Articles | Volume 21, issue 8
https://doi.org/10.5194/acp-21-5935-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-5935-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Parameterizing the vertical downward dispersion of ship exhaust gas in the near field
Ronny Badeke
CORRESPONDING AUTHOR
Hereon Institute of Coastal Environmental Chemistry, Helmholtz-Zentrum Hereon GmbH, 21502 Geesthacht, Germany
Volker Matthias
Hereon Institute of Coastal Environmental Chemistry, Helmholtz-Zentrum Hereon GmbH, 21502 Geesthacht, Germany
David Grawe
Center for Earth System Research and Sustainability (CEN),
Meteorological Institute, Universität Hamburg, 20146 Hamburg, Germany
Related authors
Ronny Badeke, Volker Matthias, Matthias Karl, and David Grawe
Geosci. Model Dev., 15, 4077–4103, https://doi.org/10.5194/gmd-15-4077-2022, https://doi.org/10.5194/gmd-15-4077-2022, 2022
Short summary
Short summary
For air quality modeling studies, it is very important to distribute pollutants correctly into the model system. This has not yet been done for shipping pollution in great detail. We studied the effects of different vertical distributions of shipping pollutants on the urban air quality and derived advanced formulas for it. These formulas take weather conditions and ship-specific parameters like the exhaust gas temperature into account.
Volker Matthias, Markus Quante, Jan A. Arndt, Ronny Badeke, Lea Fink, Ronny Petrik, Josefine Feldner, Daniel Schwarzkopf, Eliza-Maria Link, Martin O. P. Ramacher, and Ralf Wedemann
Atmos. Chem. Phys., 21, 13931–13971, https://doi.org/10.5194/acp-21-13931-2021, https://doi.org/10.5194/acp-21-13931-2021, 2021
Short summary
Short summary
COVID-19 lockdown measures in spring 2020 led to cleaner air in central Europe. Densely populated areas benefitted mainly from largely reduced NO2 concentrations, while rural areas experienced lower reductions in NO2 but also lower ozone concentrations. Very low particulate matter (PM) concentrations in parts of Europe were not an effect of lockdown measures. Model simulations show that modified weather conditions are more significant for ozone and PM than severe traffic emission reductions.
Hiram Abif Meza-Landero, Julia Bruckert, Ronny Petrick, Pascal Simon, Heike Vogel, Volker Matthias, Johannes Bieser, and Martin Ramacher
EGUsphere, https://doi.org/10.5194/egusphere-2025-2289, https://doi.org/10.5194/egusphere-2025-2289, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
To understand how persistent hazardous industrial chemicals travel through the air and are deposited back on Earth's surface, we created a new computer model that combines meteorology and chemistry in clouds and clean air. Using the most recent global emissions data, this model represents the trajectory and changes of these chemicals, matching patterns in many areas and overlooking others. The work seeks to improve global monitoring and modeling of hazardous chemicals.
Karolin Sarah Samsel, Marita Boettcher, David Grawe, K. Heinke Schlünzen, and Kevin Sieck
EGUsphere, https://doi.org/10.5194/egusphere-2024-2464, https://doi.org/10.5194/egusphere-2024-2464, 2025
Short summary
Short summary
A microscale, obstacle-resolving meteorological model has been extended with a snow cover and precipitation scheme making it the first model of its kind that includes rain and snow. The model allows first estimates on the influence of different city characteristics on precipitation heterogeneities. The performance of the model extension is assessed by comparing the results of different model versions. For the comparisons, threshold values were derived based on computational accuracy.
Pascal Simon, Martin Otto Paul Ramacher, Stefan Hagemann, Volker Matthias, Hanna Joerss, and Johannes Bieser
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-236, https://doi.org/10.5194/essd-2024-236, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Per- and Polyfluorinated Alkyl Substances (PFAS) constitute a group of often toxic, persistent, and bioaccumulative substances. We constructed a global Emissions model and inventory based on multiple datasets for 23 widely used PFAS. The model computes temporally and spatially resolved model ready emissions distinguishing between emissions to air and emissions to water covering the time span from 1950 up until 2020 on an annual basis to be used for chemistry transport modelling.
