
is the size-dependent mass extinction efficiency (m2 g−1) of
particle size bin k defined further below, l̃r,s,k (θ,φ) (m−2)
is the simulated seasonally averaged spatial distribution of
a unit of dust loading from source region r and particle bin
k, and f̆r,s,k (unitless) is the fractional contribution of dust
loading in size bin k to the seasonally averaged global dust
loading generated by source region r (i.e.,

∑
kf̆r,s,k = 1). As

such, Eq. (1) obtains the DAOD produced per unit of dust
loading from a given source region and season by adding up
the normalized spatial distributions of the loading from each

particle size bin, in proportion to each bin’s contribution to
the globally integrated loading produced by the source re-
gion, and then multiplying the size-resolved loading by the
mass extinction efficiency (MEE) to obtain the DAOD.

To obtain the Jacobian matrix in Eq. (1) we need to obtain
f̆r,s,k , each particle bin’s fractional contribution to the glob-
ally integrated dust loading generated by source region r in
season s. Because models as a group underestimate the mass
of particles with larger diameters (D>∼ 5 µm; Kok et al.,
2017), we adjust the model size distribution to match a con-
straint on the globally averaged dust size distribution derived
from a combination of observations and models (Adebiyi and
Kok, 2020). This procedure retains regional differences in the
atmospheric dust size distribution that models simulated for
the different source regions, while forcing the globally av-
eraged dust size distribution that results from the summed
contributions from all source regions to match the constraint
on the globally averaged dust size distribution. That is,

f̆r,s,k =
αkf̃r,s,k∑Nbins
k=1 αkf̃r,s,k

, (2)

where f̃r,s,k is the modeled mass fraction per particle size bin
for a given source region r and season s, and αk is the global
correction factor for particle size bin k, which is different for
each model. We obtained αk by setting the fraction of atmo-
spheric dust in particle size bin k, summed over all source
regions and seasons, equal to the constraint on the fractional
contribution of particle size bin k to the global dust loading
from Adebiyi and Kok (2020). That is,

αk =

∫ Dk+
Dk−

dV atm(D)
dD dD∑Nsreg

r

∑Ns
s=1f̃r,s,kL̆r,s

/∑Nsreg
r=1

∑Ns
s L̆r,s

, (3)

where Nsreg = 9 is the number of source regions (Fig. 2a)

and dV atm(D)
dD is a realization of the size-normalized (that

is,
∫ Dmax

0
dV atm

dD dD = 1, where Dmax = 20 µm) globally aver-
aged volume size distribution from Adebiyi and Kok (2020),
which was obtained by combining dozens of in situ measure-
ments of dust size distributions with an ensemble of climate
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model simulations. Further,Dk− andDk+ are respectively the
lower and upper diameter limits of particle size bin k, and
L̆r,s is the globally integrated and seasonally averaged bulk
dust loading per source region (as obtained from the analy-
sis below). As such, the denominator in Eq. (3) denotes the
simulated globally averaged mass fraction, whereas the nu-
merator denotes the globally averaged mass fraction in parti-
cle size bin k as constrained from in situ measurements and
model simulations by Adebiyi and Kok (2020).

The final ingredient needed to use Eq. (1) to obtain the
DAOD produced by a unit (1 Tg) of bulk dust loading from
a given source region and season is the MEE (εk). We do
not use each model’s assumed MEE because these tend to
be substantially biased compared to measurements (Adebiyi
et al., 2020). This bias is largely due to a neglect or under-
estimation of the asphericity of dust (Huang et al., 2020),
which increases the surface-to-volume ratio and thereby en-
hances the MEE by ∼ 40 % (Kok et al., 2017). We thus fol-
low Kok et al. (2017) in obtaining the MEE from constraints
on the dust size distribution and the extinction efficiency of
randomly oriented (Ginoux, 2003; Bagheri and Bonadonna,
2016) aspherical dust. That is,

εk =
3

2ρd

∫ Dk+
Dk−

Qext(D)
D

dV atm(D)
dD dD∫ Dk+

Dk−

dV atm(D)
dD dD

, (4)

where Qext(D) is a realization of the globally averaged size-
resolved extinction efficiency from the analysis of Kok et
al. (2017), which is defined as the extinction cross sec-
tion divided by the projected area of a sphere with diame-
ter D (πD2/4). The term dV atm(D)

dD inside the integrals ap-
proximates the sub-bin distribution in particle size bin k as
the globally averaged dust volume size distribution. Further,
ρd = (2.5± 0.2)× 103 kg m−3 is the globally averaged den-
sity of dust aerosols (Fratini et al., 2007; Reid et al., 2008;
Kaaden et al., 2009; Sow et al., 2009). This observation-
ally constrained density of dust is lower than the 2600 to
2650 kg m−3 used in many models (Tegen et al., 2002; Gi-
noux et al., 2004), most likely because dust aerosols are ag-
gregates with void space that lowers their density below that
of individual mineral particles.

2.3 Constraining the bulk dust loading generated by
each source region

The above procedure combined model simulations of the 2D
spatial variability of size-resolved dust loading with con-
straints on dust size distribution and MEE. This procedure
yielded the spatial distribution of DAOD that is produced by
a unit (1 Tg) of dust loading from a given source region and
season. Next, we use an inverse modeling approach to deter-
mine how many teragrams (Tg) of loading are needed from
each source region to produce optimal agreement against
constraints on the seasonal DAOD over areas proximal to
major dust source regions.

We use joint observational–modeling constraints on re-
gional DAOD at 550 nm from Ridley et al. (2016). This study
used three different satellite AOD retrievals – from the Multi-
angle Imaging Radiometer (MISR) and the Moderate Res-
olution Imaging Spectroradiometer (MODIS) on board the
Terra and Aqua satellites – and bias-corrected those satel-
lite data using more accurate ground-based aerosol optical
depth measurements from AERONET. Ridley et al. (2016)
then used an ensemble of global model simulations to ob-
tain the fraction of AOD that is due to dust in 15 regions for
which AOD is dominated by dust. Ridley et al. (2016) thus
leveraged the strengths of these different tools by combining
the accuracy of ground-based measurements with the global
coverage of satellite retrievals and the ability of models to
distinguish between different aerosol species. Furthermore,
by averaging the resulting DAOD over large areas and long
time periods (2004–2008 for each season), this study min-
imized representation errors that can affect model compar-
isons to data (Schutgens et al., 2017). An additional strength
of the Ridley et al. (2016) analysis is that it transparently
propagates a range of uncertainties that are both observation-
ally and modeling based and which we in turn propagate into
our own analysis (see Sect. 2.5). We also consider the Ridley
et al. (2016) dataset more accurate than aerosol reanalysis
products that assimilate similar AOD observations. This is
because the Ridley et al. (2016) product includes a transpar-
ent quantification of errors that we propagated into the repre-
sentation of the global dust cycle here and because the parti-
tioning of assimilated AOD into different aerosol species in
reanalysis products depends on the underlying aerosol mod-
els and is thus susceptible to the large biases in the prognostic
aerosol schemes of these models (e.g., Adebiyi et al., 2020;
Gliß et al., 2021). Nonetheless, the Ridley et al. (2016) data
are subject to some important limitations discussed further in
Sect. 5.1.

Although we consider the Ridley et al. (2016) constraints
on DAOD to be more accurate than constraints from individ-
ual satellite products, AERONET data, or aerosol reanalysis
products, this study’s results for the Southern Hemisphere
(SH) are susceptible to substantial biases. This is because
dust makes up a substantially lower fraction of total AOD in
the SH than for the main Northern Hemisphere (NH) source
regions (e.g., Fig. S2 in Kok et al., 2014a). Therefore, we did
not use the Ridley et al. (2016) results for the SH and instead
used the seasonally averaged DAOD estimated by Adebiyi
et al. (2020) over the three SH regions. These DAOD con-
straints are based on an ensemble of four aerosol reanalysis
products, namely the Modern-Era Retrospective analysis for
Research and Applications version 2 (MERRA-2; Gelaro et
al., 2017), the Navy Aerosol Analysis and Prediction Sys-
tem (NAAPS; Lynch et al., 2016), the Japanese Reanalysis
for Aerosol (JRAero; Yumimoto et al., 2017), and the Coper-
nicus Atmosphere Monitoring Service (CAMS) interim Re-
analysis (CAMSiRA; Flemming et al., 2017). The resulting
regional DAOD product also includes an error estimation
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based partially on the spread in DAOD in the four reanalysis
products. In addition, we added a region over North Amer-
ica, for which Ridley et al. (2016) did not obtain results and
for which we also use the reanalysis-based results of Adebiyi
et al. (2020). In total, we thus have constraints with error es-
timates on the seasonal and area-averaged DAOD over 15
regions (see Fig. 2b and Table 2).

We then used an inverse modeling approach to deter-
mine the optimal combination of dust loadings from the nine
source regions (denoted with subscript r) that minimizes the
disagreement against the DAOD constraint of these 15 ob-
served regions (denoted with subscript p) for each season.
We thus need to account for the contribution of each of the
nine source regions (Fig. 2a) to the DAOD in each of these
15 observed regions. The seasonally averaged DAOD over
the observed region p is

τ
p
s =

∑Nsreg

r=1
J
p
r,sL̆r,s, (5)

where τps is the DAOD averaged over observed region p and
season s, and Jpr,s (Tg−1) is the Jacobian matrix of τ̆pr,s with
respect to L̆r,s , where τ̆pr,s denotes the area-averaged and sea-
sonally averaged DAOD over observed region p that is pro-
duced by dust from source region r . The Jacobian matrix
J
p
r,s is the area-weighted DAOD over observed region p that

is produced per unit of bulk dust loading originating from
source region r in season s. We obtain Jpr,s by integrating
Eq. (1) over Ap, the area of the observed region p (Table 2):

J
p
r,s =

∂τ̆
p
r,s

∂L̆r,s
=

∫
Ap

∑Nbins
k=1 εk f̆r,k l̃r,s,k (θ,φ)dA∫

Ap
dA

. (6)

The seasonally averaged globally integrated dust loading
generated by each source region (L̆r,s) is thus determined
from the number of units of dust loading from each source
region r that results in the best agreement against the con-
straint on DAOD (τps ) over the 15 observed regions. Equa-
tion (5) thus represents a system of equations for each simu-
lation in our global model ensemble, which we can write in
explicit matrix form for clarity:[
τ 1
s τ 2

s · · · τ
Nτ,reg
s

]
=
[
L̆1,s L̆2,s · · · L̆Nsreg,s

]
J 1

1,s J 2
1,s · · · J

Nτ,reg
1,s

J 1
2,s J 2

2,s · · · J
Nτ,reg
2,s

...
...

. . .
...

J 1
Nsreg,s

J 2
Nsreg,s

· · · J
Nτ,reg
Nsreg,s

 . (7)

We used Eq. (7) to obtain the seasonally averaged global
dust loading generated by each source region. Specifically,
for each season s we used the simplex search optimization
method (Lagarias et al., 1998) to determine the nine values of

L̆r,s that minimize the cost function of the summed squared
deviation (χ2

τ ) between the 15 DAOD constraints and the cor-
responding regional DAOD calculated from Eq. (7). That is
(e.g., Cakmur et al., 2006),

χ2
τ =

∑Nτ,reg

p=1

∑Nsreg

r=1

(
L̆r,sJ

p
r,s − τ

p
s

)2
, (8)

where Nτ,reg = 15 and Nsreg = 9. Because the variables in
Eqs. (1)–(8) are interdependent, we iterated these equations
until convergence was achieved.

2.4 Obtaining constraints on DAOD, emission, loading,
deposition, and concentration

After constraining the seasonal dust loading L̆r,s generated
by each source region, we now obtain the 2D DAOD and the
size-resolved dust loading, emission and deposition fluxes,
and 3D concentration. We do so by using the fact that other
dust cycle components (DAOD, concentration, deposition)
scale linearly with dust loading because our model simula-
tions are driven by reanalysis products (Table 1) such that
dust does not impact the meteorology. Each dust field can
therefore be obtained by multiplying the simulated normal-
ized dust field (e.g., seasonal dust concentration per unit of
dust loading) by the number of units of dust loading per
source region and season (L̆r,s).

