Articles | Volume 21, issue 9
https://doi.org/10.5194/acp-21-7271-2021
https://doi.org/10.5194/acp-21-7271-2021
Research article
 | 
12 May 2021
Research article |  | 12 May 2021

Is a more physical representation of aerosol activation needed for simulations of fog?

Craig Poku, Andrew N. Ross, Adrian A. Hill, Alan M. Blyth, and Ben Shipway

Related authors

GC Insights: Diversifying the geosciences in higher education: a manifesto for change
Caitlyn A. Hall, Sam Illingworth, Solmaz Mohadjer, Mathew Koll Roxy, Craig Poku, Frederick Otu-Larbi, Darryl Reano, Mara Freilich, Maria-Luisa Veisaga, Miguel Valencia, and Joey Morales
Geosci. Commun., 5, 275–280, https://doi.org/10.5194/gc-5-275-2022,https://doi.org/10.5194/gc-5-275-2022, 2022
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Above-cloud concentrations of cloud condensation nuclei help to sustain some Arctic low-level clouds
Lucas J. Sterzinger and Adele L. Igel
Atmos. Chem. Phys., 24, 3529–3540, https://doi.org/10.5194/acp-24-3529-2024,https://doi.org/10.5194/acp-24-3529-2024, 2024
Short summary
Contrail formation on ambient aerosol particles for aircraft with hydrogen combustion: a box model trajectory study
Andreas Bier, Simon Unterstrasser, Josef Zink, Dennis Hillenbrand, Tina Jurkat-Witschas, and Annemarie Lottermoser
Atmos. Chem. Phys., 24, 2319–2344, https://doi.org/10.5194/acp-24-2319-2024,https://doi.org/10.5194/acp-24-2319-2024, 2024
Short summary
Effects of intermittent aerosol forcing on the stratocumulus-to-cumulus transition
Prasanth Prabhakaran, Fabian Hoffmann, and Graham Feingold
Atmos. Chem. Phys., 24, 1919–1937, https://doi.org/10.5194/acp-24-1919-2024,https://doi.org/10.5194/acp-24-1919-2024, 2024
Short summary
Cloud properties and their projected changes in CMIP models with low to high climate sensitivity
Lisa Bock and Axel Lauer
Atmos. Chem. Phys., 24, 1587–1605, https://doi.org/10.5194/acp-24-1587-2024,https://doi.org/10.5194/acp-24-1587-2024, 2024
Short summary
Water isotopic characterisation of the cloud–circulation coupling in the North Atlantic trades – Part 2: The imprint of the atmospheric circulation at different scales
Leonie Villiger and Franziska Aemisegger
Atmos. Chem. Phys., 24, 957–976, https://doi.org/10.5194/acp-24-957-2024,https://doi.org/10.5194/acp-24-957-2024, 2024
Short summary

Cited articles

Abdul-Razzak, H. and Ghan, S. J.: A parameterization of aerosol activation: 2. Multiple aerosol types, J. Geophys. Res.-Atmos., 105, 6837–6844, https://doi.org/10.1029/1999JD901161, 2000. a, b, c, d, e, f, g, h
Abdul-Razzak, H., Ghan, S. J., and Rivera-Carpio, C.: A parameterization of aerosol activation: 1. Single aerosol type, J. Geophys. Res.-Atmos., 103, 6123–6131, https://doi.org/10.1029/97JD03735, 1998. a, b
Abramowitz, M. and Stegun, I. A.:Handbook of mathematical functions with formulas, graphs, and mathematical tables, US Government printing office, 55, 1964. a
Albrecht, B. A.: Aerosols, cloud microphysics, and fractional cloudiness, Science, 245, 1227–1230, https://doi.org/10.1126/science.245.4923.1227, 1989. a
BBC: Sheppey crossing crash: Dozens hurt as 130 vehicles crash, BBC News, available at: https://www.bbc.co.uk/news/uk-england-kent-23970047 (last access: 5 May 2021), 2013. a
Download
Short summary
We present a new aerosol activation scheme suitable for modelling both fog and convective clouds. Most current activation schemes are designed for convective clouds, and we demonstrate that using them to model fog can negatively impact its life cycle. Our scheme has been used to model an observed fog case in the UK, where we demonstrate that a more physically based representation of aerosol activation is required to capture the transition to a deeper layer – more in line with observations.
Altmetrics
Final-revised paper
Preprint