Articles | Volume 21, issue 24
https://doi.org/10.5194/acp-21-18519-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-18519-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Secondary ice production during the break-up of freezing water drops on impact with ice particles
Rachel L. James
CORRESPONDING AUTHOR
Department of Earth and Environmental Sciences, The University of Manchester, Manchester, UK
Vaughan T. J. Phillips
Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
Paul J. Connolly
Department of Earth and Environmental Sciences, The University of Manchester, Manchester, UK
Related authors
Rachel L. James, Jonathan Crosier, and Paul J. Connolly
Atmos. Chem. Phys., 23, 9099–9121, https://doi.org/10.5194/acp-23-9099-2023, https://doi.org/10.5194/acp-23-9099-2023, 2023
Short summary
Short summary
Secondary ice production (SIP) may significantly enhance the ice particle concentration in mixed-phase clouds. We present a systematic modelling study of secondary ice formation in idealised shallow convective clouds for various conditions. Our results suggest that the SIP mechanism of collisions of supercooled water drops with more massive ice particles may be a significant ice formation mechanism in shallow convective clouds outside the rime-splintering temperature range (−3 to −8 °C).
Jun-Ichi Yano, Vincent E. Larson, and Vaughan T. J. Phillips
Atmos. Chem. Phys., 25, 9357–9386, https://doi.org/10.5194/acp-25-9357-2025, https://doi.org/10.5194/acp-25-9357-2025, 2025
Short summary
Short summary
The distribution problems appear in atmospheric sciences at almost every corner when describing diverse processes. This paper presents a general formulation for addressing all these problems.
Mengyu Sun, Paul J. Connolly, Paul R. Field, Declan L. Finney, and Alan M. Blyth
EGUsphere, https://doi.org/10.5194/egusphere-2025-3158, https://doi.org/10.5194/egusphere-2025-3158, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We investigated how extra ice particles form inside tropical storm clouds and how they affect rainfall and sunlight reflection. By using a weather model, we found that these extra ice particles can change how clouds grow, reduce heat escaping to space, and slightly shift where rain falls. This helps improve how weather and climate models predict tropical storms.
Huihui Wu, Nicholas Marsden, Paul Connolly, Michael Flynn, Paul I. Williams, Declan Finney, Kezhen Hu, Graeme J. Nott, Navaneeth Thamban, Keith Bower, Alan Blyth, Martin Gallagher, and Hugh Coe
EGUsphere, https://doi.org/10.5194/egusphere-2025-2600, https://doi.org/10.5194/egusphere-2025-2600, 2025
Short summary
Short summary
Airborne observations over the Magdalena Mountains in New Mexico underscore the combined influence of meteorological conditions and aerosol characteristics on the development of deep-convective clouds under different flow regimes. Model-observation comparisons emphasize the critical role of aerosol entrainment in reproducing the observed broad cloud droplet spectra. This study provides valuable constraints for improving parameterizations of aerosol-cloud interactions in deep convective systems.
Declan L. Finney, Alan M. Blyth, Paul R. Field, Martin I. Daily, Benjamin J. Murray, Mengyu Sun, Paul J. Connolly, Zhiqiang Cui, and Steven Böing
EGUsphere, https://doi.org/10.5194/egusphere-2025-1227, https://doi.org/10.5194/egusphere-2025-1227, 2025
Short summary
Short summary
We present observation-informed modelling from the Deep Convective Microphysics Experiment to study how environmental conditions and cloud processes affect anvil cloud albedo and radiation. Aerosols influencing cloud droplets or influencing ice formation yield varying radiative effects. We introduce fingerprint metrics to discern these effects. Using detailed observations and modelling, we offer insights into high cloud radiative effects and feedbacks.
Omer Celebi, Andrew R. D. Smedley, Paul J. Connolly, and Ann R. Webb
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-200, https://doi.org/10.5194/amt-2024-200, 2025
Preprint under review for AMT
Short summary
Short summary
Ice crystals have a significant role in weather and climate, but their roughness is not measured which affects how ice crystals scatter sunlight. In our study, we have developed a new way of measuring roughness parameters of ice crystals. By growing crystals in laboratory conditions and creating replicas , we can image them under special imaging tools to measure small features on their surface. Results can be implemented in models to reduce uncertainties in understanding the atmosphere.