The 2D DAOD is then

τ̆s (θ,φ)=
∑Nsreg

r=1
L̆r,sJr,s (θ,φ) . (9)

The size-resolved and bulk dust loadings are respectively

l̆s,k (θ,φ)=
∑Nsreg

r=1
f̆r,kL̆r,s l̃r,s,k (θ,φ), and (10)

l̆s (θ,φ)=
∑Nbins

k=1

∑Nsreg

r=1
f̆r,kL̆r,s l̃r,s,k (θ,φ) . (11)

Similarly, the 3D size-resolved and bulk concentrations
produced by each source region are

C̆s,k (θ,φ,P )=
∑Nsreg

r=1
f̆r,kL̆r,sC̃r,s,k (θ,φ,P ), and (12)

C̆s (θ,φ,P )=
∑Nbins

k=1

∑Nsreg

r
f̆r,kL̆r,sC̃r,s,k (θ,φ,P ), (13)

where P is the vertical pressure level. And the size-resolved
and bulk emission fluxes are

F̆s,k (θ,φ)=
∑Nsreg

r=1
f̆r,kL̆r,s F̃r,s,k (θ,φ), and (14)

F̆s (θ,φ)=
∑Nbins

k=1

∑Nsreg

r
f̆r,kL̆r,s F̃r,s,k (θ,φ) . (15)

Finally, the size-resolved and bulk deposition fluxes are

D̆s,k (θ,φ)=
∑Nsreg

r=1
f̆r,kL̆r,sD̃r,s,k (θ,φ), and (16)

D̆s (θ,φ)=
∑Nbins

k=1

∑Nsreg

r=1
f̆r,kL̆r,sD̃r,s,k (θ,φ) . (17)

See the Glossary for further descriptions of each variable.
In our companion paper (Kok et al., 2021a), we further par-
tition these fields into the originating source region.
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Table 2. Constraints on seasonal dust aerosol optical depth (DAOD) at 550 nm averaged over 15 regions. Regional DAOD constraints for
regions 1–11 are from Ridley et al. (2016) and were obtained using data from AERONET, MODIS, MISR, and a model ensemble. Regional
DAOD constraints for regions 12–15 are from Adebiyi et al. (2020) and were obtained from an ensemble of aerosol reanalysis products. All
constraints use data for the years 2004–2008.

Region Region Region DJF MAM JJA SON
number p name coordinates

1 Mid-Atlantic 20–50◦W;
4–40◦ N

0.064± 0.013 0.106± 0.008 0.143± 0.005 0.084± 0.006

2 African west coast 20–5◦W;
10–34◦ N

0.180± 0.010 0.250± 0.019 0.365± 0.016 0.233± 0.022

3 Northern Africa 5◦W – 30◦ E;
26 – 40◦ N

0.118 ± 0.011 0.219 ± 0.010 0.207 ± 0.016 0.151 ± 0.016

4 Mali/Niger 5◦W–10◦ E;
10–26◦ N

0.257± 0.019 0.441± 0.022 0.462± 0.044 0.277± 0.023

5 Bodele/Sudan 10–40◦ E;
10–26◦ N

0.191± 0.006 0.339± 0.023 0.310± 0.018 0.212± 0.021

6 Northern Middle East 30–50◦ E;
26–40◦ N

0.112± 0.011 0.223± 0.011 0.164± 0.015 0.113± 0.019

7 Southern Middle East 40–67.5◦ E;
0–26◦ N

0.123± 0.018 0.204± 0.021 0.330± 0.044 0.150± 0.020

8 Kyzyl Kum 50–67.5◦ E;
26–50◦ N

0.115± 0.017 0.176± 0.026 0.154± 0.034 0.101± 0.018

9 Thar 67.5–75◦ E;
20–50◦ N

0.130± 0.029 0.238± 0.033 0.319± 0.029 0.135± 0.037

10 Taklamakan 75–92.5◦ E;
30–50◦ N

0.119± 0.013 0.275± 0.027 0.171± 0.026 0.104± 0.011

11 Gobi 92.5–115◦ E;
36–50◦ N

0.093± 0.022 0.192± 0.022 0.102± 0.035 0.047± 0.021

12 North America 80–130◦W;
20–45◦ N

0.010± 0.005 0.029± 0.011 0.028± 0.010 0.012± 0.006

13 South America 80–55◦W;
0–55◦ S

0.019± 0.011 0.013± 0.007 0.010± 0.006 0.016± 0.009

14 Southern Africa 10–40◦ E;
10–35◦ S

0.016± 0.007 0.011± 0.005 0.013± 0.005 0.016± 0.007

15 Australia 110–160◦ E;
10–40◦ S

0.025± 0.013 0.013± 0.006 0.010± 0.005 0.023± 0.011

2.5 Improved model and inverse model results with
uncertainty

The results represented by Eqs. (9)–(17) require realizations
of the various inputs (Fig. 1), which include both model fields
and constraints on dust properties and abundance. Because
each of these inputs is uncertain and as such is represented by
a probability distribution, we obtained two products that sam-
ple different aspects of this uncertainty of the inputs, namely
“improved model” results and “inverse model” results.

First, we obtained improved model results by sampling
over different realizations of observational constraints on
dust properties and abundance but using the output of only
a single model. That is, we solved Eqs. (1)–(17) a large num-
ber of times (100; limited by computational resources), and
for each iteration we drew a random realization of each of the
observational constraints but used simulation results from a
single model. This procedure thus includes a random draw-
ing of realizations of the globally averaged dust size distribu-
tion ( dV atm(D)

dD ), the extinction efficiency (Qext(D)), the par-
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ticle density (ρd), and the observed regional DAOD (τps ). As
such, the improved model results represent output from a sin-
gle model (see Table 1) for which DAOD is calculated from
loading using the observational constraint on extinction effi-
ciency (Eq. 4) and for which the contributions from different
source regions and particle bins are added in such a way to
simultaneously match observational constraints on the dust
size distribution (Eq. 2) and DAOD (Eq. 8).

Second, we obtained our main product, namely the inverse
model product that represents the optimal representation of
the global dust cycle. We obtained this product by similarly
sampling over different realizations of the input fields, but
now including a random drawing of one of the six global
model simulations in each of the bootstrap iterations. This
additional step propagates uncertainty in model predictions
of the normalized size-resolved dust loading, concentration,
and deposition fields into our results (Eqs. 9–17). Because
different models use different particle size bins (Table 1), we
convert the size-resolved results from each bootstrap itera-
tion to common particles size bins of 0.2–0.5, 0.5–1, 1–2.5,
2.5–5, 5–10, and 10–20 µm. We do so by assuming that sub-
bin distributions follow the constraint on the globally aver-
aged dust loading (Fig. 1). This assumption will introduce
some further error in size-resolved results. For both the in-
verse model and improved model products, we retained only
those bootstrap iterations that produced a root mean square
error of less than 0.05 relative to the DAOD constraints; this
quality control retained approximately three-quarters of the
iterations.

In drawing the realizations of seasonally averaged ob-
served DAOD (τps ), we need to account for correlations of
errors between different seasons and regions. Specifically,
some of the errors in the calculation of the DAOD in Ridley
et al. (2016) and Adebiyi et al. (2020) are systematic, such as
errors in satellite retrieval algorithms and systematic model
errors in simulations of (dust and non-dust) aerosols. These
errors are thus at least partially correlated between seasons
and regions, although we cannot establish the exact degree of
correlation. We can thus roughly divide the errors into three
different categories: errors that are completely random be-
tween seasons and regions, systematic errors that are corre-
lated between different seasons for the same region, and sys-
tematic errors that are correlated across regions for a given
season. The sum of the squared contributions of these three
errors equals the square of the total error σps reported in Ta-
ble 2. Since we cannot determine what the relative contri-
bution of each of these three types of errors is, we assume
that the contribution of each of these three errors is equal.
Although the uncertainty in our results as quantified from
the bootstrap procedure increases if a larger fraction of the
DAOD error is assumed to be systematic, the median results
presented in Sect. 4 are not sensitive to the partitioning of
this error. The details of the mathematical treatment for cal-
culating these errors are provided in the Supplement.

The bootstrap procedure used in the inverse model product
propagates all the quantified random and systematic errors
present in the inputs. Nonetheless, it cannot account for sys-
tematic biases in these inputs, such as the tendency of models
to underestimate coarse dust lifetime (Ansmann et al., 2017;
van der Does et al., 2018; Adebiyi et al., 2020). As such, the
obtained uncertainty ranges should be interpreted as a lower
bound on the actual uncertainty.

3 Comparison of inverse model results against
independent measurements and model simulations

We evaluate the results of the inverse model described in
the previous section using independent measurements of dust
surface concentration and deposition fluxes (Sect. 3.1). We
also compare the inverse model results against the ensemble
of AeroCom Phase I global dust cycle simulations (Huneeus
et al., 2011) and the MERRA-2 dust product (Sect. 3.2).

3.1 Independent dust measurements used to evaluate
the inverse model

We use two sets of independent measurements to evaluate the
ability of the inverse model to reproduce the global dust cy-
cle. The first dataset is a compilation of dust surface concen-
tration measurements. Of the 27 total stations in this compila-
tion, 22 are measurements of the bulk dust surface concentra-
tion taken in the North Atlantic from the Atmosphere–Ocean
Chemistry Experiment (AEROCE; Arimoto et al., 1995) and
taken in the Pacific Ocean from the sea–air exchange pro-
gram (SEAREX; Prospero et al., 1989) for observation pe-
riods noted in Table 2 of Wu et al. (2020). These data were
obtained by drawing large volumes of air through a filter. To
reduce the effects of anthropogenic aerosols, measurements
were only taken when the wind was onshore and in excess
of 1 m s−1 (Prospero et al., 1989). The mineral dust frac-
tion of the collected particulates was determined either by
burning the sample and assuming the ash residue to repre-
sent the mineral dust fraction or from their Al content (as-
sumed to be 8 % for mineral dust, corresponding to the Al
abundance in Earth’s crust) (Prospero, 1999). Note that since
these measurements were taken during the period 1981–
2000, the dust surface concentration “climatology” obtained
from these measurements is for a different time period than
that of the model simulations used in the inverse model (Ta-
ble 1).

Since most of the AEROCE and SEAREX stations are
located far downwind of source regions, we also added a
dataset of dust surface concentration from the Sahelian Dust
Transect that was deployed in 2006 as part of the African
Monsoon Multidisciplinary Analysis (AMMA; Lebel et al.,
2010; Marticorena et al., 2010). This dataset contains mea-
surements over 5–10 years of the surface concentration of
aerosols with an aerodynamic diameter ≤ 10 µm (PM10,aer)
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at four stations in the western Sahel (M’Bour, Bambey, Cin-
zana, and Banizoumbou; see http://www.lisa.u-pec.fr/SDT/,
last access: 13 May 2020). As with the AEROCE and
SEAREX datasets, only measurements were used for which
the wind direction was predominantly coming from dust-
dominated regions. As such, these measurements have at
least two systematic errors: (i) the AMMA data reported the
concentration of all particulate matter, so taking these mea-
surements as being of dust concentration overestimates the
true dust concentration, and (ii) measurements taken when
wind was not coming from a dust-dominated region were
omitted, which could also cause an overestimation of the dust
concentration. To mitigate the effect of this second error, we
only use seasonally averaged dust concentrations for which
>70 % of data was retained. This resulted in the omission of
the winter and spring seasons at the Bambey station.

Following Huneeus et al. (2011) and Wu et al. (2020), we
additionally added surface concentration measurements of
PM10,aer dust from a long-term (May 1995–December 1996)
filter-based deployment in Jabiru, northern Australia (Van-
derzalm et al., 2003). However, unlike Huneeus et al. (2011)
and Wu et al. (2020), we do not use data obtained in
Rokumechi (Zimbabwe), which used a similar methodology,
because most of the dust at this southern African site orig-
inated locally from within and near the national park where
the station was located (p. 2649 in Nyanganyura et al., 2007).

