Articles | Volume 21, issue 23
https://doi.org/10.5194/acp-21-18087-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-18087-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Measurement report: High contributions of halocarbon and aromatic compounds to atmospheric volatile organic compounds in an industrial area
Ahsan Mozaffar
Yale-NUIST Center on Atmospheric Environment, International Joint Laboratory on Climate and Environment Change, Nanjing University of
Information Science and Technology, Nanjing 210044, China
Key Laboratory Meteorological Disaster, Ministry of Education and Collaborative Innovation Center on Forecast and Evaluation of Meteorological
Disaster, Nanjing University of Information Science and Technology Nanjing
210044, China
Jiangsu Provincial Key Laboratory of Agricultural Meteorology, College of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
Yale-NUIST Center on Atmospheric Environment, International Joint Laboratory on Climate and Environment Change, Nanjing University of
Information Science and Technology, Nanjing 210044, China
Key Laboratory Meteorological Disaster, Ministry of Education and Collaborative Innovation Center on Forecast and Evaluation of Meteorological
Disaster, Nanjing University of Information Science and Technology Nanjing
210044, China
Jiangsu Provincial Key Laboratory of Agricultural Meteorology, College of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
Yu-Chi Lin
Yale-NUIST Center on Atmospheric Environment, International Joint Laboratory on Climate and Environment Change, Nanjing University of
Information Science and Technology, Nanjing 210044, China
Key Laboratory Meteorological Disaster, Ministry of Education and Collaborative Innovation Center on Forecast and Evaluation of Meteorological
Disaster, Nanjing University of Information Science and Technology Nanjing
210044, China
Jiangsu Provincial Key Laboratory of Agricultural Meteorology, College of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
Feng Xie
Yale-NUIST Center on Atmospheric Environment, International Joint Laboratory on Climate and Environment Change, Nanjing University of
Information Science and Technology, Nanjing 210044, China
Key Laboratory Meteorological Disaster, Ministry of Education and Collaborative Innovation Center on Forecast and Evaluation of Meteorological
Disaster, Nanjing University of Information Science and Technology Nanjing
210044, China
Jiangsu Provincial Key Laboratory of Agricultural Meteorology, College of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
Mei-Yi Fan
Yale-NUIST Center on Atmospheric Environment, International Joint Laboratory on Climate and Environment Change, Nanjing University of
Information Science and Technology, Nanjing 210044, China
Key Laboratory Meteorological Disaster, Ministry of Education and Collaborative Innovation Center on Forecast and Evaluation of Meteorological
Disaster, Nanjing University of Information Science and Technology Nanjing
210044, China
Jiangsu Provincial Key Laboratory of Agricultural Meteorology, College of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
Fang Cao
Yale-NUIST Center on Atmospheric Environment, International Joint Laboratory on Climate and Environment Change, Nanjing University of
Information Science and Technology, Nanjing 210044, China
Key Laboratory Meteorological Disaster, Ministry of Education and Collaborative Innovation Center on Forecast and Evaluation of Meteorological
Disaster, Nanjing University of Information Science and Technology Nanjing
210044, China
Jiangsu Provincial Key Laboratory of Agricultural Meteorology, College of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
Related authors
No articles found.
Rongshuang Xu, Yu-Chi Lin, Siyu Bian, Feng Xie, and Yan-Lin Zhang
Atmos. Chem. Phys., 25, 12721–12735, https://doi.org/10.5194/acp-25-12721-2025, https://doi.org/10.5194/acp-25-12721-2025, 2025
Short summary
Short summary
Levels of hydroxymethanesulfonate (HMS) in a continental city and, for the first time, a marine atmosphere are reported. The effect of aerosol ionic strength (IS) on HMS formation was quantified; it first rises with increasing IS and then peaks at 4 mol kg−1 before declining. Given the IS range of marine (2–6) and urban (6–20 mol kg−1) aerosols and the clearly negative correlation between humidity and IS, moderate IS levels in humid conditions may notably boost ambient HMS formation.
Xueqin Zheng, Junwen Liu, Nima Chuduo, Bian Ba, Pengfei Yu, Phu Drolgar, Fang Cao, and Yanlin Zhang
Atmos. Chem. Phys., 25, 12451–12465, https://doi.org/10.5194/acp-25-12451-2025, https://doi.org/10.5194/acp-25-12451-2025, 2025
Short summary
Short summary
In this study, we present the first report on the annual variation of stable oxygen isotope anomalies in nitrate (NO3−) collected from the urban area of Lhasa, on the Tibetan Plateau, China. Using a Bayesian isotope mixture model, we found that the relative contribution of the NO3 + volatile organic compound (VOC) pathway to NO3− formation in spring in Lhasa was several times higher than that in urban cities, highlighting the significant influence of VOCs transported from outside the Tibetan Plateau.