Freddy P. Paul, Martanda Gautam, Deepak Waman, Sachin Patade, Ushnanshu Dutta, Christoffer Pichler, Marcin Jackowicz-Korczynski, and Vaughan Phillips
EGUsphere, https://doi.org/10.5194/egusphere-2024-3800, https://doi.org/10.5194/egusphere-2024-3800, 2025
Preprint archived
Short summary
Short summary
This study shows observations of a key mechanism for initiation of ice particles in clouds with a chamber deployed on the top of a mountain during snowfall in winter. The mechanism involves the fragmentation of snow particles in collisions with denser rimed ice precipitation, namely "graupel" or "hail". The study shows how the fragmentation can be represented in atmospheric models. An improved formulation of the mechanism is proposed in light of our observations with the chamber.
Declan L. Finney, Alan M. Blyth, Martin Gallagher, Huihui Wu, Graeme J. Nott, Michael I. Biggerstaff, Richard G. Sonnenfeld, Martin Daily, Dan Walker, David Dufton, Keith Bower, Steven Böing, Thomas Choularton, Jonathan Crosier, James Groves, Paul R. Field, Hugh Coe, Benjamin J. Murray, Gary Lloyd, Nicholas A. Marsden, Michael Flynn, Kezhen Hu, Navaneeth M. Thamban, Paul I. Williams, Paul J. Connolly, James B. McQuaid, Joseph Robinson, Zhiqiang Cui, Ralph R. Burton, Gordon Carrie, Robert Moore, Steven J. Abel, Dave Tiddeman, and Graydon Aulich
Earth Syst. Sci. Data, 16, 2141–2163, https://doi.org/10.5194/essd-16-2141-2024, https://doi.org/10.5194/essd-16-2141-2024, 2024
Short summary
Short summary
The DCMEX (Deep Convective Microphysics Experiment) project undertook an aircraft- and ground-based measurement campaign of New Mexico deep convective clouds during July–August 2022. The campaign coordinated a broad range of instrumentation measuring aerosol, cloud physics, radar signals, thermodynamics, dynamics, electric fields, and weather. The project's objectives included the utilisation of these data with satellite observations to study the anvil cloud radiative effect.
Rachel L. James, Jonathan Crosier, and Paul J. Connolly
Atmos. Chem. Phys., 23, 9099–9121, https://doi.org/10.5194/acp-23-9099-2023, https://doi.org/10.5194/acp-23-9099-2023, 2023
Short summary
Short summary
Secondary ice production (SIP) may significantly enhance the ice particle concentration in mixed-phase clouds. We present a systematic modelling study of secondary ice formation in idealised shallow convective clouds for various conditions. Our results suggest that the SIP mechanism of collisions of supercooled water drops with more massive ice particles may be a significant ice formation mechanism in shallow convective clouds outside the rime-splintering temperature range (−3 to −8 °C).
Sachin Patade, Deepak Waman, Akash Deshmukh, Ashok Kumar Gupta, Arti Jadav, Vaughan T. J. Phillips, Aaron Bansemer, Jacob Carlin, and Alexander Ryzhkov
Atmos. Chem. Phys., 22, 12055–12075, https://doi.org/10.5194/acp-22-12055-2022, https://doi.org/10.5194/acp-22-12055-2022, 2022
Short summary
Short summary
This modeling study focuses on the role of multiple groups of primary biological aerosol particles as ice nuclei on cloud properties and precipitation. This was done by implementing a more realistic scheme for biological ice nucleating particles in the aerosol–cloud model. Results show that biological ice nucleating particles have a limited role in altering the ice phase and precipitation in deep convective clouds.
Jonas K. F. Jakobsson, Deepak B. Waman, Vaughan T. J. Phillips, and Thomas Bjerring Kristensen
Atmos. Chem. Phys., 22, 6717–6748, https://doi.org/10.5194/acp-22-6717-2022, https://doi.org/10.5194/acp-22-6717-2022, 2022
Short summary
Short summary
Long-lived cold-layer clouds at subzero temperatures are observed to be remarkably persistent in their generation of ice particles and snow precipitation. There is uncertainty about why this is so. This motivates the present lab study to observe the long-term ice-nucleating ability of aerosol samples from the real troposphere. Time dependence of their ice nucleation is observed to be weak in lab experiments exposing the samples to isothermal conditions for up to about 10 h.