To use the measurements of PM10,aer dust in Jabiru and the
Sahel, we obtained the PM10,aer dust concentration for those
models with size-resolved surface concentrations, namely
the inverse model and each model in our ensemble. We
did so by first obtaining the geometric diameter that cor-
responds to an aerodynamic diameter of 10 µm, which is
DPM10,aer = caer× 10µm = 6.8µm. This uses the conversion
factor caer = 0.68 from Huang et al. (2021), who accounted
for the effects of particle shape (Huang et al., 2020) and den-
sity to link the aerodynamic and geometric diameters. For
each model, we then summed the contributions from par-
ticle bins with diameters smaller than DPM10,aer and used a
correction factor cPM10,aer for particle size bins that straddle
DPM10,aer . This correction factor uses the result from Adebiyi
and Kok (2020) that the globally averaged dust size distri-
bution ( dV atm(D)

dlnD ) is approximately constant in the range of
5–20 µm such that the fractional contribution to the PM10,aer
concentration of a bin that straddles DPM10,aer can be approx-
imated as

cPM10,aer =
ln
(
DPM10,aer/Dk−

)
ln
(
Dk+/Dk−

) , (18)

whereDk− andDk+ are respectively the lower and upper lim-
its of the particle size bin that straddles the 10 µm aerody-
namic diameter (D = 6.8 µm).

The second independent dataset that we used to evalu-
ate the inverse model results is a compilation (110 stations)
of the deposition flux of dust with a geometric diameter ≤

10 µm (PM10) from Albani et al. (2014). This study merged
data from previous datasets (Ginoux et al., 2001; Tegen et
al., 2002; Lawrence and Neff, 2009; Mahowald et al., 2009)
and adjusted these data to cover the 0.1–10 µm geometric di-
ameter range. We obtained the PM10 deposition flux for the
inverse model, the MERRA-2 data, and for each model in our
ensemble following the approach above for the PM10,aer con-
centration data. Note that we cannot correct the concentration
and deposition flux of the AeroCom Phase I models (next
section) to the PM10,aer and PM10 size ranges because of a
lack of size-resolved simulation data. We thus used the bulk
concentration and deposition fluxes as many of these models
simulated the PM10 size range (see Table 3 in Huneeus et al.,
2011).

To assess the consistency of the inverse model results
with both the independent datasets, we calculated the error-
weighted mean square difference between the inverse model
results and the observations. This statistic is known as the re-
duced chi-squared statistic and equals (Bevington and Robin-
son, 2003)

χ2
ν =

Ni∑
i

(Mi −Oi)
2

σ 2
i + σ

2
m
, (19)

where the index i sums over the Ni measurements in the
dataset, Oi is the ith measurement in the dataset, Mi is the
inverse model result for the location and season of the ith
measurement (if applicable), σm is the calculated error in
the inverse model result from the bootstrap procedure (see
Sect. 2.5), and σi is the error in the measurement. For a model
that matches measurements within the experimental error,
χ2
ν ≈ 1 (Bevington and Robinson, 2003). Values of χ2

ν that
are � 1 indicate an overestimate of model or experimental
error, whereas values of χ2

ν � 1 indicate either an underes-
timate of errors or substantial biases in the model or experi-
mental data.

We estimated the experimental errors in the surface con-
centration measurements by propagating the standard error
in monthly averaged surface concentration measurements
into seasonal and annual averages. Note that these errors do
not include representation errors, which could be important
(Schutgens et al., 2017). The errors in deposition data are
more difficult to estimate, as these are not usually reported
and because deposition fluxes can show large spatial and
temporal variability (Avila et al., 1997), leading to larger rep-
resentation errors. We estimated the relative error in deposi-
tion data measurements from the spread in measurements at
similar locations. For the cluster of data in southern Europe
(eastern Spain, southern France, northern Italy; e.g., Avila et
al., 1997; Bonnet and Guieu, 2006), the standard deviation is
about an order of magnitude, and for clusters of data north
of Cape Verde (e.g., Jickells et al., 1996; Bory and Newton,
2000) and northwest of Tenerife (e.g., Honjo and Manganini,
1993; Kuss and Kremling, 1999), the standard deviation is
about a quarter of an order of magnitude. We therefore take
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the relative error in deposition data as half an order of magni-
tude. This error is large compared to the inverse model error
of approximately a quarter of an order of magnitude for de-
position fluxes in the NH.

3.2 Comparison of inverse model results against
AeroCom models and MERRA-2

In order to compare the inverse model’s representation of
the global dust cycle against climate and chemical transport
model simulations, we used the results of an ensemble of
simulations for which the prognostic dust cycles were an-
alyzed in detail, namely the AeroCom Phase I simulations
of the dust cycle in the year 2000 (Huneeus et al., 2011).
As such, the AeroCom simulations were obtained for a year
closer to the time period in which most concentration and
deposition measurements were taken (see above). We do not
use newer AeroCom Phase II and Phase III simulations be-
cause only the dust component of Phase I models has been
analyzed in detail. We furthermore do not use recently an-
alyzed dust cycle results from CMIP5 models (Pu and Gi-
noux, 2018; Wu et al., 2020) because less than half of CMIP5
models with prognostic dust cycles reported total deposition
fluxes, which are needed for the analyses against measure-
ments (see previous section). In addition, many CMIP5 mod-
els did not include a prognostic dust cycle and instead read
in pre-calculated dust emissions (Lamarque et al., 2010). But
note that CMIP5 model errors against measurements are sim-
ilar to those for AeroCom models and those for our model
ensemble (e.g., compare Figs. 8 and 9 in Wu et al., 2020,
against Figs. S9, S10, S12, and S13).

We analyzed the AeroCom Phase I model results to obtain
the seasonally and annually averaged DAOD at 550 nm, the
dust surface concentration, and the annually averaged total
(wet and dry) deposition fluxes for comparisons against mea-
surements and the inverse model results. We also obtained
the globally integrated annually averaged dust emission flux,
dust loading, and DAOD. We obtained these variables for
each of the 13 AeroCom simulations available from the on-
line AeroCom database (see https://aerocom.met.no/, last ac-
cess: 11 December 2020; this repository does not contain the
14th model simulation analyzed in Huneeus et al., 2011, from
the ECMWF model, which is thus omitted here).

We also analyzed the MERRA-2 dust product (Gelaro et
al., 2017) in order to compare the inverse model’s represen-
tation of the global dust cycle against a leading aerosol re-
analysis product. We obtained the same variables from the
MERRA-2 data as from the AeroCom data, except that we
analyzed the MERRA-2 data for the years 2004–2008 to co-
incide with the regional DAOD constraints (Table 2).

We quantified the agreement of the various models against
measurements using Taylor diagrams (Taylor, 2001) and by
the correlation coefficients, bias, and root mean square errors
(RMSEs). Because the surface concentration and deposition
flux measurements span several orders of magnitude, their

RMSEs are calculated in log space. We furthermore quanti-
fied overall model agreement against measurements by cal-
culating the normalized error 8m against the available data
for each hemisphere:

8NH
m =

1
3

 SNH
τ,m∑Nmodel

n=1
SNH
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 , (21)

where n and m index the different models, which include the
inverse model, MERRA-2, the six model ensemble members,
and the 13 AeroCom models such that Nmodel = 21. Further,
S denotes the RMSE of a model simulation with the DAOD
(subscript τ ), surface concentration (subscript conc), and de-
position flux (subscript dep) datasets on the annual timescale.
These data are split into datasets for the Northern Hemi-
sphere (superscript NH) and Southern Hemisphere (super-
script SH). For the SH, there are no accurate observational
constraints on DAOD available (see Sect. 2.3), so we calcu-
late the error relative to only the surface concentration and
deposition flux datasets. Note that 8m is defined such that
8m = 1 implies that a model is average among the 21 mod-
els in reproducing the global dust cycle. The lower 8m is,
the more accurately it reproduces measurements and obser-
vations of the various aspects of the global dust cycle.

4 Results

We first evaluate our methodology by verifying that the in-
verse model obtains improved agreement against the ob-
served regional DAOD used in the inverse model (Sect. 4.1).
We then obtain the predictions of the inverse model for the
main properties of the global dust cycle, namely DAOD, dust
emission, dust column loading, dust surface concentration,
and dust deposition flux (Sect. 4.2). Subsequently, we evalu-
ate whether the integration of observational constraints on
dust properties and abundance indeed yields an improved
representation of the global dust cycle by comparing our re-
sults against independent measurements and observations in
the NH (Sect. 4.3.1) and the SH (Sect. 4.3.2).

4.1 Evaluation of inverse model results against
observed regional DAOD

To verify the viability of our methodology, we first compare
the inverse model’s DAOD against the observationally con-
strained seasonal DAOD of 15 regions (Table 2). As is ex-
pected from the inverse modeling methodology, the error is
substantially reduced compared to the unmodified ensemble
of simulations for all seasons (Fig. 3a–d). This decrease in er-
ror is particularly pronounced over North Africa, which we
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Figure 3. Assessment of the effectiveness of the inverse model in reducing errors against observationally informed constraints on regional
dust aerosol optical depth (DAOD). (a–d) Comparisons of the 15 observational constraints on regional DAOD (purple squares) against the
inverse model results (blue circles) and the models in our ensemble (brown numbers; 1 – CESM, 2 – IMPACT, 3 – GISS ModelE2.1, 4 –
GEOS/GOCART, 5 – MONARCH, 6 – INCA) for each of the four seasons. Results are grouped by the major source region nearest to each
of the observed regions. Also listed are the root mean square errors for each regional group for both the inverse model and model ensemble
results, as well as the reduced chi-squared metric (χv) for the comparisons of the inverse model results against all 15 DAOD constraints.
Error bars denote 1 standard error. (e) Taylor diagram summarizing the statistics of the comparison against the seasonally averaged regional
DAOD constraints for the different models (Taylor, 2001). The different symbols represent the measurements (purple triangle), the 13
AeroCom models (black letters; A – CAM, B – GISS ModelE, C – GOCART, D – SPRINTARS, E – MATCH, F – MOZGN, G – UMI,
H – LOA, I – UIO_CTM, J – LSCE, K – ECHAM5, L – MIRAGE, M – TM5), the MERRA-2 dust product (red R), the six models in
the model ensemble (brown numbers, as for panels a–d), the six improved model results (green numbers with a prime), and the inverse
model results (blue star). The horizontal axis shows the standard deviation of the dataset or model prediction, the curved axis shows the
correlation, and the grey half-circles denote the centered root mean square difference between the observations and the model predictions.
As such, the distance between a model and the observations is a measure of the model’s ability to reproduce the spatiotemporal variability in
the observations; Taylor diagrams do not capture biases between model predictions and observations. (f) Same as panel (e), except showing
a comparison against the annually averaged regional DAOD constraints.
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characterized using three different source regions (western
North Africa, eastern North Africa, and the Sahel; Fig. 2a)
and which shows a decrease in the RMSE of a factor of ap-
proximately 3 to 5 depending on the season. Note that the
DAOD in the mid-Atlantic region is nonetheless systemat-
ically underestimated by both the models in our ensemble
and the inverse model. This is a common problem in mod-
els that is likely in part due to overly fast removal in mod-
els (Ridley et al., 2012; Yu et al., 2019). The RMSE over
the relatively minor dust source regions of North America,
Australia, South America, and southern Africa is similarly
reduced by about a factor of 5. For the East Asia and Middle
East–central Asia regions, the decrease in RMSE is about
a factor of 1.5 to 2. This relatively smaller decrease in the
RMSE likely occurs because we used only one source region
each for both these relatively extensive source regions. Con-
sequently, our procedure is unable to eliminate some biases
of the model ensemble in these regions, such as an under-
estimation of DAOD in the Thar desert, which could be due
to model underestimations of emissions in this region (Shin-
dell et al., 2013). Future work could thus improve upon our
results by using more source regions to better constrain the
contributions of the Middle East and Asian source regions to
the global dust cycle.