Lea Fink, Matthias Karl, Volker Matthias, Sonia Oppo, Richard Kranenburg, Jeroen Kuenen, Sara Jutterström, Jana Moldanova, Elisa Majamäki, and Jukka-Pekka Jalkanen
Atmos. Chem. Phys., 23, 10163–10189, https://doi.org/10.5194/acp-23-10163-2023, https://doi.org/10.5194/acp-23-10163-2023, 2023
Short summary
Short summary
The Mediterranean Sea is a heavily trafficked shipping area, and air quality monitoring stations in numerous cities along the Mediterranean coast have detected high levels of air pollutants originating from shipping emissions. The current study investigates how existing restrictions on shipping-related emissions to the atmosphere ensure compliance with legislation. Focus was laid on fine particles and particle species, which were simulated with five different chemical transport models.
Lea Fink, Matthias Karl, Volker Matthias, Sonia Oppo, Richard Kranenburg, Jeroen Kuenen, Jana Moldanova, Sara Jutterström, Jukka-Pekka Jalkanen, and Elisa Majamäki
Atmos. Chem. Phys., 23, 1825–1862, https://doi.org/10.5194/acp-23-1825-2023, https://doi.org/10.5194/acp-23-1825-2023, 2023
Short summary
Short summary
Potential ship impact on air pollution in the Mediterranean Sea was simulated with five chemistry transport models. An evaluation of the results for NO2 and O3 air concentrations and dry deposition is presented. Emission data, modeled year and domain were the same. Model run outputs were compared to measurements from background stations. We focused on comparing model outputs regarding the concentration of regulatory pollutants and the relative ship impact on total air pollution concentrations.
Ronny Badeke, Volker Matthias, Matthias Karl, and David Grawe
Geosci. Model Dev., 15, 4077–4103, https://doi.org/10.5194/gmd-15-4077-2022, https://doi.org/10.5194/gmd-15-4077-2022, 2022
Short summary
Short summary
For air quality modeling studies, it is very important to distribute pollutants correctly into the model system. This has not yet been done for shipping pollution in great detail. We studied the effects of different vertical distributions of shipping pollutants on the urban air quality and derived advanced formulas for it. These formulas take weather conditions and ship-specific parameters like the exhaust gas temperature into account.
Sara Jutterström, Filip Moldan, Jana Moldanová, Matthias Karl, Volker Matthias, and Maximilian Posch
Atmos. Chem. Phys., 21, 15827–15845, https://doi.org/10.5194/acp-21-15827-2021, https://doi.org/10.5194/acp-21-15827-2021, 2021
Short summary
Short summary
For the Baltic Sea countries, shipping emissions are an important source of air pollution. This study investigates the contribution of shipping emissions to the acidification and eutrophication of soils and freshwater within the airshed of the Baltic Sea in the years 2012 and 2040. The implementation of emission control areas and improving energy efficiency significantly reduces the negative impact on ecosystems expressed as a decrease in the exceedance of critical loads for sulfur and nitrogen.
Volker Matthias, Markus Quante, Jan A. Arndt, Ronny Badeke, Lea Fink, Ronny Petrik, Josefine Feldner, Daniel Schwarzkopf, Eliza-Maria Link, Martin O. P. Ramacher, and Ralf Wedemann
Atmos. Chem. Phys., 21, 13931–13971, https://doi.org/10.5194/acp-21-13931-2021, https://doi.org/10.5194/acp-21-13931-2021, 2021
Short summary
Short summary
COVID-19 lockdown measures in spring 2020 led to cleaner air in central Europe. Densely populated areas benefitted mainly from largely reduced NO2 concentrations, while rural areas experienced lower reductions in NO2 but also lower ozone concentrations. Very low particulate matter (PM) concentrations in parts of Europe were not an effect of lockdown measures. Model simulations show that modified weather conditions are more significant for ozone and PM than severe traffic emission reductions.