Tommi Bergman, Risto Makkonen, Roland Schrödner, Erik Swietlicki, Vaughan T. J. Phillips, Philippe Le Sager, and Twan van Noije
Geosci. Model Dev., 15, 683–713, https://doi.org/10.5194/gmd-15-683-2022, https://doi.org/10.5194/gmd-15-683-2022, 2022
Short summary
Short summary
We describe in this paper the implementation of a process-based secondary organic aerosol and new particle formation scheme within the chemistry transport model TM5-MP version 1.2. The performance of the model simulations for the year 2010 is evaluated against in situ observations, ground-based remote sensing and satellite retrievals. Overall, the simulated aerosol fields are improved, although in some areas the model shows a decline in performance.
Vaughan T. J. Phillips, Jun-Ichi Yano, Akash Deshmukh, and Deepak Waman
Atmos. Chem. Phys., 21, 11941–11953, https://doi.org/10.5194/acp-21-11941-2021, https://doi.org/10.5194/acp-21-11941-2021, 2021
Short summary
Short summary
For decades, high concentrations of ice observed in precipitating mixed-phase clouds have created an enigma. Such concentrations are higher than can be explained by the action of aerosols or by the spontaneous freezing of most cloud droplets. The controversy has partly persisted due to the lack of laboratory experimentation in ice microphysics, especially regarding fragmentation of ice, a topic reviewed by a recent paper. Our comment attempts to clarify some issues with regards to that review.
Xi Zhao, Xiaohong Liu, Vaughan T. J. Phillips, and Sachin Patade
Atmos. Chem. Phys., 21, 5685–5703, https://doi.org/10.5194/acp-21-5685-2021, https://doi.org/10.5194/acp-21-5685-2021, 2021
Short summary
Short summary
Arctic mixed-phase clouds significantly influence the energy budget of the Arctic. We show that a climate model considering secondary ice production (SIP) can explain the observed cloud ice number concentrations, vertical distribution pattern, and probability density distribution of ice crystal number concentrations. The mixed-phase cloud occurrence and phase partitioning are also improved.
Jessica Slater, Juha Tonttila, Gordon McFiggans, Paul Connolly, Sami Romakkaniemi, Thomas Kühn, and Hugh Coe
Atmos. Chem. Phys., 20, 11893–11906, https://doi.org/10.5194/acp-20-11893-2020, https://doi.org/10.5194/acp-20-11893-2020, 2020
Short summary
Short summary
The feedback effect between aerosol particles, radiation and meteorology reduces turbulent motion and results in increased surface aerosol concentrations during Beijing haze. Observational analysis and regional modelling studies have examined the feedback effect but these studies are limited. In this work, we set up a high-resolution model for the Beijing environment to examine the sensitivity of the aerosol feedback effect to initial meteorological conditions and aerosol loading.
Cited articles
Alkezweeny, A. J.: Freezing of Supercooled Water Droplets due to Collision, J.
Appl. Meteorol. Clim., 8, 994–995,
https://doi.org/10.1175/1520-0450(1969)008<0994:FOSWDD>2.0.CO;2, 1969. a
Antonini, C., Amirfazli, A., and Marengo, M.: Drop impact and wettability: From
hydrophilic to superhydrophobic surfaces, Phys. Fluids, 24, 102104,
https://doi.org/10.1063/1.4757122, 2012. a
Blyth, A. M. and Latham, J.: Development of ice and precipitation in new
mexican summertime cumulus, Q. J. Roy. Meteor. Soc., 119, 91–120,
https://doi.org/10.1002/qj.49711950905, 1993. a
Blyth, A. M. and Latham, J.: A multi-thermal model of cumulus glaciation via
the Hallett–Mossop process, Q. J. Roy. Meteor. Soc., 123, 1185–1198,
https://doi.org/10.1002/qj.49712354104, 1997. a
Changnon, S. A.: Characteristics of Ice Storms in the United States, J. Appl.