Overall, our procedure achieves a substantial reduction of
the total DAOD error summed over the 15 regions, reducing
the RMSE by over a factor of 2 from 0.092 to 0.041. This re-
duction in error is expected, as our methodology minimized
the error against these regional DAOD data. Moreover, we
find that the reduced chi-squared statistic, which is of order 1
for a model that captures observations within the uncertain-
ties (Bevington and Robinson, 2003), is indeed less than 1
for all seasons except boreal spring. This implies that our
methodology results are in good agreement with the obser-
vational DAOD constraints. Further, the ability of the inverse
model to reproduce the spatial pattern of DAOD on both sea-
sonal (Fig. 3e) and annual (Fig. 3f) timescales is substan-
tially improved relative to both the six models in the model
ensemble and the AeroCom Phase I models, and it is simi-
lar to that of the MERRA-2 dust product. This is noteworthy
as many of the satellite and ground-based AOD observations
upon which the observational DAOD is based have been used
to inform the dust schemes in the ensemble models (Cakmur
et al., 2006; Kok et al., 2014a) and have been assimilated by
the MERRA-2 dust product (Buchard et al., 2017; Gelaro et
al., 2017; Randles et al., 2017).

4.2 Inverse modeling results for key aspects of the
global dust cycle

We present inverse model results for the dust emission rate,
DAOD, column-integrated dust loading, dust surface concen-
tration, and dust deposition flux (Table 3, Fig. 4) and com-
pare these inverse model results against independent mea-
surements in Sect. 4.3. We also provide median estimates

with the uncertainty of the main size-resolved properties of
the global dust cycle (Fig. 5).

Our results indicate that the global emission rate and
loading of dust with a geometric diameter D ≤ 20 µm
(PM20) are larger than most models account for. Aero-
Com models reported an ensemble median global dust emis-
sion rate of 1.6× 103 Tg yr−1 (1 standard error range: 1.0–
3.2× 103 Tg yr−1), and CMIP5 models reported a value of
2.7 (1.7–3.7)× 103 Tg yr−1; both these ensembles included
a mix of models simulating dust up to diameters of 10 µm or
more (see Fig. S7). Our results indicate that the global emis-
sion rate of PM20 dust is 4.6 (3.4–9.1)× 103 Tg yr−1. There
are two reasons for this larger global dust emission rate. First,
our methodology accounts for dust up to a geometric diam-
eter of 20 µm, which is a larger size range than accounted
for in many AeroCom and CMIP5 models (Huneeus et al.,
2011; Wu et al., 2020; Fig. S7) and thus results in a larger
bulk dust emission flux. Accounting for this larger size range
is desirable because observations indicate that ∼ 30 % of
PM20 dust loading consists of super-coarse dust (D>10 µm)
(Ryder et al., 2019; Adebiyi and Kok, 2020; Fig. 5b). Be-
cause super-coarse dust has a shorter lifetime (1.0 (0.4–
1.8) d; Fig. 5d) than finer dust, we find that super-coarse dust
accounts for ∼ 65 % of the total PM20 dust emission flux,
which corresponds to 2.9 (1.8–6.5)× 103 Tg yr−1 (Fig. 5a).
This ∼ 65 % relative contribution of the 10 ≤D ≤ 20 µm
size range is substantially larger than that inferred from size-
resolved measurements of the emitted dust flux (Huang et
al., 2021). In order to match in situ atmospheric dust size
distributions, current models thus need to emit more super-
coarse dust than determined from measurements of the emit-
ted dust flux, which further supports the inference from mul-
tiple previous investigations that super-coarse dust deposits
too quickly in atmospheric models (Maring et al., 2003; Ans-
mann et al., 2017; Weinzierl et al., 2017; van der Does et al.,
2018). The small mid-visible (550 nm) MEE of super-coarse
dust (0.13 (0.12–0.15) m2 g−1; Fig. 5e) causes it to account
for only a small fraction (7.2 (5.7–9.3) %) of the total short-
wave (SW) DAOD of 0.028 (0.024–0.030) (Fig. 5f and Ta-
ble 3). However, dust with 10≤D ≤ 20 µm is nonetheless
radiatively important because it accounts for a larger frac-
tion of dust absorption of SW radiation (Tegen and Lacis,
1996; Samset et al., 2018) and because it produces ∼ 20 %
of the global dust longwave (LW) DAOD of 0.014± 0.003
(Fig. 5h).

The second reason that PM20 emission fluxes are larger
than accounted for in most models is that observations have
shown that many models have a bias towards fine dust (Kok,
2011b; Ansmann et al., 2017; Adebiyi and Kok, 2020). In-
deed, models that do include dust up to a 20 µm geometric
diameter tend to underestimate the global PM20 dust emis-
sion rate relative to our results (Fig. S7). Because coarse
dust has a shorter lifetime and a lower MEE (Fig. 5e, f),
correcting this fine dust bias requires a substantially larger
total emission flux to match DAOD constraints. Many of
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Figure 4. Predictions of key aspects of the global dust cycle. Shown are inverse model results for (a) annual dust emission rate, (b) annual
dust AOD, (c) column-integrated dust loading, (d) dust surface concentration, and (e) dust deposition flux. Panels (a)–(d) show results for
PM20 dust, whereas panel (e) shows results for PM10 dust for optimal comparison against the measurement compilation of PM10 dust
deposition fluxes (Albani et al., 2014). Seasonally resolved predictions for each of these variables are shown in Figs. S2-S6. The symbols
in (d) and (e) show the locations and values of the independent surface concentration and deposition flux measurements used for evaluation
of the inverse model in Sect. 4.3 (see also Fig. 2c, d).

the models in our ensemble partially addressed the fine
bias by using the brittle fragmentation theory parameteriza-
tion for the emitted dust flux, which is substantially coarser
than other emitted dust size distributions (Kok, 2011b). This
causes our model ensemble to show a larger emission flux
(3.5 (2.7–5.2)× 103 Tg yr−1) than AeroCom models (1.6
(1.0–3.2)× 103 Tg yr−1), although this increase is also due
to these more recent models simulating dust out to larger
particle diameters (Fig. S7). More recent work has used
dozens of in situ measurements to show that the fine dust
bias in models is even more substantial than previously re-
ported, specifically that the atmospheric loading of coarse
dust with D>5 µm is several times greater than accounted
for in most models (Adebiyi and Kok, 2020). Generating

this even greater loading of coarse dust thus requires a corre-
spondingly larger emission flux (Table 3; Fig. 5a). Emission
fluxes would be even larger if the maximum size range was
extended further to include dust with D>20 µm, which mea-
surements indicate is abundant close to source regions and
might be important for interactions with longwave radiation
(Ryder et al., 2013, 2019; Fig. 5g, h). As previously reported
by Adebiyi and Kok (2020), accounting for the substantial
atmospheric loading of coarse dust with 5≤D ≤ 20 µm also
drives a larger total dust loading, increasing from 20 (12–
24) Tg obtained by AeroCom models and 17 (14–36) Tg ob-
tained by CMIP5 models to 26 (22–30) Tg obtained here (Ta-
ble 3). Since models indicate that the atmospheric loading of
non-dust aerosols is around 10 Tg (Textor et al., 2006; Gliß
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et al., 2021), dust is likely by far the most dominant aerosol
species by mass, accounting for approximately three-quarters
of the atmosphere’s total particulate matter loading.

The constraints on the global dust cycle obtained here are
strongest on the DAOD because our inverse model minimizes
error with respect to observed regional DAOD (Sect. 4.1).
The inverse model then relies on observational constraints
on the globally averaged dust size distribution and extinc-
tion efficiency to link the DAOD to loading per source re-
gion (Sect. 2.2 and 2.3), which adds further uncertainty to
our inverse model results. Constraints on dust emission and
deposition fluxes are still more uncertain because these fur-
ther depend on results from the ensemble of models, such
as the spatial pattern of emission within individual source
regions, transport, and the size-resolved dust lifetime. The
lifetime of coarse dust shows especially large variability be-
tween models, which substantially adds to the uncertainty
in PM20 emission and deposition fluxes because coarse dust
dominates these fluxes (Fig. 5a, b). Consequently, the rela-
tive uncertainties in global emission and deposition fluxes are
several times larger than the relative uncertainty in DAOD
(Table 3).

4.3 Performance of inverse model results against
independent measurements

After obtaining inverse model results for key aspects of the
global dust cycle, we next evaluate the accuracy of this rep-
resentation of the global dust cycle using independent mea-
surements of dust surface concentration and dust deposition
fluxes (see Sect. 3.1). We divide these results into compar-
isons for the NH (Sect. 4.3.1) and the SH (Sect. 4.3.2). We
do this because we have observationally informed constraints
on DAOD for 11 NH regions and therefore expect the inverse
model results to show relatively good agreement against in-
dependent measurements in the NH. In contrast, we do not
have observationally constrained DAOD for the SH; instead,
the inverse model used an ensemble of reanalysis products,
whose ensemble members might have similar biases as they
assimilate similar remote sensing datasets. As such, we ex-
pect the inverse model results to show less agreement against
independent measurements in the SH.

4.3.1 Performance of the inverse model results against
independent measurements in the Northern
Hemisphere

The inverse model results accurately reproduce the seasonal
variation in surface dust at individual sites in the NH, cap-
turing all the measurements within the uncertainties (Fig. 6).
The inverse model results show an average correlation co-
efficient of r = 0.90 with the seasonally averaged measure-
ments at the different sites, which exceeds the average cor-
relation coefficient of models in our ensemble (r = 0.85),
in the AeroCom ensemble (r = 0.61), and the MERRA-2

dust product (r = 0.86). The inverse model results also accu-
rately reproduce the spatial variation in dust surface concen-
tration among different locations, as shown by scatter plots
comparing predicted and observed surface concentrations on
seasonal (Fig. 7a) and annual (Fig. 7b) timescales. These
plots also show that the inverse model reproduces concentra-
tion measurements on both seasonal and annual timescales
well within the uncertainties, with values of the reduced chi-
squared statistic (χ2

ν ; see Sect. 3.1) of 0.65 on the seasonal
timescale and 0.18 on the annual timescale.

This strong agreement between the inverse model results
and dust surface concentration is a notable improvement over
any of the six models in our model ensemble, any of the 13
AeroCom Phase I models, and the MERRA-2 dust product.
The strong performance of the inverse model is due to its
improved ability to capture spatial variability in the seasonal
and annual dust concentration, as quantified by Taylor dia-
grams in Fig. 7d and e, and because the inverse model results
show almost no bias against seasonally and annually aver-
aged concentration measurements (Fig. 8a, b). This lack of
bias in capturing the mean dust aerosol state also represents a
substantial improvement over models, which show biases of
up to approximately ± 0.3 in logarithmic space, correspond-
ing to a bias of up to a factor of ∼ 2 in linear space. The
inverse model’s reduction in bias and improved representa-
tion of spatiotemporal variability of the dust surface concen-
tration combine to produce RMSEs (in log space) of only
∼ 0.22 (∼ 65 % relative error) against seasonally averaged
and ∼ 0.12 (∼ 30 % relative error) against annually averaged
dust surface concentration measurements (Fig. 8c, d). Com-
pared to individual models and MERRA-2, this represents a
reduction by a factor of ∼ 1.5–5 in error in log space and a
reduction by a factor of ∼ 2–10 in relative error.