Martin O. P. Ramacher, Lin Tang, Jana Moldanová, Volker Matthias, Matthias Karl, Erik Fridell, and Lasse Johansson
Atmos. Chem. Phys., 20, 10667–10686, https://doi.org/10.5194/acp-20-10667-2020, https://doi.org/10.5194/acp-20-10667-2020, 2020
Short summary
Short summary
The effects of shipping emissions on air quality and health in the harbour city of Gothenburg were simulated for different scenarios for the year 2040 with coupled regional and city-scale chemistry transport models to evaluate the impact of regional emission regulations and onshore electricity for ships at berth. The results show that contributions of shipping to exposure and associated health impacts from particulate matter and NO2 decrease significantly compared to 2012 in all scenarios.
Cited articles
Affad, E., Saadeddine, S., Assou, M., and Sbaibi, A.: Effect of the relative
humidity on an industrial plume behavior, Glob. NEST J., 8, 297–305,
https://doi.org/10.30955/gnj.000294, 2006.
Aksoyoglu, S., Baltensperger, U., and Prévôt, A. S. H.: Contribution of ship emissions to the concentration and deposition of air pollutants in Europe, Atmos. Chem. Phys., 16, 1895–1906, https://doi.org/10.5194/acp-16-1895-2016, 2016.
Aulinger, A., Matthias, V., Zeretzke, M., Bieser, J., Quante, M., and Backes, A.: The impact of shipping emissions on air pollution in the greater North Sea region – Part 1: Current emissions and concentrations, Atmos. Chem. Phys., 16, 739–758, https://doi.org/10.5194/acp-16-739-2016, 2016.
Bai, S., Wen, Y., He, L., Liu, Y., Zhang, Y., Yu, Q., and Ma, W.:
Single-Vessel Plume Dispersion Simulation: Method and a Case Study Using
CALPUFF in the Yantian Port Area, Shenzhen (China), Int. J. Env. Res.
Pub. He., 17, 1–29, https://doi.org/10.3390/ijerph17217831, 2020.
Barregard, L., Molnár, P., Jonson, J. E., and Stockfelt, L.: Impact on
population health of baltic shipping emissions, Int. J. Env. Res. Pub.
He., 16, 1954, https://doi.org/10.3390/ijerph16111954, 2019.
Bieser, J., Aulinger, A., Matthias, V., Quante, M., and van der Gon, H. A. C.
D.: Vertical emission profiles for Europe based on plume rise calculations,
Environ. Pollut., 159, 2935–2946, https://doi.org/10.1016/j.envpol.2011.04.030,
2011.
Brandt, J., Silver, J. D., Christensen, J. H., Andersen, M. S., Bønløkke, J. H., Sigsgaard, T., Geels, C., Gross, A., Hansen, A. B., Hansen, K. M., Hedegaard, G. B., Kaas, E., and Frohn, L. M.: Assessment of past, present and future health-cost externalities of air pollution in Europe and the contribution from international ship traffic using the EVA model system, Atmos. Chem. Phys., 13, 7747–7764, https://doi.org/10.5194/acp-13-7747-2013, 2013.
Briggs, G. A.: Plume rise predictions, Lect. Air Pollut. Environ. Impact
Anal., 59–111, https://doi.org/10.1007/978-1-935704-23-2_3, 1982.
Broome, R. A., Cope, M. E., Goldsworthy, B., Goldsworthy, L., Emmerson, K.,
Jegasothy, E., and Morgan, G. G.: The mortality effect of ship-related fine
particulate matter in the Sydney greater metropolitan region of NSW,
Australia, Environ. Int., 87, 85–93, https://doi.org/10.1016/j.envint.2015.11.012,
2016.
Brunner, D., Kuhlmann, G., Marshall, J., Clément, V., Fuhrer, O., Broquet, G., Löscher, A., and Meijer, Y.: Accounting for the vertical distribution of emissions in atmospheric CO2 simulations, Atmos. Chem. Phys., 19, 4541–4559, https://doi.org/10.5194/acp-19-4541-2019, 2019.
