Articles | Volume 21, issue 6
https://doi.org/10.5194/acp-21-4899-2021
https://doi.org/10.5194/acp-21-4899-2021
Research article
 | 
30 Mar 2021
Research article |  | 30 Mar 2021

Observed trends in clouds and precipitation (1983–2009): implications for their cause(s)

Xiang Zhong, Shaw Chen Liu, Run Liu, Xinlu Wang, Jiajia Mo, and Yanzi Li

Related authors

FastCTM (v1.0): Atmospheric chemical transport modelling with a principle-informed neural network for air quality simulations
Baolei Lyu, Ran Huang, Xinlu Wang, Weiguo Wang, and Yongtao Hu
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-198,https://doi.org/10.5194/gmd-2024-198, 2024
Preprint under review for GMD
Short summary
What caused large ozone variabilities in three megacity clusters in eastern China during 2015–2020?
Tingting Hu, Yu Lin, Run Liu, Yuepeng Xu, Shanshan Ouyang, Boguang Wang, Yuanhang Zhang, and Shaw Chen Liu
Atmos. Chem. Phys., 24, 1607–1626, https://doi.org/10.5194/acp-24-1607-2024,https://doi.org/10.5194/acp-24-1607-2024, 2024
Short summary
What is the cause(s) of ozone trends in three megacity clusters in eastern China during 2015–2020?
Tingting Hu, Yu Lin, Run Liu, Yuepeng Xu, Boguang Wang, Yuanhang Zhang, and Shaw Chen Liu
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-781,https://doi.org/10.5194/acp-2022-781, 2023
Revised manuscript not accepted
Short summary
Contributions of meteorology and anthropogenic emissions to the trends in winter PM2.5 in eastern China 2013–2018
Yanxing Wu, Run Liu, Yanzi Li, Junjie Dong, Zhijiong Huang, Junyu Zheng, and Shaw Chen Liu
Atmos. Chem. Phys., 22, 11945–11955, https://doi.org/10.5194/acp-22-11945-2022,https://doi.org/10.5194/acp-22-11945-2022, 2022
Short summary
Impact of a subtropical high and a typhoon on a severe ozone pollution episode in the Pearl River Delta, China
Shanshan Ouyang, Tao Deng, Run Liu, Jingyang Chen, Guowen He, Jeremy Cheuk-Hin Leung, Nan Wang, and Shaw Chen Liu
Atmos. Chem. Phys., 22, 10751–10767, https://doi.org/10.5194/acp-22-10751-2022,https://doi.org/10.5194/acp-22-10751-2022, 2022
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Clouds and precipitation in the initial phase of marine cold-air outbreaks as observed by airborne remote sensing
Imke Schirmacher, Sabrina Schnitt, Marcus Klingebiel, Nina Maherndl, Benjamin Kirbus, André Ehrlich, Mario Mech, and Susanne Crewell
Atmos. Chem. Phys., 24, 12823–12842, https://doi.org/10.5194/acp-24-12823-2024,https://doi.org/10.5194/acp-24-12823-2024, 2024
Short summary
Estimating the snow density using collocated Parsivel and Micro-Rain Radar measurements: a preliminary study from ICE-POP 2017/2018
Wei-Yu Chang, Yung-Chuan Yang, Chen-Yu Hung, Kwonil Kim, Gyuwon Lee, and Ali Tokay
Atmos. Chem. Phys., 24, 11955–11979, https://doi.org/10.5194/acp-24-11955-2024,https://doi.org/10.5194/acp-24-11955-2024, 2024
Short summary
Technical note: On the ice microphysics of isolated thunderstorms and non-thunderstorms in southern China – a radar polarimetric perspective
Chuanhong Zhao, Yijun Zhang, Dong Zheng, Haoran Li, Sai Du, Xueyan Peng, Xiantong Liu, Pengguo Zhao, Jiafeng Zheng, and Juan Shi
Atmos. Chem. Phys., 24, 11637–11651, https://doi.org/10.5194/acp-24-11637-2024,https://doi.org/10.5194/acp-24-11637-2024, 2024
Short summary
Distinctive aerosol–cloud–precipitation interactions in marine boundary layer clouds from the ACE-ENA and SOCRATES aircraft field campaigns
Xiaojian Zheng, Xiquan Dong, Baike Xi, Timothy Logan, and Yuan Wang
Atmos. Chem. Phys., 24, 10323–10347, https://doi.org/10.5194/acp-24-10323-2024,https://doi.org/10.5194/acp-24-10323-2024, 2024
Short summary
Drivers of droplet formation in east Mediterranean orographic clouds
Romanos Foskinis, Ghislain Motos, Maria I. Gini, Olga Zografou, Kunfeng Gao, Stergios Vratolis, Konstantinos Granakis, Ville Vakkari, Kalliopi Violaki, Andreas Aktypis, Christos Kaltsonoudis, Zongbo Shi, Mika Komppula, Spyros N. Pandis, Konstantinos Eleftheriadis, Alexandros Papayannis, and Athanasios Nenes
Atmos. Chem. Phys., 24, 9827–9842, https://doi.org/10.5194/acp-24-9827-2024,https://doi.org/10.5194/acp-24-9827-2024, 2024
Short summary

Cited articles

Adler, R. F., Gu, G., Sapiano, M., Wang, J.-J., and Huffman, G. J.: Global precipitation: Means, variations and trends during the Satellite Era (1979–2014), Surv. Geophys., 38, 679–699, https://doi.org/10.1007/s10712-017-9416-4, 2017. 
Allen, M. R. and Ingram, W. J.: Constraints of future changes in climate and the hydrologic cycle, Nature, 419, 224–232, https://doi.org/10.1038/nature01092, 2002. 
Arkin, P. A. and Meisner, B. N.: The relationship between large-scale convective rainfall and cold cloud over the western hemisphere during 1982–84, Mon. Weather Rev., 115, 51–74, https://doi.org/10.1175/1520-0493(1987)115<0051:TRBLSC>2.0.CO;2, 1987. 
Bretherton, C. S., Widmann, M., Dymnikov, V. P., Wallace, J. M., and Bladé, I.: The effective number of spatial degrees of freedom of a time-varying field, J. Climate, 12, 1990–2009, https://doi.org/10.1175/1520-0442(1999)012<1990:TENOSD>2.0.CO;2, 1999. 
Chen, Y.-J., Hwang, Y.-T., Zelinka, M. D., and Zhou, C.: Distinct patterns of cloud changes associated with decadal variability and their contribution to observed cloud cover trends, J. Climate, 32, 7281–7301, https://doi.org/10.1175/JCLI-D-18-0443.1, 2019. 
Download
Short summary
The distributions of linear trends in total cloud cover and precipitation in 1983–2009 are both characterized by a broadening of the major ascending zone of Hadley circulation around the Maritime Continent. The broadening is driven primarily by the moisture–convection–latent-heat feedback cycle under global warming conditions. Contribution by other climate oscillations is secondary. The reduction of total cloud cover in China in 1957–2005 is driven by the same mechanism.
Altmetrics
Final-revised paper
Preprint