Articles | Volume 21, issue 5
Atmos. Chem. Phys., 21, 4039–4057, 2021
https://doi.org/10.5194/acp-21-4039-2021
Atmos. Chem. Phys., 21, 4039–4057, 2021
https://doi.org/10.5194/acp-21-4039-2021
Research article
17 Mar 2021
Research article | 17 Mar 2021

Identifying forecast uncertainties for biogenic gases in the Po Valley related to model configuration in EURAD-IM during PEGASOS 2012

Annika Vogel and Hendrik Elbern

Related authors

Efficient ensemble generation for uncertain correlated parameters in atmospheric chemical models: a case study for biogenic emissions from EURAD-IM version 5
Annika Vogel and Hendrik Elbern
Geosci. Model Dev., 14, 5583–5605, https://doi.org/10.5194/gmd-14-5583-2021,https://doi.org/10.5194/gmd-14-5583-2021, 2021
Short summary
Analyzing trace gas filaments in the Ex-UTLS by 4D-variational assimilation of airborne tomographic retrievals
Annika Vogel, Jörn Ungermann, and Hendrik Elbern
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-308,https://doi.org/10.5194/acp-2017-308, 2017
Revised manuscript has not been submitted
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Potential environmental impact of bromoform from Asparagopsis farming in Australia
Yue Jia, Birgit Quack, Robert D. Kinley, Ignacio Pisso, and Susann Tegtmeier
Atmos. Chem. Phys., 22, 7631–7646, https://doi.org/10.5194/acp-22-7631-2022,https://doi.org/10.5194/acp-22-7631-2022, 2022
Short summary
Satellite soil moisture data assimilation impacts on modeling weather variables and ozone in the southeastern US – Part 2: Sensitivity to dry-deposition parameterizations
Min Huang, James H. Crawford, Gregory R. Carmichael, Kevin W. Bowman, Sujay V. Kumar, and Colm Sweeney
Atmos. Chem. Phys., 22, 7461–7487, https://doi.org/10.5194/acp-22-7461-2022,https://doi.org/10.5194/acp-22-7461-2022, 2022
Short summary
The impacts of marine-emitted halogens on OH radicals in East Asia during summer
Shidong Fan and Ying Li
Atmos. Chem. Phys., 22, 7331–7351, https://doi.org/10.5194/acp-22-7331-2022,https://doi.org/10.5194/acp-22-7331-2022, 2022
Short summary
Impact of eastern and central Pacific El Niño on lower tropospheric ozone in China
Zhongjing Jiang and Jing Li
Atmos. Chem. Phys., 22, 7273–7285, https://doi.org/10.5194/acp-22-7273-2022,https://doi.org/10.5194/acp-22-7273-2022, 2022
Short summary
Contribution of Asian emissions to upper tropospheric CO over the remote Pacific
Linda Smoydzin and Peter Hoor
Atmos. Chem. Phys., 22, 7193–7206, https://doi.org/10.5194/acp-22-7193-2022,https://doi.org/10.5194/acp-22-7193-2022, 2022
Short summary

Cited articles

Anderson, R., Hardy, E. E., Roach, J. T., and Witmer, R. E.: A land use and land cover classification system for use with remote sensor data, Report, USGS Prof. Pap, 964, https://doi.org/10.3133/pp964, 1976. a
Arakawa, A. and Lamb, V.: Computational design of the basic dynamical processes of the UCLA general circulation model, Meth. Comput. Phys., 17, 173–265, 1977. a
Arneth, A., Monson, R. K., Schurgers, G., Niinemets, Ü., and Palmer, P. I.: Why are estimates of global terrestrial isoprene emissions so similar (and why is this not so for monoterpenes)?, Atmos. Chem. Phys., 8, 4605–4620, https://doi.org/10.5194/acp-8-4605-2008, 2008. a
Arneth, A., Schurgers, G., Lathiere, J., Duhl, T., Beerling, D. J., Hewitt, C. N., Martin, M., and Guenther, A.: Global terrestrial isoprene emission models: sensitivity to variability in climate and vegetation, Atmos. Chem. Phys., 11, 8037–8052, https://doi.org/10.5194/acp-11-8037-2011, 2011. a
Banks, R. F., Tiana-Alsina, J., Baldasano, J. M., Rocadenbosch, F., Papayannis, A., Solomos, S., and Tzanis, C. G.: Sensitivity of boundary-layer variables to PBL schemes in the WRF model based on surface meteorological observations, lidar, and radiosondes during the HygrA-CD campaign, Atmos. Res., 176, 185–201, https://doi.org/10.1016/j.atmosres.2016.02.024, 2016. a
Download
Short summary
Forecasts of biogenic trace gases highly depend on the model setup and input fields. This study identifies sources of related forecast uncertainties for biogenic gases. Exceptionally high differences in both biogenic emissions and pollutant transport in the Po Valley are identified to be caused by the representation of the land surface and boundary layer dynamics. Consequently, changes in the model configuration are shown to induce significantly different local concentrations of biogenic gases.
Altmetrics
Final-revised paper
Preprint