We find that the inverse model results also show good
agreement against the compilation of NH deposition flux
measurements (Fig. 7c). The scatter between measurements
and model predictions of deposition fluxes is about an order
of magnitude larger than for the comparison against surface
concentration measurements. This is partially driven by sub-
stantial model errors in deposition (Ginoux, 2003; Huneeus
et al., 2011; Yu et al., 2019; Huang et al., 2020) and partially
driven by the large experimental (e.g., Edwards and Sedwick,
2001) and representation errors (Schutgens et al., 2017) in-
dicated by the large spread between measurements in similar
locations (Figs. 4d, 7c; Sect. 3.1). Nonetheless, the inverse
model reproduces the deposition measurements within these
uncertainties, as quantified by the reduced chi-squared value
of 1.13. The inverse model also reproduces the spatial pattern
of deposition flux better than most models (Fig. 7f). Addi-
tionally, whereas models in our ensemble and the AeroCom
models show biases against deposition flux measurements of
up to approximately ± 0.5 in logarithmic space, which cor-
responds to a bias of up to a factor of ∼ 3 in linear space, the
inverse model results show a bias close to zero (Fig. 8a, b).
Overall, the inverse model results show an RMSE of ∼ 0.58,
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Figure 5. Size-resolved properties of the global dust cycle. Shown are the size-resolved (a) global dust emission rate (which equals the global
dust deposition rate), (b) global dust loading in terms of mass per size bin, (c) global dust loading in terms of number of particles per size
bin, (d) global dust lifetime, (e) dust mass extinction efficiency at 550 nm, (f) global DAOD at 550 nm, (g) dust mass extinction efficiency
at 10 µm, and (h) global DAOD at 10 µm. The right axis of panels (a), (b), (c), (f), and (h) shows the fraction of each dust cycle property
that is accounted for by each size bin, which was obtained by dividing the simulated quantity in each bin by the median total for all bins.
For panels (e) and (f), we used the constraint on extinction efficiency at 550 nm from Kok et al. (2017); for panels (g) and (h), we obtained
a constraint on extinction efficiency at 10 µm following the methodology of Kok et al. (2017), using probability distributions of dust shape
descriptors obtained by Huang et al. (2020), and setting the real index of refraction to 1.70± 0.20 and the logarithm of the imaginary index
to −0.40± 0.11 based on a compilation of measurements by Di Biagio et al. (2017). Error bars denote 1 standard error.
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Figure 6. Comparison of measured and modeled seasonally averaged dust surface concentrations at 15 Northern Hemisphere stations. The
inverse model results (blue line and squares) capture the measured seasonal variability (orange line and circles) at all stations, with lower error
(see Fig. 8c) and on average higher correlation coefficients than MERRA-2 (red line and diamonds), models in the AeroCom ensemble (black
dotted lines and letters), and (unmodified) models in our ensemble (brown dashed lines and numbers). Also shown are the mean correlation
coefficients between measurements and the different AeroCom models (rAeroCom) and between measurements and the different models in
our ensemble (rmodels), as well as the correlation coefficients for MERRA-2 (rR) and the inverse model results (rIM). Uncertainty ranges for
measurements and the inverse model results represent 1 standard error in the climatological seasonally averaged surface concentration. The
legend for individual models is given in Fig. 3, and x values are slightly offset for clarity.
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Table 3. Globally integrated annual dust emission rate, loading, DAOD, and mass extinction efficiency. Listed are median values, with
1 standard error ranges listed in parentheses. Also shown are AeroCom Phase I results, which were taken from Table 3 in Huneeus et
al. (2011), and the 1 standard error range was obtained by eliminating the two highest and lowest values. This leaves the 10 central values
of the 14 model results, which corresponds to the central 71 % of model results. The CMIP5 results for the global dust emission rate and
loading were obtained from the analysis of CMIP5 models with prognostic dust cycles by Wu et al. (2020; see their Table 3), who did not
analyze DAOD and mass extinction efficiency. For the CMIP5 ensemble we similarly eliminated the four extreme values, leaving the 11
central values of the 15 model results, which corresponds to the central 73 % of model results. For our own model ensemble, we eliminated
the two extreme values, leaving the four central values of the six model results, which corresponds to the central 67 % of model results.
Inverse model results are listed for both PM10 and PM20 dust, whereas the size range accounted for by AeroCom and CMIP5 models differs
for each model (see Huneeus et al., 2011; Wu et al., 2020, and Fig. S7). DAOD and MEE were taken at 550 nm.

Source Annual dust emission Dust DAOD Mass extinction
and deposition rate loading efficiency

(×103 Tg yr−1) (Tg) (m2 g−1)

AeroCom ensemble 1.6 (1.0–3.2) 20 (9–26) 0.029 (0.021–0.035) 0.65 (0.56–0.96)
CMIP5 ensemble 2.7 (1.7–3.7) 17 (14–36) NA NA
Model ensemble 3.5 (2.7–5.2) 31 (28–35) 0.028 (0.025–0.031) 0.44 (0.40–0.51)
Inverse model PM2.5 0.22 (0.19–0.27) 4.4 (3.8–5.0) 0.014 (0.012–0.016) 1.63 (1.50–1.80)
Inverse model PM10 1.8 (1.2–2.9) 18 (16–21) 0.025 (0.022–0.028) 0.70 (0.63–0.79)
Inverse model PM20 4.7 (3.3–9.0) 26 (22–31) 0.028 (0.024–0.030) 0.54 (0.46–0.62)

NA – not available.

which matches that of the best-performing models and is
lower by ∼ 5 %–25 % relative to other models.

We further explore the merit of our inverse modeling ap-
proach by analyzing the improved model results (Sect. 2.5),
which represent output from each of the individual model en-
semble members that was corrected using observational con-
straints on dust properties and abundance (Sect. 2). For each
of the six ensemble members we find that the inverse mod-
eling procedure reduces errors against both NH dust surface
concentration and deposition flux measurements, with reduc-
tions ranging from a few percent to well over a factor of 2
(Fig. 8c, d). As with the inverse model results, for most mod-
els this is due to both an improvement in the representation
of the spatiotemporal variability of dust surface concentra-
tion and deposition flux (Fig. 7d–f) and a reduction in the
bias against both sets of measurements (Fig. 8a, b).

The comparison against independent measurements thus
indicates that the inverse model results represent the NH dust
cycle more accurately than both MERRA-2 and a large num-
ber of climate and chemical transport models. This is quan-
tified in Fig. 8e, which shows the normalized model error
for the various models and model ensembles. We find that
the inverse model results show a normalized error of 0.49,
which is well below that of the mean of models in our en-
semble (1.08) and the AeroCom ensemble (1.22); it is also
below the MERRA-2 normalized error (0.62). Moreover, we
find that the average normalized error of improved models
is substantially lower (0.72) than for the unmodified models
in our ensemble. These results indicate that our approach of
integrating observational constraints on dust properties and
abundance is effective in improving model accuracy.

4.3.2 Performance of inverse model results against
independent measurements in the Southern
Hemisphere

After analyzing the performance of the inverse model re-
sults in the Northern Hemisphere, we next analyze the per-
formance of the inverse model results in the Southern Hemi-
sphere. We expect less agreement against independent mea-
surements than in the NH because the SH DAOD constraints
are of substantially lower quality (see Sect. 2.3).

The agreement of the inverse model results against inde-
pendent data in the SH varies substantially between stations
and regions. The inverse model has difficulty reproducing the
seasonality in the surface concentration at many SH stations
(Fig. 9), which could indicate that long-range transport is not
well captured as most stations are remote from the main dust
source regions (Fig. 2c). The inverse model results do pro-
duce good quantitative agreement against dust surface con-
centration measurements close to the Australian and southern
African source regions yet somewhat underestimate deposi-
tion fluxes in those regions (Figs. 9, 10a–c). Furthermore,
the inverse model results underestimate both the dust surface
concentration and the deposition flux in the South Pacific,
suggesting an underestimate of dust transport to this region.
For Antarctica, the results are contradictory in that the in-
verse model results underestimate measurements of dust sur-
face concentrations yet overestimate measurements of dust
deposition fluxes. Overall, the inverse model might slightly
underestimate errors of dust fields in the SH, as indicated
by reduced chi-squared values that are somewhat larger than
1 (χ2

ν = 1.32, 1.40, and 2.24 for the seasonal surface concen-
tration, annual surface concentration, and deposition flux, re-
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Figure 7. Evaluation of the inverse model results against independent measurements of surface concentration and deposition flux in the
Northern Hemisphere. Shown are comparisons of inverse model results against (a) seasonally averaged (winter, spring, summer, and fall are
respectively denoted by magenta, green, orange, and blue) and (b) annually averaged dust surface concentration measurements at 15 NH
stations and against (c) a compilation of 77 measurements of the dust deposition flux. Results are grouped by regions as shown in Fig. 2.
Statistics of the comparisons are noted in the figures and are calculated in log space because the measurements span several orders of
magnitude. Uncertainties in inverse model results and measurements represent 1 standard error and are calculated as described in Sects. 2.5
and 3.1, respectively. Also shown are Taylor diagrams summarizing the statistics of the ability of the different models to reproduce the
spatial variability in the measured fields of (d) seasonal and (e) annual surface concentration and (f) dust deposition flux (Taylor diagrams
do not capture biases between model predictions and observations). The different symbols represent the measurements (purple triangle), the
13 AeroCom models (black letters), MERRA-2 (red R), the six models in the model ensemble (brown numbers), the six improved models
(green numbers with prime), and the inverse model results (large blue star). An exact legend for the different models is provided in Fig. 3.
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Figure 8. Evaluation of whether integrating observational constraints on dust properties and abundance produces an improved representation
of the Northern Hemisphere dust cycle. Shown are the biases (a, b) and root mean square errors (RMSEs; middle panels) in logarithmic space
with respect to measurements of (a, c) seasonally averaged dust surface concentration and dust deposition flux and of (b, d) annually averaged
dust surface concentration and deposition flux. Symbols in panels (a)–(d) denote results for the individual models in the AeroCom ensemble
(black letters), MERRA-2 (red R), models in our ensemble (brown numbers), and the improved models (green italicized numbers). The exact
legend for the different models is given in Fig. 3, and stars denote the mean bias and RMSE for AeroCom models (black star), models in our
ensemble (brown star), the improved models (green star), and the inverse model results (blue star). Panel (e) shows normalized model errors
(see Sect. 3.2) relative to the DAOD (purple bars), surface concentration (green bars), and deposition flux (orange bars) datasets. Shown are
results for the inverse model; the average of models in the AeroCom ensemble, our model ensemble, and our ensemble of improved models;
MERRA-2; and for the individual models in our ensemble before and after applying observational constraints (see Sect. 2.5). Hatched bars
denote results of the inverse model and improved models obtained through our methodology. The reductions in bias, RMSE, and normalized
error for the inverse model and improved models relative to the individual models and MERRA-2 imply that the integrational of observational
constraints on dust properties and abundance improve the representation of the NH dust cycle.
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spectively). This possible underestimation of error might be
due to systematic biases in the constraints on DAOD in the
SH, as discussed further in Sect. 5.1.

The underestimation of the dust surface concentration but
overestimation of deposition fluxes in Antarctica is puzzling
(Fig. 10a–c). Indeed, many individual models show similar
results (Figs. S11–S13; see also Huneeus et al., 2011; Wu et
al., 2020; Checa-Garcia et al., 2020). One possible explana-
tion is large model errors in the conversion of dust concen-
trations to deposition fluxes, which is known to be one of
the most uncertain aspects of global dust cycle simulations
(Huneeus et al., 2011). This is particularly the case for re-
gions dominated by wet deposition, which is a challenge for
models to simulate accurately, in part because it depends on
modeled precipitation, which itself can have large uncertain-
ties (Huneeus et al., 2011; Mahowald et al., 2011a). Addi-
tionally, the inverse model and most individual models do
not include high-latitude dust emissions, which could cause
additional errors for comparisons against measurements in
Antarctica (Bullard et al., 2016). Another possibility is that
measurements do not accurately represent either the dust sur-
face concentration or the deposition fluxes. In particular, all
but one of the Antarctic dust fluxes are derived from mea-
surements of total dissolvable iron in snow and ice, for which
the conversion to the deposited dust flux involves many un-
certainties (Edwards and Sedwick, 2001; Mahowald et al.,
2009), and it is possible that this methodology systemati-
cally underestimates dust deposition fluxes (Huneeus et al.,
2011). Another factor that could cause disagreement between
the inverse model results and measurements might be a mis-
match in timescales. The inverse model results characterize
the dust cycle for the years 2004–2008, whereas the concen-
tration data were taken for different dates in the period 1981–
2000 (Prospero et al., 1989; Arimoto et al., 1995), and the de-
position flux measurements were taken 1 to several decades
earlier (Edwards et al., 2006; McConnell et al., 2007). This
mismatch in time periods could cause modeled deposition
fluxes to exceed measured fluxes as several studies have re-
ported increases in dust emissions from South America and
in dust deposition at Antarctica over the past century or so
(McConnell et al., 2007; Gasso and Torres, 2019; Laluraj et
al., 2020). Furthermore, there is substantial interannual vari-
ability in the dust concentration that could affect the mis-
match in time between models and measurements, especially
for less dusty regions such as in the SH (Smith et al., 2017).
Comparisons against measurements in previous studies have
suffered from similar mismatches in time periods (Huneeus
et al., 2011; Albani et al., 2014; Colarco et al., 2014; Kok et
al., 2014a).

