Articles | Volume 21, issue 24
https://doi.org/10.5194/acp-21-18519-2021
https://doi.org/10.5194/acp-21-18519-2021
Research article
 | Highlight paper
 | 
21 Dec 2021
Research article | Highlight paper |  | 21 Dec 2021

Secondary ice production during the break-up of freezing water drops on impact with ice particles

Rachel L. James, Vaughan T. J. Phillips, and Paul J. Connolly

Related authors

A bin microphysics parcel model investigation of secondary ice formation in an idealised shallow convective cloud
Rachel L. James, Jonathan Crosier, and Paul J. Connolly
Atmos. Chem. Phys., 23, 9099–9121, https://doi.org/10.5194/acp-23-9099-2023,https://doi.org/10.5194/acp-23-9099-2023, 2023
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Secondary Ice Production – No Evidence of Efficient Rime-Splintering Mechanism
Johanna S. Seidel, Alexei Kiselev, Alice Keinert, Frank Stratmann, Thomas Leisner, and Susan Hartmann
EGUsphere, https://doi.org/10.5194/egusphere-2023-2891,https://doi.org/10.5194/egusphere-2023-2891, 2023
Short summary
Fragmentation of ice particles: laboratory experiments on graupel–graupel and graupel–snowflake collisions
Pierre Grzegorczyk, Sudha Yadav, Florian Zanger, Alexander Theis, Subir K. Mitra, Stephan Borrmann, and Miklós Szakáll
Atmos. Chem. Phys., 23, 13505–13521, https://doi.org/10.5194/acp-23-13505-2023,https://doi.org/10.5194/acp-23-13505-2023, 2023
Short summary
Molecular simulations reveal that heterogeneous ice nucleation occurs at higher temperatures in water under capillary tension
Elise Rosky, Will Cantrell, Tianshu Li, Issei Nakamura, and Raymond A. Shaw
Atmos. Chem. Phys., 23, 10625–10642, https://doi.org/10.5194/acp-23-10625-2023,https://doi.org/10.5194/acp-23-10625-2023, 2023
Short summary
Measurement of the collision rate coefficients between atmospheric ions and multiply charged aerosol particles in the CERN CLOUD chamber
Joschka Pfeifer, Naser G. A. Mahfouz, Benjamin C. Schulze, Serge Mathot, Dominik Stolzenburg, Rima Baalbaki, Zoé Brasseur, Lucia Caudillo, Lubna Dada, Manuel Granzin, Xu-Cheng He, Houssni Lamkaddam, Brandon Lopez, Vladimir Makhmutov, Ruby Marten, Bernhard Mentler, Tatjana Müller, Antti Onnela, Maxim Philippov, Ana A. Piedehierro, Birte Rörup, Meredith Schervish, Ping Tian, Nsikanabasi S. Umo, Dongyu S. Wang, Mingyi Wang, Stefan K. Weber, André Welti, Yusheng Wu, Marcel Zauner-Wieczorek, Antonio Amorim, Imad El Haddad, Markku Kulmala, Katrianne Lehtipalo, Tuukka Petäjä, António Tomé, Sander Mirme, Hanna E. Manninen, Neil M. Donahue, Richard C. Flagan, Andreas Kürten, Joachim Curtius, and Jasper Kirkby
Atmos. Chem. Phys., 23, 6703–6718, https://doi.org/10.5194/acp-23-6703-2023,https://doi.org/10.5194/acp-23-6703-2023, 2023
Short summary
Re-evaluating cloud chamber constraints on depositional ice growth in cirrus clouds – Part 1: Model description and sensitivity tests
Kara D. Lamb, Jerry Y. Harrington, Benjamin W. Clouser, Elisabeth J. Moyer, Laszlo Sarkozy, Volker Ebert, Ottmar Möhler, and Harald Saathoff
Atmos. Chem. Phys., 23, 6043–6064, https://doi.org/10.5194/acp-23-6043-2023,https://doi.org/10.5194/acp-23-6043-2023, 2023
Short summary

Cited articles

Alkezweeny, A. J.: Freezing of Supercooled Water Droplets due to Collision, J. Appl. Meteorol. Clim., 8, 994–995, https://doi.org/10.1175/1520-0450(1969)008<0994:FOSWDD>2.0.CO;2, 1969. a
Antonini, C., Amirfazli, A., and Marengo, M.: Drop impact and wettability: From hydrophilic to superhydrophobic surfaces, Phys. Fluids, 24, 102104, https://doi.org/10.1063/1.4757122, 2012. a
Blyth, A. M. and Latham, J.: Development of ice and precipitation in new mexican summertime cumulus, Q. J. Roy. Meteor. Soc., 119, 91–120, https://doi.org/10.1002/qj.49711950905, 1993. a
Blyth, A. M. and Latham, J.: A multi-thermal model of cumulus glaciation via the Hallett–Mossop process, Q. J. Roy. Meteor. Soc., 123, 1185–1198, https://doi.org/10.1002/qj.49712354104, 1997. a
Changnon, S. A.: Characteristics of Ice Storms in the United States, J. Appl. Meteorol., 42, 630–639, https://doi.org/10.1175/1520-0450(2003)042<0630:COISIT>2.0.CO;2, 2003. a
Download
Short summary
Secondary ice production (SIP) plays an important role in ice formation within mixed-phase clouds. We present a laboratory investigation of a potentially new SIP mechanism involving the collisions of supercooled water drops with ice particles. At impact, the supercooled water drop fragments form smaller secondary drops. Approximately 30 % of the secondary drops formed during the retraction phase of the supercooled water drop impact freeze over a temperature range of −4 °C to −12 °C.
Altmetrics
Final-revised paper
Preprint