CAT: Marine Power Systems, available at: https://www.cat.com/en_GB/products/new/power-systems/marine-power-systems.html, last access: 24
July 2020.
Chosson, F., Paoli, R., and Cuenot, B.: Ship plume dispersion rates in convective boundary layers for chemistry models, Atmos. Chem. Phys., 8, 4841–4853, https://doi.org/10.5194/acp-8-4841-2008, 2008.
Corbett, J. J., Winebrake, J. J., Green, E. H., Kasibhatla, P., Eyring, V.,
and Lauer, A.: Mortality from ship emissions: A global assessment, Environ.
Sci. Technol., 41, 8512–8518, https://doi.org/10.1021/es071686z, 2007.
Eyring, V., Isaksen, I. S. A., Berntsen, T., Collins, W. J., Corbett, J. J.,
Endresen, O., Grainger, R. G., Moldanova, J., Schlager, H., and Stevenson, D.
S.: Transport impacts on atmosphere and climate: Shipping, Atmos. Environ.,
44, 4735–4771, https://doi.org/10.1016/j.atmosenv.2009.04.059, 2010.
Grawe, D., Schlünzen, K. H., and Pascheke, F.: Comparison of results of
an obstacle resolving microscale model with wind tunnel data, Atmos.
Environ., 79, 495–509, https://doi.org/10.1016/j.atmosenv.2013.06.039, 2013.
Hanna, S. R., Schulman, L. L., Paine, R. J., Pleim, J. E., and Baer, M.:
Development and evaluation of the offshore and coastal dispersion model, J.
Air Pollut. Control Assoc., 35, 1039–1047,
https://doi.org/10.1080/00022470.1985.10466003, 1985.
Hulskotte, J. H. J. and Denier van der Gon, H. A. C.: Fuel consumption and
associated emissions from seagoing ships at berth derived from an on-board
survey, Atmos. Environ., 44, 1229–1236, https://doi.org/10.1016/j.atmosenv.2009.10.018,
2010.
Huszar, P., Cariolle, D., Paoli, R., Halenka, T., Belda, M., Schlager, H.,
Miksovsky, J. and Pisoft, P.: Modeling the regional impact of ship emissions
on NOx and ozone levels over the Eastern Atlantic and Western Europe using
ship plume parameterization, Atmos. Chem. Phys., 10, 6645–6660,
https://doi.org/10.5194/acp-10-6645-2010, 2010.
ICDC: Hamburg Boundary Layer Measurement Tower, available at: https://icdc.cen.uni-hamburg.de/en/weathermast-hamburg.html, last
access: 24 July 2020.
IMO: Sulphur oxides (SOx) and Particulate Matter (PM) – Regulation 14, available at: https://www.imo.org/en/OurWork/Environment/Pages/Sulphur-oxides-(SOx)-%E2%80%93-Regulation-14.aspx, last access: 13 April 2021.
Jalkanen, J.-P., Brink, A., Kalli, J., Pettersson, H., Kukkonen, J., and Stipa, T.: A modelling system for the exhaust emissions of marine traffic and its application in the Baltic Sea area, Atmos. Chem. Phys., 9, 9209–9223, https://doi.org/10.5194/acp-9-9209-2009, 2009.
Jalkanen, J.-P., Johansson, L., Kukkonen, J., Brink, A., Kalli, J., and Stipa, T.: Extension of an assessment model of ship traffic exhaust emissions for particulate matter and carbon monoxide, Atmos. Chem. Phys., 12, 2641–2659, https://doi.org/10.5194/acp-12-2641-2012, 2012.
Janicke, U. and Janicke, L.: A three-dimensional plume rise model for dry
and wet plumes, Atmos. Environ., 35, 877–890,
https://doi.org/10.1016/S1352-2310(00)00372-1, 2001.
Johansson, L., Jalkanen, J. P., and Kukkonen, J.: Global assessment of
shipping emissions in 2015 on a high spatial and temporal resolution, Atmos.