The ability of the inverse model to reproduce the spatial
distribution of surface concentration and deposition measure-
ments is thus less good in the SH than in the NH. However,
despite the decreased agreement against independent mea-
surements, the inverse model performs better than most of the
individual models in our ensemble and in the AeroCom en-

semble (Figs. 9, 10d–f, 11). The inverse model, the individual
models, and the MERRA-2 results all show biases against SH
surface concentration and deposition flux measurements that
are substantially larger than the biases against NH measure-
ments (Fig. 11a, b). Interestingly, the different models show
a positive correlation between bias against surface concen-
tration data and bias against deposition flux measurements,
with both biases being negative for 12 of the models. This
indicates that systematic underestimation or overestimation
of SH dust is the key contributor to errors against measure-
ments, with additional errors due to difficulties in reproduc-
ing the spatial pattern of the dust surface concentration and
deposition fluxes (Fig. 10d–f). Consequently, almost all mod-
els show a substantially larger root mean square error relative
to measurements for the SH than for the NH (Fig. 11c, d).
These results indicate substantial model errors in the magni-
tude and spatial pattern of SH dust emissions, dust transport,
and/or dust deposition, and they underscore the difficulties
models have in capturing the SH dust cycle.

Overall, the integration of observational constraints on
dust properties and abundance seems to produce a modest
improvement in the representation of the SH dust cycle. This
is quantified in Fig. 11e, which shows that the normalized
model error of the inverse model results is 0.78; this is be-
low that of the mean of models in our model ensemble (0.92)
and the AeroCom ensemble (1.06) and below the normal-
ized error of the MERRA-2 dust product (0.81). However,
whereas the improved model results show clear reductions in
bias, RMSE, and normalized error in the NH, they show no
clear improvements in the SH (Fig. 11).

5 Discussion

Our results show that our framework for integrating obser-
vational constraints on dust properties and abundance yields
an improved representation of the global dust cycle. Rela-
tive to the model ensemble, the inverse model results show
a reduction of errors against NH dust cycle measurements of
over a factor of 2 (Fig. 8e) and modest improvements for the
SH (Fig. 11e). Moreover, we have obtained a dataset of the
global dust cycle that is resolved by particle size and season
and that is more accurate than the MERRA-2 dust product
and any of a large number of model simulations.

Below, we first discuss the main limitations of our method-
ology and results (Sect. 5.1). We then discuss how our results
can be used to guide improvements in the representation of
the global dust cycle in climate and chemical transport mod-
els (Sect. 5.2), after which we discuss the utility of the dataset
presented here in constraining dust impacts on the Earth sys-
tem (Sect. 5.3).

Atmos. Chem. Phys., 21, 8127–8167, 2021 https://doi.org/10.5194/acp-21-8127-2021



J. F. Kok et al.: Improved representation of the global dust cycle 8149

Figure 9. Comparison of measured and modeled seasonally averaged dust surface concentrations at 12 Southern Hemisphere stations.
Shown are measurements (orange line and circles) and results from models in the AeroCom ensemble (black dotted lines and symbols) and
our ensemble (brown dashed lines and symbols), as well as results from MERRA-2 (red line and diamonds) and the inverse model (blue
line and squares). Also shown are the mean correlation coefficients between measurements and the different AeroCom models (rAeroCom)
and between measurements and the different models in our ensemble (rmodels), as well as the correlation coefficients for MERRA-2 (rR)
and the inverse model results (rIM). Uncertainty ranges for the inverse model results and measurements represent 1 standard error in the
climatological seasonally averaged surface concentration. The legend for individual models is given in Fig. 3, and x values are slightly offset
for clarity.
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Figure 10. Evaluation of the inverse model results against independent measurements of surface concentration and deposition flux in the
Southern Hemisphere. Shown are comparisons of the inverse model results against (a) seasonally averaged (austral winter, spring, summer,
and fall are respectively denoted by magenta, green, orange, and blue) and (b) annually averaged dust surface concentration measurements
at 12 SH stations and against (c) a compilation of 33 measurements of the dust deposition flux. Results are grouped by regions as shown in
Fig. 2c and d. Statistics of the comparisons are noted in the figures and are calculated in log space. Uncertainties in inverse model results
and measurements represent 1 standard error and are calculated as described in Sects. 2.5 and 3.1, respectively. Also shown are Taylor
diagrams for the (d) seasonal and (e) annual surface concentration, as well as the (f) dust deposition flux. The different symbols represent the
measurements (purple triangle), the 13 AeroCom models (black letters), MERRA-2 (red R), the six models in the model ensemble (brown
numbers), the six improved models (green numbers with a prime), and the inverse model results (large blue star). An exact legend for the
different models is provided in Fig. 3.
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Figure 11. Evaluation of whether integrating observational constraints on dust properties and abundance produces an improved representation
of the Southern Hemisphere dust cycle. Shown are the biases (a, b) and root mean square errors (RMSEs; c, d) in logarithmic space with
respect to measurements of (a, c) seasonally averaged dust surface concentration and dust deposition flux and of (b, d) annually averaged
dust surface concentration and deposition flux. Symbols in panels (a)–(d) denote results for the individual models in the AeroCom ensemble
(black letters), MERRA-2 (red R), models in our ensemble (brown numbers), and the improved models (green italicized numbers). The exact
legend for the different models is given in Fig. 3, and stars denote the mean bias and RMSE for AeroCom models (black star), models in our
ensemble (brown star), the improved models (green star), and the inverse model results (blue star). Panel (e) shows normalized model errors
(see Sect. 3.2) relative to the surface concentration (green bars) and deposition flux (orange bars) datasets. Shown are results for the inverse
model; the average of models in the AeroCom ensemble, our model ensemble, and our ensemble of improved models; MERRA-2; and for
the individual models in our ensemble before and after applying observational constraints (see Sect. 2.5). Hatched bars denote results of the
inverse model and improved models obtained through our methodology.
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5.1 Limitations of the methodology

Our results are subject to a few important limitations. First,
although our methodology integrates observational con-
straints, it still relies on global model simulations to com-
pute a number of key variables, including the spatial pat-
tern and timing of dust emissions within each source region,
the vertical distribution of dust, and the deposition flux of
dust. All three of these processes are known to be subject
to important model errors (e.g., Ginoux, 2003; Huneeus et
al., 2011; Kim et al., 2014; Kok et al., 2014a; Evan, 2018;
O’Sullivan et al., 2020). As discussed in Sect. 1, accurately
simulating the magnitude and spatiotemporal variability of
dust emissions represents a fundamental challenge for mod-
els. To mitigate this problem, many models prescribe pro-
lific dust sources where geomorphologic processes concen-
trate fine soil particles as a result of fluvial erosion (Ginoux
et al., 2001; Prospero et al., 2002; Tegen et al., 2002; Zender
et al., 2003; Koven and Fung, 2008). However, these rep-
resentations are highly uncertain, as indicated by large dif-
ferences in the spatial patterns of emissions (Cakmur et al.,
2006; Kok et al., 2014a; Wu et al., 2020). In addition to these
challenges with simulating dust emissions, many models also
underestimate the height at which dust is transported (Yu et
al., 2010; Johnson et al., 2012; Kim et al., 2014). Further-
more, excessive diffusion of coarse dust due to numerical
sedimentation schemes causes additional problems in many
models (Ginoux, 2003; Eastham and Jacob, 2017; Zhuang
et al., 2018) and might be partially responsible for a general
underestimation of long-range transport of coarse dust rel-
ative to measurements and satellite observations (Maring et
al., 2003; Ridley et al., 2014; Ansmann et al., 2017; Gasteiger
et al., 2017; van der Does et al., 2018; Yu et al., 2019). Be-
cause of these various uncertainties in model representations
of dust processes, our constraints on dust AOD and loading
are the strongest, and constraints on dust emission, deposi-
tion, and 3D concentration have greater uncertainty (Table 3).
Furthermore, although uncertainties in the products obtained
here include the error due to the spread in the results of the
models in our ensemble, they do not account for systematic
biases between the model ensemble and the real world, which
might be substantial in light of the problems in model simula-
tions highlighted above. In addition, some of the other inputs
to our methodology, such as the globally averaged dust size
distribution (Adebiyi and Kok, 2020), would also be affected
by possible biases in model results, such as in deposition.
One consequence of our incomplete understanding of dust
processes is that observational constraints will remain valu-
able even as model resolution is increased.

A second limitation of our methodology is that the quality
of the inverse model depends on the accuracy of the obser-
vational constraints on the globally averaged dust size distri-
bution (Adebiyi and Kok, 2020), extinction efficiency (Kok
et al., 2017), and the regional DAOD constraints obtained
in Ridley et al. (2016) and Adebiyi et al. (2020). As such,

the results presented here are subject to the limitations of
those studies. These limitations are described in detail in the
corresponding papers and include possible biases due to er-
rors in the dust extinction efficiency due to the assumed tri-
axial ellipsoid shape being an imperfect approximation of
the highly heterogeneous shape and roughness of real dust
particles (Lindqvist et al., 2014; Kok et al., 2017), errors in
the remotely sensed optical depth retrieval algorithms for as-
pherical dust particles (Hsu et al., 2004; Kalashnikova et al.,
2005; Dubovik et al., 2006), errors in the cloud-screening
algorithms used in satellite and ground-based remote sens-
ing products, errors due to a scarcity of AERONET “ground-
truth” data in dust-dominated regions, and systematic differ-
ences between clear-sky and all-sky AOD, although stud-
ies indicate that such a systematic difference is small for
dusty regions (Kim et al., 2014; Ridley et al., 2016; Ade-
biyi and Kok, 2020). The uncertainty due to many (not all)
of these errors has been quantified in the relevant papers, and
these errors have thus been propagated into the results in the
present study. An additional key limitation is that the Ridley
et al. (2016) DAOD constraint uses model simulations of the
AOD due to other aerosol species to separate dust AOD from
non-dust AOD in dusty regions. As such, consistent biases in
model simulations of non-dust AOD would have affected the
inferred dust AOD. For instance, a systematic underestima-
tion of biomass burning AOD across models (Reddington et
al., 2016; van der Werf et al., 2017) would cause the underes-
timated biomass burning AOD to instead be assigned to dust,
thereby causing an overestimate of dust AOD. This source
of error might be particularly important in regions with sub-
stantial non-dust aerosol loadings, such as in much of Asia
and in the Sahel during the biomass burning season (Yu et
al., 2019). Furthermore, the regional DAOD constraints from
Adebiyi et al. (2020) for the lesser source regions of Aus-
tralia, North America, South America, and southern Africa
are based on an ensemble of aerosol reanalysis products.
These products assimilate remotely sensed AOD and partly
rely on prognostic aerosol models to partition this AOD to the
different aerosol species (e.g., Randles et al., 2017). Consid-
ering the large uncertainties in dust models (Huneeus et al.,
2011; Checa-Garcia et al., 2020; Wu et al., 2020), these prod-
ucts could thus be substantially biased in regions for which
dust does not dominate AOD.