Abudurexiati Abulimiti, Yanlin Zhang, Mingyuan Yu, Yihang Hong, Yu-Chi Lin, Chaman Gul, and Fang Cao
Atmos. Chem. Phys., 25, 6161–6178, https://doi.org/10.5194/acp-25-6161-2025, https://doi.org/10.5194/acp-25-6161-2025, 2025
Short summary
Short summary
To improve air quality, the Chinese government has implemented strict clean-air measures. We explored how black carbon (BC) responded to these measures and found that a reduction in liquid fuel use was the main factor driving a decrease in BC levels. Additionally, meteorological factors also played a significant role in the long-term trends of BC. These factors should be considered in future emission reduction policies to further enhance air quality improvements.
Mingjie Kang, Mengying Bao, Wenhuai Song, Aduburexiati Abulimiti, Changliu Wu, Fang Cao, Sönke Szidat, and Yanlin Zhang
Atmos. Chem. Phys., 25, 73–91, https://doi.org/10.5194/acp-25-73-2025, https://doi.org/10.5194/acp-25-73-2025, 2025
Short summary
Short summary
Reports on molecular-level knowledge of high-temporal-resolution particulate matter ≤2.5 µm in diameter (PM2.5) on hazy days are limited. We investigated various PM2.5 species and their sources. The results show biomass burning (BB) was the main source of organic carbon. Moreover, BB enhanced fungal spore emissions and secondary aerosol formation. The contribution of non-fossil sources increased with increasing haze pollution, suggesting BB may be an important driver of haze events in winter.
Tong Sha, Siyu Yang, Qingcai Chen, Liangqing Li, Xiaoyan Ma, Yan-Lin Zhang, Zhaozhong Feng, K. Folkert Boersma, and Jun Wang
Atmos. Chem. Phys., 24, 8441–8455, https://doi.org/10.5194/acp-24-8441-2024, https://doi.org/10.5194/acp-24-8441-2024, 2024
Short summary
Short summary
Using an updated soil reactive nitrogen emission scheme in the Unified Inputs for Weather Research and Forecasting coupled with Chemistry (UI-WRF-Chem) model, we investigate the role of soil NO and HONO (Nr) emissions in air quality and temperature in North China. Contributions of soil Nr emissions to O3 and secondary pollutants are revealed, exceeding effects of soil NOx or HONO emission. Soil Nr emissions play an important role in mitigating O3 pollution and addressing climate change.
Mengying Bao, Yan-Lin Zhang, Fang Cao, Yihang Hong, Yu-Chi Lin, Mingyuan Yu, Hongxing Jiang, Zhineng Cheng, Rongshuang Xu, and Xiaoying Yang
Atmos. Chem. Phys., 23, 8305–8324, https://doi.org/10.5194/acp-23-8305-2023, https://doi.org/10.5194/acp-23-8305-2023, 2023
Short summary
Short summary
The interaction between the sources and molecular compositions of humic-like substances (HULIS) at Nanjing, China, was explored. Significant fossil fuel source contributions to HULIS were found in the 14C results from biomass burnng and traffic emissions. Increasing biogenic secondary organic aerosol (SOA) products and anthropogenic aromatic compounds were detected in summer and winter, respectively.
Hao-Ran Yu, Yan-Lin Zhang, Fang Cao, Xiao-Ying Yang, Tian Xie, Yu-Xian Zhang, and Yongwen Xue
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-239, https://doi.org/10.5194/amt-2022-239, 2022
Preprint withdrawn
Short summary
Short summary
We developed a high time resolution method for determining the δ13C values of WSOCp and WSOCg by combination of wet oxidation pretreatment and IRMS. With improvement of oxidation method and determination method, δ13C value of liquid sample with a carbon content between 0.5 to 5 μg can be determined with an accuracy of 0.6 ‰. Using this method, the δ13C value of WSOCp and WSOCg in winter of 2021 at an urban site of Nanjing were determined, which were -25.9 ± 0.7 ‰ and -29.9 ± 0.9 ‰ respectively.
Jiyan Wu, Chi Yang, Chunyan Zhang, Fang Cao, Aiping Wu, and Yanlin Zhang
Atmos. Meas. Tech., 15, 2623–2633, https://doi.org/10.5194/amt-15-2623-2022, https://doi.org/10.5194/amt-15-2623-2022, 2022
Short summary
Short summary
We introduced an online method to simultaneously determine the content of inorganic salt ions and reactive oxygen species (ROS) in PM2.5 hour by hour. We verified the accuracy and precision of the instrument. And we got the daily changes in ROS and the main sources that affect ROS. This breakthrough enables the quantitative assessment of atmospheric particulate matter ROS at the diurnal scale, providing an effective tool to study sources and environmental impacts of ROS.