Environ., 167, 403–415, https://doi.org/10.1016/j.atmosenv.2017.08.042, 2017.
Karl, M., Bieser, J., Geyer, B., Matthias, V., Jalkanen, J.-P., Johansson, L., and Fridell, E.: Impact of a nitrogen emission control area (NECA) on the future air quality and nitrogen deposition to seawater in the Baltic Sea region, Atmos. Chem. Phys., 19, 1721–1752, https://doi.org/10.5194/acp-19-1721-2019, 2019.
Lee, J. H. W. and Cheung, V.: Generalized lagrangian model for buoyant jets
in current, J. Environ. Eng., 116, 1085–1106,
https://doi.org/10.1061/(ASCE)0733-9372(1990)116:6(1085), 1990.
Lin, H., Tao, J., Qian, Z. (Min), Ruan, Z., Xu, Y., Hang, J., Xu, X., Liu,
T., Guo, Y., Zeng, W., Xiao, J., Guo, L., Li, X., and Ma, W.: Shipping
pollution emission associated with increased cardiovascular mortality: A
time series study in Guangzhou, China, Environ. Pollut., 241, 862–868,
https://doi.org/10.1016/j.envpol.2018.06.027, 2018.
Liu, H., Fu, M., Jin, X., Shang, Y., Shindell, D., Faluvegi, G., Shindell,
C. and He, K.: Health and climate impacts of ocean-going vessels in East
Asia, Nat. Clim. Change, 6, 1037–1041, https://doi.org/10.1038/nclimate3083, 2016.
MAN: Two-stroke project guides, available at: https://marine.man-es.com/two-stroke/project-guides, last access: 24
July 2020.
Matthias, V., Aulinger, A., Backes, A., Bieser, J., Geyer, B., Quante, M., and Zeretzke, M.: The impact of shipping emissions on air pollution in the greater North Sea region – Part 2: Scenarios for 2030, Atmos. Chem. Phys., 16, 759–776, https://doi.org/10.5194/acp-16-759-2016, 2016.
Matthias, V., Arndt, J. A., Aulinger, A., Bieser, J., Denier van der Gon,
H., Kranenburg, R., Kuenen, J., Neumann, D., Pouliot, G. and Quante, M.:
Modeling emissions for three-dimensional atmospheric chemistry transport
models, J. Air Waste Manage., 68, 763–800,
https://doi.org/10.1080/10962247.2018.1424057, 2018.
Murena, F., Mocerino, L., Quaranta, F., and Toscano, D.: Impact on air
quality of cruise ship emissions in Naples, Italy, Atmos. Environ., 187,
70–83, https://doi.org/10.1016/j.atmosenv.2018.05.056, 2018.
Murphy, S., Agrawal, H., Sorooshian, A., Padró, L. T., Gates, H.,
Hersey, S., Welch, W. A., Jung, H., Miller, J. W., Cocker, D. R., Nenes, A.,
Jonsson, H. H., Flagan, R. C., and Seinfeld, J. H.: Comprehensive
simultaneous shipboard and airborne characterization of exhaust from a
modern container ship at sea, Environ. Sci. Technol., 43, 4626–4640,
https://doi.org/10.1021/es802413j, 2009.
Port of Hamburg: Vesseltypes, available at: https://www.hafen-hamburg.de/en/vessels/, last access: 24
July 2020.
Ramacher, M. O. P., Karl, M., Bieser, J., Jalkanen, J.-P., and Johansson, L.: Urban population exposure to NOx emissions from local shipping in three Baltic Sea harbour cities – a generic approach, Atmos. Chem. Phys., 19, 9153–9179, https://doi.org/10.5194/acp-19-9153-2019, 2019.
Salim, M. H., Schlünzen, K. H., Grawe, D., Boettcher, M., Gierisch, A. M. U., and Fock, B. H.: The microscale obstacle-resolving meteorological model MITRAS v2.0: model theory, Geosci. Model Dev., 11, 3427–3445, https://doi.org/10.5194/gmd-11-3427-2018, 2018.