Meteorol., 42, 630–639,
https://doi.org/10.1175/1520-0450(2003)042<0630:COISIT>2.0.CO;2, 2003. a
Crawford, I., Bower, K. N., Choularton, T. W., Dearden, C., Crosier, J., Westbrook, C., Capes, G., Coe, H., Connolly, P. J., Dorsey, J. R., Gallagher, M. W., Williams, P., Trembath, J., Cui, Z., and Blyth, A.: Ice formation and development in aged, wintertime cumulus over the UK: observations and modelling, Atmos. Chem. Phys., 12, 4963–4985, https://doi.org/10.5194/acp-12-4963-2012, 2012. a, b, c, d
Crosier, J., Bower, K. N., Choularton, T. W., Westbrook, C. D., Connolly, P. J., Cui, Z. Q., Crawford, I. P., Capes, G. L., Coe, H., Dorsey, J. R., Williams, P. I., Illingworth, A. J., Gallagher, M. W., and Blyth, A. M.: Observations of ice multiplication in a weakly convective cell embedded in supercooled mid-level stratus, Atmos. Chem. Phys., 11, 257–273, https://doi.org/10.5194/acp-11-257-2011, 2011. a
Czys, R. R.: Ice Initiation by Collision-Freezing in Warm-Based Cumuli, J.
Appl. Meteorol. Clim., 28, 1098–1104,
https://doi.org/10.1175/1520-0450(1989)028<1098:IIBCFI>2.0.CO;2, 1989. a
Dehaoui, A., Issenmann, B., and Caupin, F.: Viscosity of deeply supercooled
water and its coupling to molecular diffusion, P. Natl. Acad. Sci. USA,
112, 12020–12025, https://doi.org/10.1073/pnas.1508996112, 2015. a
Elsom, D.: Deaths and injuries caused by lightning in the United Kingdom:
analyses of two databases, Atmos. Res., 56, 325–334,
https://doi.org/10.1016/S0169-8095(00)00083-1, 2001. a
Field, P. R. and Heymsfield, A. J.: Importance of snow to global precipitation,
Geophys. Res. Lett., 42, 9512–9520,
https://doi.org/10.1002/2015GL065497, 2015. a
Field, P. R., Lawson, R. P., Brown, P. R. A., Lloyd, G., Westbrook, C.,
Moisseev, D., Miltenberger, A., Nenes, A., Blyth, A., Choularton, T.,
Connolly, P., Buehl, J., Crosier, J., Cui, Z., Dearden, C., DeMott, P.,
Flossmann, A., Heymsfield, A., Huang, Y., Kalesse, H., Kanji, Z. A., Korolev,
A., Kirchgaessner, A., Lasher-Trapp, S., Leisner, T., McFarquhar, G.,
Phillips, V., Stith, J., and Sullivan, S.: Secondary Ice Production: Current
State of the Science and Recommendations for the Future, Meteorol. Monogr.,
58, 7.1–7.20, https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0014.1, 2017. a
Gunn, R. and Kinzer, G. D.: The terminal velocity of fall for water droplets in
stagnant air, J. Atmos. Sci., 6, 243–248,
https://doi.org/10.1175/1520-0469(1949)006<0243:TTVOFF>2.0.CO;2, 1949. a
Hallett, J. and Mossop, S. C.: Production of secondary ice particles during
the riming process, Nature, 249, 26–28, https://doi.org/10.1038/249026a0, 1974. a
Harris-Hobbs, R. L. and Cooper, W. A.: Field Evidence Supporting Quantitative
Predictions of Secondary Ice Production Rates, J. Atmos. Sci., 44,
1071–1082, https://doi.org/10.1175/1520-0469(1987)044<1071:FESQPO>2.0.CO;2, 1987. a
Hobbs, P. V. and Rangno, A. L.: Ice particle concentrations in clouds, J.
Atmos. Sci., 42, 2523–2549,
https://doi.org/10.1175/1520-0469(1985)042<2523:IPCIC>2.0.CO;2, 1985. a
Hobbs, P. V. and Rangno, A. L.: Rapid development of high ice particle
concentrations in small polar maritime cumuliform clouds, J. Atmos. Sci.,
47, 2710–2722, https://doi.org/10.1175/1520-0469(1990)047<2710:RDOHIP>2.0.CO;2, 1990. a
Hrubý, J., Vinš, V., Mareš, R., Hykl, J., and Kalová, J.: Surface Tension
of Supercooled Water: No Inflection Point down to −25 ∘C, J. Phys. Chem.
Lett., 5, 425–428, https://doi.org/10.1021/jz402571a, 2014. a
Huang, Y., Blyth, A. M., Brown, P. R. A., Choularton, T. W., and Cui, Z.:
Factors controlling secondary ice production in cumulus clouds, Q. J. Roy.