Md. Mozammel Haque, Yanlin Zhang, Srinivas Bikkina, Meehye Lee, and Kimitaka Kawamura
Atmos. Chem. Phys., 22, 1373–1393, https://doi.org/10.5194/acp-22-1373-2022, https://doi.org/10.5194/acp-22-1373-2022, 2022
Short summary
Short summary
We attempt to understand the current state of East Asian organic aerosols with both the molecular marker approach and 14° C data of carbonaceous components. A significant positive correlation of nonfossil- and fossil-derived organic carbon with levoglucosan suggests the importance of biomass burning (BB) and coal combustion sources in the East Asian outflow. Thus, attribution of ambient levoglucosan levels over the western North Pacific to the impact of BB emission may cause large uncertainty.
Mengying Bao, Yan-Lin Zhang, Fang Cao, Yu-Chi Lin, Yuhang Wang, Xiaoyan Liu, Wenqi Zhang, Meiyi Fan, Feng Xie, Robert Cary, Joshua Dixon, and Lihua Zhou
Atmos. Meas. Tech., 14, 4053–4068, https://doi.org/10.5194/amt-14-4053-2021, https://doi.org/10.5194/amt-14-4053-2021, 2021
Short summary
Short summary
We introduce a two-wavelength method for brown C measurements with a modified Sunset carbon analyzer. We defined the enhanced concentrations and gave the possibility of providing an indicator of brown C. Compared with the strong local sources of organic and elemental C, we found that differences in EC mainly originated from regional transport. Biomass burning emissions significantly contributed to high differences in EC concentrations during the heavy biomass burning periods.
Yunhua Chang, Yan-Lin Zhang, Sawaeng Kawichai, Qian Wang, Martin Van Damme, Lieven Clarisse, Tippawan Prapamontol, and Moritz F. Lehmann
Atmos. Chem. Phys., 21, 7187–7198, https://doi.org/10.5194/acp-21-7187-2021, https://doi.org/10.5194/acp-21-7187-2021, 2021
Short summary
Short summary
In this study, we integrated satellite constraints on atmospheric NH3 levels and fire intensity, discrete NH3 concentration measurement, and N isotopic analysis of NH3 in order to assess the regional-scale contribution of biomass burning to ambient atmospheric NH3 in the heartland of Southeast Asia. The combined approach provides a valuable cross-validation framework for source apportioning of NH3 in the lower atmosphere and will thus help to ameliorate predictions of biomass burning emissions.
Qingcai Chen, Haoyao Sun, Wenhuai Song, Fang Cao, Chongguo Tian, and Yan-Lin Zhang
Atmos. Chem. Phys., 20, 14407–14417, https://doi.org/10.5194/acp-20-14407-2020, https://doi.org/10.5194/acp-20-14407-2020, 2020
Short summary
Short summary
This study found environmentally persistent free radicals (EPFRs) are widely present in atmospheric particles of different particle sizes and exhibit significant particle size distribution characteristics. EPFR concentrations are higher in coarse particles than in fine particles in summer and vice versa in winter. The potential toxicity caused by EPFRs may also vary with particle size and season. Combustion is the most important source of EPFRs (>70 %).
Cited articles
An, J., Zhu, B., Wang, H., Li, Y., Lin, X., and Yang, H.: Characteristics
and source apportionment of VOCs measured in an industrial area of Nanjing,
Yangtze River Delta, China, Atmos. Environ., 97, 206–214,
https://doi.org/10.1016/j.atmosenv.2014.08.021, 2014.
An, J., Zou, J., Wang, J., Lin, X., and Zhu, B.: Differences in ozone
photochemical characteristics between the megacity Nanjing and its suburban
surroundings, Yangtze River Delta, China, Environ. Sci.
Pollut. Res., 22, 19607–19617,
https://doi.org/10.1007/s11356-015-5177-0, 2015.
An, J., Wang, J., Zhang, Y., and Zhu, B.: Source Apportionment of Volatile
Organic Compounds in an Urban Environment at the Yangtze River Delta, China,
Archives of Environmental Contamination and Toxicology, 72, 335–348,
https://doi.org/10.1007/s00244-017-0371-3, 2017.
Cardelino, C. A. and Chameides, W. L.: An observation-based model for
analyzing ozone precursor relationships in the urban atmosphere, J. Air Waste Manage. Assoc., 45, 161–180,
https://doi.org/10.1080/10473289.1995.10467356, 1995.
Carter, W. P. L.: Development of the SAPRC-07 chemical mechanism,
Atmos. Environ., 44, 5324–5335,
https://doi.org/10.1016/j.atmosenv.2010.01.026, 2010.