Another limitation of our results is that the representa-
tion of the modern-day global dust cycle is based mostly
on model data and regional DAOD constraints for the pe-
riod 2004–2008. As such, changes in the dust cycle before or
after that period are not reflected in our results. For instance,
satellite measurements have shown an increase in dust load-
ing in the Middle East (Hsu et al., 2012; Kumar et al., 2019).
Further, we assume that dust contributes to loading and de-
position in the same season that it is emitted, which is not
always true and could generate small inconsistencies. We
also use observational constraints on DAOD only at the mid-
visible range (550 nm), which is most sensitive to dust with
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a diameter of ∼ 1–5 µm (Fig. 5f). Dust particles outside this
size range are thus partially constrained by correcting model
simulations to match the globally averaged dust size distri-
bution inferred in Adebiyi and Kok (2020) and might thus
have larger errors than dust with diameters around 1–5 µm.
Another important limitation is that many of the models in
our ensemble do not explicitly account for anthropogenic
(e.g., land-use) sources of dust emission, which might ac-
count for ∼ 10 %–25 % of present-climate dust emissions
(Mahowald et al., 2004; Tegen et al., 2004; Ginoux et al.,
2012). However, the observationally constrained DAOD used
here to scale dust emissions and loading does not distin-
guish between natural and anthropogenic dust and thus in-
herently includes both. Nonetheless, the omission of land-
use dust emissions from many of the models in our ensemble
could produce important errors close to anthropogenic dust
sources, which might account for a substantial fraction of
total emissions in Asia, Australia, southern Africa, and the
Americas (Ginoux et al., 2012). Another limitation is that
our approach neglects feedback between dust and meteorol-
ogy, which could be important for certain regions or seasons
(Cakmur et al., 2004; Miller et al., 2004; Pérez et al., 2006;
Ahn et al., 2007; Heinold et al., 2007; Colarco et al., 2014;
Randles et al., 2017).

Finally, the conclusion that our methodology yields an im-
proved representation of the global dust cycle depends on
the quality of the independent data used to evaluate the in-
verse model results. However, these data have a few limi-
tations. First, some of the measurements might have large,
unquantified errors. This appears to be the case especially
for deposition flux measurements, which show a much larger
spread than surface concentration measurements, even for
proximal locations. Second, the concentration and deposi-
tion data used to evaluate the inverse model results do not
coincide in time with the simulations, which could affect
the comparisons (see Sect. 3 and further discussions in, e.g.,
Huneeus et al., 2011). Finally, some aspects of our repre-
sentation of the global dust cycle were not explicitly tested
against measurements. Future work could further investigate
the accuracy of the inverse model results through compar-
isons against additional data, such as visibility data (Ma-
howald et al., 2007; Shao et al., 2013), dust vertical profile
data (Yu et al., 2010; Kim et al., 2014), and remote sens-
ing retrievals of the Ångström exponent (Huneeus et al.,
2011). In addition to these limitations with the data, it is
also possible that the inverse model better reproduces inde-
pendent measurements because of canceling errors, for in-
stance between model underestimates in long-range transport
of coarse dust and overestimates in emissions from source re-
gions closer to observational sites.

5.2 Improving model representations of the global dust
cycle

The results in Figs. 6–11 show that our methodology of
integrating observational constraints on dust properties and
abundance reduces model errors in simulating the global dust
cycle. This finding is particularly clear from the results of the
six improved models. Each of these models shows a substan-
tial reduction of model error against measurements and ob-
servations of the NH dust cycle (Figs. 7d–f, 8a–d), with the
average reduction of the errors in improved models equal-
ing ∼ 35 % (Fig. 8e). These findings suggest several ways
in which the representation of the global dust cycle can be
improved in global and regional models.

First, our results indicate that it is critical for models
to account for the substantial asphericity of dust aerosols
(Okada et al., 2001; Huang et al., 2020). Dust asphericity en-
hances the MEE by ∼ 40 % because aspherical dust particles
extinguish more radiation than volume-equivalent spherical
particles (Kalashnikova and Sokolik, 2004; Potenza et al.,
2016; Kok et al., 2017). As such, not accounting for dust as-
phericity causes an overestimation of the dust loading needed
to match DAOD constraints by ∼ 40 % and can thus pro-
duce a corresponding bias against concentration and depo-
sition flux measurements. This is illustrated by the MERRA-
2 results, which are in good agreement with DAOD con-
straints (Figs. 7d, e, 8e) but overestimate NH dust deposi-
tion flux measurements by ∼ 25 % and surface concentra-
tion measurements by ∼ 50 % (Figs. 8a, b and S9 and S10).
MERRA-2 uses dust optics from Colarco et al. (2014) based
on spheroids, which underestimate dust asphericity (Huang
et al., 2020) and yielded a ∼ 25 % enhancement of dust ex-
tinction. Accounting for the full extinction enhancement of
∼ 40 % due to dust asphericity would thus reduce the biases
of the MERRA-2 dust product against surface concentration
and deposition flux measurements. Since most current mod-
els either do not account for dust asphericity or substantially
underestimate its effect on extinction efficiency (Huang et
al., 2020), we recommend that models account for the full
enhancement of extinction by dust asphericity, for instance
by implementing the constraints on the extinction efficiency
of aspherical dust from Kok et al. (2017).

Second, models can be improved by correcting the cur-
rent substantial underestimation of coarse dust loading. In
this study, we integrated a joint observational–modeling con-
straint on the globally averaged dust size distribution in order
to account for the ∼ 17 Tg of coarse dust (5≤D ≤ 20 µm)
that observations indicate is present in the atmosphere (Ry-
der et al., 2019; Adebiyi and Kok, 2020). The finding that
our methodology almost eliminates biases against NH mea-
surements (Figs. 6–8) suggests that this constraint on the
globally averaged dust size distribution is relatively accu-
rate. This further supports the conclusion from several stud-
ies that models substantially underestimate coarse dust load-
ing (Ansmann et al., 2017; van der Does et al., 2018; Ry-
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der et al., 2019; Adebiyi and Kok, 2020; Gliß et al., 2021).
Models can thus be improved by eliminating the current un-
derestimation of coarse dust. This could be done either by
adjusting the size distribution of emitted dust aerosols such
that the size-resolved global dust loading matches the con-
straints on the globally averaged size distribution (Adebiyi
and Kok, 2020) or, preferably, by improving the relevant
model physics. Specifically, recent studies indicate that the
underestimation of coarse dust is due to both an underesti-
mation of the emission of coarse dust (Huang et al., 2021)
and an underestimation of the lifetime of the emitted coarse
dust (Maring et al., 2003; Weinzierl et al., 2017). Measure-
ments of the emitted dust size distribution show a much
larger flux of dust with D ≥ 10 µm than current parameter-
izations, including brittle fragmentation theory (Kok, 2011b,
a), account for (Huang et al., 2021). The fact that models
need to use a fractional contribution of emitted super-coarse
dust (10≤D ≤ 20 µm) that is even larger than found by mea-
surements (Fig. 5a; Sow et al., 2009; Rosenberg et al., 2014;
Huang et al., 2019, 2021) suggests that models underestimate
the lifetime of (super-)coarse dust. This finding further sup-
ports the inference from several lines of evidence that mod-
els underestimate the lifetime of (super-)coarse dust (Mar-
ing et al., 2003; Weinzierl et al., 2017; van der Does et al.,
2018). As such, models require improved parameterizations
of both the emitted dust size distribution and dry deposition
processes to properly account for the abundance of (super-
)coarse dust in our atmosphere. Improved parameterizations
of the emitted dust size distribution that better account for
the large contribution of (super-)coarse dust are under de-
velopment (Huang et al., 2021). To improve size-resolved
dry deposition, we recommend that models account for the
∼ 20 % slowing of the gravitational settling speed due to
dust asphericity (Huang et al., 2020). Further improvements
in dust deposition parameterizations are likely needed, in-
cluding accounting for the strong enhancement of upward
vertical transport of emitted (super-)coarse dust by topogra-
phy (Rosenberg et al., 2014; Heisel et al., 2021) and possible
reductions of gravitational settling due to electrification and
turbulence in dust layers (Ulanowski et al., 2007; Gasteiger
et al., 2017; van der Does et al., 2018).

Finally, our results indicate that model accuracy can be
substantially improved by correcting biases in the dust load-
ing generated by each main source region (Figs. 3, 8e). These
biases could be reduced in two ways. First, models could
emulate the procedure developed here and scale the emis-
sion of dust from each region to match the observed regional
DAOD obtained in Ridley et al. (2016). A second approach
would be to scale the simulated (size-resolved) emissions or
loading per source region and season to that obtained in our
companion paper (Kok et al., 2021a). These improvements
would be most effective for simulations of the present-day
dust cycle by regional and global models, as well as short-
range, medium-range, and seasonal forecasts of dustiness by
numerical weather models. Ultimately, parameterizations of

dust emissions should be improved to eliminate the need for
adjustment of model simulations in this manner. This is crit-
ical because without identifying and correcting the problem-
atic model physics, we cannot know how these processes
change with climate, for example under global warming or
over glacial cycles. Together with uncertainties due to future
land-use changes, this problem limits the ability of models to
predict future changes in the global dust cycle and its effect
on climate and the Earth system (Evan et al., 2016; Kok et
al., 2018).

Although we found that the integration of observational
constraints on dust properties and abundance is effective in
reducing model errors in the representation of the NH dust
cycle, we found only slight improvements for the SH dust
cycle (Fig. 11e). There are two likely reasons for this find-
ing. First, whereas the inverse model is informed by accurate
observational constraints on regional DAOD in the NH, such
constraints are less accurate for the less dusty SH (Ridley et
al., 2016). And second, the dust cycle simulations used in our
ensemble are less accurate for the SH dust cycle than for the
NH dust cycle, as indicated by substantially larger root mean
square errors relative to measurements for the SH (Fig. 11c,
d) than for the NH (Fig. 8c, d). These larger model errors
for the SH likely occur because a large fraction of SH dust
emissions originates from regions containing sparse vegeta-
tion (Ito and Kok, 2017), the effects of which on dust emis-
sion are difficult for models to represent accurately (King
et al., 2005; Okin, 2008). Additionally, there are fewer data
available in the SH from ground-based measurements such
as dust surface concentration measurements. And whereas
many measurements close to dust source regions are avail-
able for the NH, most measurements for the SH are at sites
remote from the main dust source regions (Fig. 2c, d), where
they are less effective at constraining the main features of
the SH dust cycle. There are also fewer satellite retrievals
available to constrain simulations of the SH dust cycle. For
instance, dust sources such as Patagonia are shrouded by
clouds for a larger fraction of the year than most NH sources
(Ginoux et al., 2012), which limits constraints on dust emis-
sions and DAOD from satellite retrievals (Gasso and Stein,
2007). Additionally, the errors in satellite retrievals tend to be
larger for the SH than for the NH because the relative error
decreases with AOD (Kahn et al., 2005; Remer et al., 2005).
Considering the important role that the SH dust cycle plays
in biogeochemistry, the carbon cycle, and the climate system
(Lambert et al., 2008; Hamilton et al., 2020), our results un-
derscore a critical need for more observations to constrain
the SH dust cycle.

5.3 Utility of the DustCOMM dataset in understanding
the role of dust in the Earth system

In addition to identifying mechanisms to improve individ-
ual model simulations, this study obtained an improved rep-
resentation of the global dust cycle that can be used to im-
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prove our understanding and quantification of the impact of
dust on the Earth system. This addition to the DustCOMM
dataset (Adebiyi et al., 2020) contains dust loading, DAOD,
(surface) concentration, and (wet and dry) deposition flux
fields that are resolved by space, particle size, and season
(data are available at https://dustcomm.atmos.ucla.edu/data/
K21a/, last access: 12 May 2021). Our results in Sect. 4.3
indicate that this dataset is more accurate than both a large
number of climate and chemical transport model simula-
tions and the MERRA-2 dust product. Moreover, whereas
MERRA-2 is internally inconsistent because dust loading is
adjusted after emission by assimilating AOD measurements
(Randles et al., 2017; Wu et al., 2020), our method for inte-
grating observational constraints yields a self-consistent rep-
resentation of the global dust cycle. Our companion arti-
cle (Kok et al., 2021a) will supplement this dataset by par-
titioning all these fields by the originating source region.
This dataset representing the seasonally resolved and size-
resolved global dust cycle can be used to more accurately
quantify dust impacts on the Earth system, such as on cli-
mate, weather, the hydrological cycle, biogeochemistry, and
human health.