Meteor. Soc., 143, 1021–1031, https://doi.org/10.1002/qj.2987, 2017. a
James, R., Phillips, V. T. J., and Connolly, P. J.: Secondary ice production during the break-up of freezing water drops on impact with ice particles, University of Manchester [data set], Collection, https://doi.org/10.48420/c.5476557.v1, 2021. a
Kanji, Z. A., Ladino, L. A., Wex, H., Boose, Y., Burkert-Kohn, M., Cziczo,
D. J., and Krämer, M.: Overview of Ice Nucleating Particles,
Meteorol. Monogr., 58, 1.1–1.33, https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0006.1,
2017. a
Korolev, A. and Leisner, T.: Review of experimental studies of secondary ice production, Atmos. Chem. Phys., 20, 11767–11797, https://doi.org/10.5194/acp-20-11767-2020, 2020. a, b, c
Korolev, A. and Sussman, B.: A Technique for Habit Classification of Cloud
Particles, J. Atmos. Ocean. Tech., 17, 1048–1057,
https://doi.org/10.1175/1520-0426(2000)017<1048:ATFHCO>2.0.CO;2, 2000. a
Ladino, L. A., Korolev, A., Heckman, I., Wolde, M., Fridlind, A. M., and
Ackerman, A. S.: On the role of ice-nucleating aerosol in the formation of
ice particles in tropical mesoscale convective systems, Geophys. Res. Lett.,
44, 1574–1582, https://doi.org/10.1002/2016GL072455, 2017. a
Lasher-Trapp, S., Leon, D. C., DeMott, P. J., Villanueva-Birriel, C. M.,
Johnson, A. V., Moser, D. H., Tully, C. S., and Wu, W.: A Multisensor
Investigation of Rime Splintering in Tropical Maritime Cumuli, J. Atmos.
Sci., 73, 2547–2564, https://doi.org/10.1175/JAS-D-15-0285.1, 2016. a
Latham, J. and Warwicker, R.: Charge transfer accompanying the splashing of
supercooled raindrops on hailstones, Q. J. Roy. Meteor. Soc., 106,
559–568, https://doi.org/10.1002/qj.49710644912, 1980. a
Lloyd, G., Choularton, T. W., Bower, K. N., Gallagher, M. W., Connolly, P. J., Flynn, M., Farrington, R., Crosier, J., Schlenczek, O., Fugal, J., and Henneberger, J.: The origins of ice crystals measured in mixed-phase clouds at the high-alpine site Jungfraujoch, Atmos. Chem. Phys., 15, 12953–12969, https://doi.org/10.5194/acp-15-12953-2015, 2015. a
Locatelli, J. D. and Hobbs, P. V.: Fall speeds and masses of solid
precipitation particles, J. Geophys. Res., 79, 2185–2197,
https://doi.org/10.1029/JC079i015p02185, 1974. a
Macklin, W. C. and Payne, G. S.: A theoretical study of the ice accretion
process, Q. J. Roy. Meteor. Soc., 93, 195–213,
https://doi.org/10.1002/qj.49709339606, 1967. a
Mossop, S. C.: Some Factors Governing Ice Particle Multiplication in Cumulus
Clouds, J. Atmos. Sci., 35, 2033–2037,
https://doi.org/10.1175/1520-0469(1978)035<2033:SFGIPM>2.0.CO;2, 1978. a
Mossop, S. C. and Hallett, J.: Ice Crystal Concentration in Cumulus Clouds:
Influence of the Drop Spectrum, Science, 186, 632–634,
https://doi.org/10.1126/science.186.4164.632, 1974. a
Phillips, V. T., Patade, S., Gutierrez, J., and Bansemer, A.: Secondary Ice
Production by Fragmentation of Freezing Drops: Formulation and Theory, J.
Atmos. Sci., 76, 3031–3070, https://doi.org/10.1175/JAS-D-17-0190.1, 2018. a, b, c
Phillips, V. T. J., Blyth, A. M., Brown, P. R. A., Choularton, T. W., and
Latham, J.: The glaciation of a cumulus cloud over New Mexico, Q. J. Roy.