Schatzmann, M.: An Integral Model of Plume Rise, Atmos. Environ., 13,
721–731, https://doi.org/10.1016/0004-6981(79)90202-6, 1979.
Schlünzen, K. H., Hinneburg, D., Knoth, O., Lambrecht, M., Leitl, B.,
López, S., Lüpkes, C., Panskus, H., Renner, E., Schatzmann, M.,
Schoenemeyer, T., Trepte, S., and Wolke, R.: Flow and transport in the
obstacle layer: First results of the micro-scale model MITRAS, J. Atmos.
Chem., 44, 113–130, https://doi.org/10.1023/A:1022420130032, 2003.
Schlünzen, K. H., Boettcher, M., Fock, B. H., Gierisch, A., Grawe, D.,
and Salim, M.: Scientific Documentation of the Multiscale Model System
M-SYS, MEMI Tech. Rep. 4, CEN, Univ. Hambg., 1–153, 2018.
Sofiev, M., Winebrake, J. J., Johansson, L., Carr, E. W., Prank, M., Soares,
J., Vira, J., Kouznetsov, R., Jalkanen, J. P., and Corbett, J. J.: Cleaner
fuels for ships provide public health benefits with climate tradeoffs, Nat.
Commun., 9, 1–12, https://doi.org/10.1038/s41467-017-02774-9, 2018.
Tzannatos, E.: Ship emissions and their externalities for Greece, Atmos.
Environ., 44, 2194–2202, https://doi.org/10.1016/j.atmosenv.2010.03.018, 2010.
United Nations Conference on Trade and Development: Review of maritime
transport 2019, United Nations, Geneva, available at:
https://unctad.org/en/Pages/Publications/Review-of-Maritime-Transport-(Series).aspx (last access: 13 April 2021),
2019.
Vesseltracker: Vessels, available at: https://www.vesseltracker.com/en/vessels.html, last access:
24 July 2020.
Vinken, G. C. M., Boersma, K. F., Jacob, D. J., and Meijer, E. W.: Accounting for non-linear chemistry of ship plumes in the GEOS-Chem global chemistry transport model, Atmos. Chem. Phys., 11, 11707–11722, https://doi.org/10.5194/acp-11-11707-2011, 2011.
von Glasow, R., Lawrence, M. G., Sander, R., and Crutzen, P. J.: Modeling the chemical effects of ship exhaust in the cloud-free marine boundary layer, Atmos. Chem. Phys., 3, 233–250, https://doi.org/10.5194/acp-3-233-2003, 2003.
Wang, C., Corbett, J. J., and Firestone, J.: Improving spatial representation
of global ship emissions inventories, Environ. Sci. Technol., 42, 193–199,
https://doi.org/10.1021/es0700799, 2008.
Wärtsilä: Diesel engines, available at:
https://www.wartsila.com/marine/build/engines-and-generating-sets/diesel-engines,
last access: 24 July 2020.
Zhang, Y., Feng, J., Liu, C., Zhao, J., Ma, W., Huang, C., An, J., Shen, Y.,
Fu, Q., Wang, S., Ding, D., Ge, W., Fung, F., Manokaran, K., Patton, A. P.,
Walker, K. D., and Kan, H.: Impacts of Shipping on Air PollutantEmissions,
Air Quality, and Health in the Yangtze River Delta and Shanghai, China
Special Report 22, Heal. Eff. Inst. Spec. Rep., 22, 1–78, 2019.
Short summary
This work aims to describe the physical distribution of ship exhaust gases in the near field, e.g., inside of a harbor. Results were calculated with a mathematical model for different meteorological and technical conditions. It has been shown that large vessels like cruise ships have a significant effect of up to 55 % downward movement of exhaust gas, as they can disturb the ground near wind circulation. This needs to be considered in urban air pollution studies.
This work aims to describe the physical distribution of ship exhaust gases in the near field,...
Altmetrics
Final-revised paper
Preprint