Our dataset of an improved representation of the global
dust cycle has an additional strength that amplifies its use:
our dataset quantifies and propagates a range of observa-
tional and modeling uncertainties (see Sect. 2.5). Compar-
isons against independent datasets indicate that the propa-
gated error is realistic for the NH and might slightly under-
estimate the true errors in the SH (Figs. 7 and 10). The avail-
ability of realistic errors allows for the propagation of uncer-
tainty into dust impacts constrained using our dataset, such
as in the quantification of direct radiative effects and indirect
cloud and biogeochemistry effects (Mahowald, 2011). With
a few exceptions (Kok et al., 2017; Regayre et al., 2018; Di
Biagio et al., 2020), the quantification of the uncertainty of
(dust) aerosol direct and indirect radiative effects is uncom-
mon yet critical to robustly constraining (dust) aerosol im-
pacts on the Earth system (Carslaw et al., 2010; Mahowald
et al., 2011b). Moreover, the quantification of uncertainties in
aerosol effects in both the present-day and pre-industrial cli-
mates is crucial to constraining climate sensitivity (Carslaw
et al., 2013, 2018).

A second strength of our dataset representing the global
dust cycle is that it uses an analytical framework that could
be improved and expanded. The framework could be im-
proved by using more accurate observational constraints of
dust properties and dust abundance as inputs (see Fig. 1), for
instance from several recent DAOD climatologies (Pu and
Ginoux, 2018; Voss and Evan, 2020; Gkikas et al., 2021),
or by adding additional types of observational constraints,
such as on the dust vertical profile (Song et al., 2021). The
framework could be expanded by adding calculations of ad-
ditional dust properties and impacts, such as dust mineralogy
and radiative effects. The framework could also be expanded
to cover different time periods than the 2004–2008 time pe-

riod we used here or to constrain the historical variability
of the global dust cycle, for instance using time-resolved
DAOD climatologies (Voss and Evan, 2020; Gkikas et al.,
2021; Song et al., 2021). As such, our approach has the po-
tential to continually improve the representation of the global
dust cycle and its impacts on the Earth system.

6 Conclusions

We have obtained an improved representation of the global
dust cycle by developing an analytical framework that uses
inverse modeling to integrate observational constraints on
the dust size distribution, extinction efficiency, and regional
DAOD with an ensemble of global dust cycle simulations
(Fig. 1). This new approach mitigates two critical chal-
lenges that models face in representing the global dust cy-
cle, namely (i) that capturing the magnitude and spatial dis-
tribution of dust emissions is a fundamental challenge for
large-scale models because of the large mismatch between
the resolved scales (∼ 10–100 km) and the physically rele-
vant scales (∼ 1 m to several km) over which dust emissions
vary and (ii) that models have difficulty representing uncer-
tainties in dust microphysical properties and often use values
that are not consistent with up-to-date observational and ex-
perimental constraints.

Comparisons against independent measurements indicate
that this new framework of integrating observational con-
straints with model simulations produces an improved repre-
sentation of the present-day (2004–2008) global dust cycle.
Our inverse model reproduces NH measurements of the dust
surface concentration well within the experimental and mod-
eling uncertainties and with a factor of 1.5–5 less error than
both individual model simulations and the MERRA-2 dust
product (Fig. 8c, d). This large improvement is due to re-
duced errors in capturing the seasonal cycle (Fig. 6) and the
spatial variability of the dust surface concentration (Fig. 7d,
e) and because of the near elimination of biases against mea-
surements in the NH (Fig. 8a, b). Overall, the inverse model
results show a reduction of errors against measurements and
observations of the NH dust cycle measurements of approxi-
mately a factor of 2 (Fig. 8e). These improvements are note-
worthy as previous studies have had difficulty simultaneously
reproducing dust AOD, surface concentration, and deposition
flux (Cakmur et al., 2006; Mahowald et al., 2006; Albani et
al., 2014).

The elimination of bias against independent data suggests
several ways in which dust models can be improved. First,
models should account for the enhancement of the MEE by
dust asphericity (Kalashnikova and Sokolik, 2004; Kok et
al., 2017). Otherwise, a ∼ 40 % greater dust loading would
be needed to match DAOD constraints, resulting in a cor-
responding overestimation of NH dust surface concentration
and deposition fluxes. Our results further indicate that mod-
els can be improved by correcting the current underestima-
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tion of coarse dust loading (Adebiyi and Kok, 2020) and
by adjusting source-resolved emissions to match regional
DAOD constraints (Ridley et al., 2016).

Although the integration of observational constraints thus
improves the representation of the NH dust cycle, we found
less improvement in the SH dust cycle. This is likely due to
both the lower quality of constraints on regional DAOD in the
SH and because of the difficulty models have in reproducing
the dust cycle in the less dusty SH.

We also find that the emission flux of dust with a geometric
diameter up to 20 µm (PM20) is approximately 5000 Tg yr−1

(1 standard error range of 3400 to 8900 Tg yr−1; Table 3),
which is greater than most models account for. This greater
global emission rate is partially driven by a larger emis-
sion flux of (super-)coarse dust with D ≥ 5 µm, which we
find accounts for ∼ 80 % of the global PM20 emission flux
(Fig. 5a). This large flux of coarse dust is needed to gener-
ate the ∼ 17 Tg of atmospheric (super-)coarse dust loading
that in situ measurements indicate resides in the atmosphere
(Adebiyi and Kok, 2020). Accounting for this substantial
loading of coarse dust is important because these particles
account for a substantial fraction of absorption of shortwave
radiation and both absorption and scattering of longwave ra-
diation (Tegen and Lacis, 1996; Ryder et al., 2018, 2019;
Fig. 5), and they can also account for a large fraction of nu-
trients delivered to ecosystems by dust.

The improved representation of the global dust cycle pre-
sented here is publicly available as part of the DustCOMM
dataset (Adebiyi and Kok, 2020; Adebiyi et al., 2020). These
data include gridded dust emission, loading, (surface) con-
centration, wet and dry deposition, and DAOD fields that are
resolved by season and particle size, including by particle bin
and for PM2.5, PM10, and PM20 dust. Additional strengths of
this dataset are that it includes uncertainty estimates and that
the data can be readily updated as improved constraints on
dust properties and abundance become available. As such,
our improved representation of the global dust cycle can fa-
cilitate more accurate constraints on the various critical im-
pacts of dust on the Earth system.
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Appendix A: Glossary

αk Dimensionless global scaling factor by which a unit of dust loading in a global model simulation’s
particle size bin k is multiplied in order to bring the annually averaged global dust loading generated
from all source regions in agreement with the constraint on the globally averaged dust size distribution
( dV atm(D)

dD ).
εk Mass extinction efficiency (m2 kg−1) of a global model simulation’s particle size bin k, obtained by

integrating the constraint on the globally averaged extinction efficiency Qext(D) over the particle bin’s
size range.

θ Longitude.
ρd Density of dust aerosols, which is taken as (2.5± 0.2)× 103 kg m−3.
σ
p
s Total uncertainty of the area-averaged observed DAOD of region p for season s.
τ
p
s Area-averaged observed DAOD for region p and season s.
τ̆r,s (θ,φ) Inverse model seasonally averaged DAOD produced by dust emitted from source region r , averaged

over season s.
τ̆
p
r,s Inverse model seasonally averaged DAOD produced by dust emitted from source region r , averaged

over season s and observed region p.
φ Latitude.
χ2
τ Summed squared deviation between the observed DAOD in the 15 regions and that obtained from our

analysis.
Ap Area of the region p defined in Table 2 (m2).
cPM10 Global constant denoting the fractional contribution to the PM10 deposition flux of a model particle size

bin that straddles 10 µm.
C̃r,s,k (θ,φ,P ) Model-simulated 3D dust concentration (m−3) produced by a unit of dust loading (1 Tg) in particle size

bin k emitted from source region r , averaged over season s.
C̆s (θ,φ,P ) Inverse model 3D bulk dust concentration (kg m−3), averaged over season s.
C̆s,k (θ,φ,P ) Inverse model 3D dust concentration (kg m−3) produced by dust in particle size bin k, averaged over

season s.
D Geometric (or volume-equivalent) diameter (m).
Dk− Lower geometric diameter limit of a global model simulation’s particle size bin k (m).
Dk+ Upper geometric diameter limit of a global model simulation’s particle size bin k (m).
Dmax Maximum dust aerosol geometric diameter considered in this study, namely Dmax = 20 µm.
D̃r,s,k (θ,φ) Model-simulated spatial distribution of dust deposition flux (m−2 yr−1) produced by a unit of dust load-

ing (1 Tg) in particle size bin k emitted from source region r , averaged over season s.
D̆s,k (θ,φ) Inverse model spatial distribution of deposition flux (kg m−2 yr−1) of dust in particle bin k, averaged

over season s.
D̆s (θ,φ) Inverse model spatial distribution of bulk dust deposition flux (kg m−2 yr−1), averaged over season s.
f̃r,s,k Model-simulated seasonally averaged fraction of global dust loading emitted from source region r that

is contained in particle size bin k.
f̆r,s,k Inverse model fraction of seasonally averaged global dust loading emitted from source region r that is

contained in particle size bin k.
F̃r,s,k (θ,φ) Model-simulated spatial distribution of dust emission flux (m−2 yr−1) needed to generate a unit (1 Tg)

of dust loading in particle size bin k emitted from source region r , and averaged over season s.
F̆s,k (θ,φ) Inverse model spatial distribution of dust emission flux (kg m−2 yr−1) of dust in particle bin k, averaged

over season s.
F̆s (θ,φ) Inverse model spatial distribution of bulk dust deposition flux (kg m−2 yr−1), averaged over season s.
Jr,s (θ,φ) Spatial distribution of the Jacobian matrix (Tg−1) of τ̆r,s with respect to L̆r,s , which equals the DAOD

produced per unit of bulk dust loading from source region r , averaged over season s.
J
p
r,s The Jacobian matrix of τps with respect to L̆r,s (Tg−1), which equals the seasonally averaged DAOD

produced per unit of dust loading originating from source region r in season s and averaged over the
observed region p.

k Index that sums over the different particle size bins of a given global model.
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l̃r,s,k (θ,φ) Model-simulated spatial distribution of dust column loading produced by a unit of dust loading (1 Tg)
in particle size bin k, emitted from source region r , averaged over season s (m−2).

l̆s (θ,φ) Inverse model spatial distribution of dust bulk column loading, averaged over season s (kg m−2).
l̆s,k (θ,φ) Inverse model spatial distribution of dust column loading produced by dust in particle size bin k, aver-

aged over season s (kg m−2).
L̆r Inverse model annually averaged global dust loading produced by source region r (Tg).
L̆r,s Inverse model global dust loading produced by source region r , averaged over season s (Tg).
Nbins Number of dust particle size bins in a given global model simulation.
Nτ,reg Number of regions with observationally constrained DAOD; Nτ,reg = 15.
Nsreg Number of source regions; Nsreg = 9.
p Index that sums over the 15 regions with observationally constrained DAOD.
P Vertical pressure level.
Qext(D) Globally averaged size-resolved extinction efficiency (dimensionless) from Kok et al. (2017), which

is defined as the extinction cross section divided by the projected area of a sphere with diameter
D(πD2/4).

r Index that sums over the Nsreg = 9 source regions.
s Index that sums over the four seasons.
dV atm(D)

dD The size-normalized (that is,
∫ Dmax

0
dV atm

dD dD = 1) globally averaged volume size distribution of atmo-
spheric dust from Adebiyi and Kok (2020).
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