Meteor. Soc., 127, 1513–1534,
https://doi.org/10.1002/qj.49712757503, 2001. a
Phillips, V. T. J., Andronache, C., Sherwood, S. C., Bansemer, A., Conant,
W. C., Demott, P. J., Flagan, R. C., Heymsfield, A., Jonsson, H., Poellot,
M., Rissman, T. A., Seinfeld, J. H., Vanreken, T., Varutbangkul, V., and
Wilson, J. C.: Anvil glaciation in a deep cumulus updraught over Florida
simulated with the Explicit Microphysics Model. I: Impact of various
nucleation processes, Q. J. Roy. Meteor. Soc., 131, 2019–2046,
https://doi.org/10.1256/qj.04.85, 2005. a
Pinsky, M. and Khain, A.: Some effects of cloud turbulence on water–ice and
ice–ice collisions, Atmos. Res., 47–48, 69–86,
https://doi.org/10.1016/S0169-8095(98)00041-6, 1998. a
Pruppacher, H. R.: On the growth of ice crystals in supercooled water and aqueous solution drops, Pure Appl. Geophys., 68, 186–195, https://doi.org/10.1007/BF00874894, 1967. a, b
Púčik, T., Castellano, C., Groenemeijer, P., Kühne, T., Rädler, A. T.,
Antonescu, B., and Faust, E.: Large Hail Incidence and Its Economic and
Societal Impacts across Europe, Mon. Weather Rev., 147, 3901–3916,
https://doi.org/10.1175/MWR-D-19-0204.1, 2019. a
Rangno, A. L. and Hobbs, P. V.: Ice particles in stratiform clouds in the
Arctic and possible mechanisms for the production of high ice
concentrations, J. Geophys. Res., 106, 15065–15075,
https://doi.org/10.1029/2000JD900286, 2001. a
Roisman, I. V.: Inertia dominated drop collisions. II. An analytical solution
of the Navier–Stokes equations for a spreading viscous film, Phys. Fluids,
21, 052104, https://doi.org/10.1063/1.3129283, 2009. a, b
Rozhkov, A., Prunet-Foch, B., and Vignes-Adler, M.: Impact of water drops on
small targets, Phys. Fluids, 14, 3485–3501, https://doi.org/10.1063/1.1502663, 2002. a, b
Snoeijer, J. H. and Brunet, P.: Pointy ice-drops: How water freezes into a
singular shape, Am. J. Phys., 80, 764–771, https://doi.org/10.1119/1.4726201, 2012.
a
Taylor, J. W., Choularton, T. W., Blyth, A. M., Liu, Z., Bower, K. N., Crosier, J., Gallagher, M. W., Williams, P. I., Dorsey, J. R., Flynn, M. J., Bennett, L. J., Huang, Y., French, J., Korolev, A., and Brown, P. R. A.: Observations of cloud microphysics and ice formation during COPE, Atmos. Chem. Phys., 16, 799–826, https://doi.org/10.5194/acp-16-799-2016, 2016. a, b
Thoroddsen, S. T., Takehara, K., and Etoh, T. G.: Micro-splashing by drop
impacts, J. Fluid Mech., 706, 560–570, https://doi.org/10.1017/jfm.2012.281, 2012. a
Villermaux, E. and Bossa, B.: Drop fragmentation on impact, J. Fluid Mech.,
668, 412–435, https://doi.org/10.1017/S002211201000474X, 2011. a, b
Westbrook, C. D. and Illingworth, A. J.: The formation of ice in a long-lived
supercooled layer cloud, Q. J. Roy. Meteor. Soc., 139, 2209–2221,
https://doi.org/10.1002/qj.2096, 2013. a
Zhang, H., Zhang, X., Yi, X., He, F., Niu, F., and Hao, P.: Asymmetric splash
and breakup of drops impacting on cylindrical superhydrophobic surfaces,
Phys. Fluids, 32, 122108, https://doi.org/10.1063/5.0032910, 2020. a, b
Short summary
Secondary ice production (SIP) plays an important role in ice formation within mixed-phase clouds. We present a laboratory investigation of a potentially new SIP mechanism involving the collisions of supercooled water drops with ice particles. At impact, the supercooled water drop fragments form smaller secondary drops. Approximately 30 % of the secondary drops formed during the retraction phase of the supercooled water drop impact freeze over a temperature range of −4 °C to −12 °C.
Secondary ice production (SIP) plays an important role in ice formation within mixed-phase...
Altmetrics
Final-revised paper
Preprint