Chen, Y., Ge, X., Chen, H., Xie, X., Chen, Y., Wang, J., and Chen,
M.: Seasonal light absorption properties of water-soluble brown carbon in
atmospheric fine particles in Nanjing, China, Atmos. Environ.,
187, 230–240, https://doi.org/10.1016/j.atmosenv.2018.06.002, 2018.
Deng, Y., Li, J., Li, Y., Wu, R., and Xie, S.: Characteristics of volatile
organic compounds, NO2, and effects on ozone formation at a site with high
ozone level in Chengdu, J. Environ. Sci., 75,
334–345, https://doi.org/10.1016/j.jes.2018.05.004, 2019.
Feng, R., Wang, Q., Huang, C. chen, Liang, J., Luo, K., Fan, J., and Zheng, H. J.: Ethylene, xylene, toluene and hexane are major contributors
of atmospheric ozone in Hangzhou, China, prior to the 2022 Asian Games,
Environ. Chem. Lett., 17, 1151–1160,
https://doi.org/10.1007/s10311-018-00846-w, 2019.
Feng, T., Bei, N., Huang, R.-J., Cao, J., Zhang, Q., Zhou, W., Tie, X., Liu, S., Zhang, T., Su, X., Lei, W., Molina, L. T., and Li, G.: Summertime ozone formation in Xi'an and surrounding areas, China, Atmos. Chem. Phys., 16, 4323–4342, https://doi.org/10.5194/acp-16-4323-2016, 2016.
He, Z., Wang, X., Ling, Z., Zhao, J., Guo, H., Shao, M., and Wang, Z.: Contributions of different anthropogenic volatile organic compound sources to ozone formation at a receptor site in the Pearl River Delta region and its policy implications, Atmos. Chem. Phys., 19, 8801–8816, https://doi.org/10.5194/acp-19-8801-2019, 2019.
Hui, L., Liu, X., Tan, Q., Feng, M., An, J., Qu, Y., and Jiang, M.: Characteristics, source apportionment and contribution of VOCs to ozone
formation in Wuhan, Central China, Atmos. Environ., 192,
55–71, https://doi.org/10.1016/j.atmosenv.2018.08.042, 2018.
Hui, L., Liu, X., Tan, Q., Feng, M., An, J., Qu, Y., and Cheng,
N.: VOC characteristics, sources and contributions to SOA formation during
haze events in Wuhan, Central China, Sci. Tot. Environ., 650,
2624–2639, https://doi.org/10.1016/j.scitotenv.2018.10.029, 2019.
Hung-Lung, C., Jiun-Horng, T., Shih-Yu, C., Kuo-Hsiung, L., and Sen-Yi, M.: VOC concentration profiles in an ozone non-attainment area: A case study
in an urban and industrial complex metroplex in southern Taiwan, Atmos. Environ., 41, 1848–1860,
https://doi.org/https://doi.org/10.1016/j.atmosenv.2006.10.055, 2007.
Jenkin, M. E., Young, J. C., and Rickard, A. R.: The MCM v3.3.1 degradation scheme for isoprene, Atmos. Chem. Phys., 15, 11433–11459, https://doi.org/10.5194/acp-15-11433-2015, 2015.
Jenkin, M. E., Saunders, S. M., and Pilling, M. J. : The tropospheric
degradation of volatile organic compounds: A protocol for mechanism
development, Atmos. Environ., 31, 81–104,
https://doi.org/10.1016/S1352-2310(96)00105-7, 1997.
Jia, C., Mao, X., Huang, T., Liang, X., Wang, Y., Shen, Y., and
Gao, H.: Non-methane hydrocarbons (NMHCs) and their contribution to ozone
formation potential in a petrochemical industrialized city, Northwest China,
Atmos. Res., 169, 225–236.
https://doi.org/10.1016/j.atmosres.2015.10.006, 2016.
Li, J., Xie, S. D., Zeng, L. M., Li, L. Y., Li, Y. Q., and Wu, R. R.: Characterization of ambient volatile organic compounds and their sources in Beijing, before, during, and after Asia-Pacific Economic Cooperation China 2014, Atmos. Chem. Phys., 15, 7945–7959, https://doi.org/10.5194/acp-15-7945-2015, 2015.
Li, J., Zhai, C., Yu, J., Liu, R., Li, Y., Zeng, L., and Xie, S.:
Spatiotemporal variations of ambient volatile organic compounds and their
sources in Chongqing, a mountainous megacity in China, Sci. Tot. Environ., 627, 1442–145,
https://doi.org/10.1016/j.scitotenv.2018.02.010, 2018.
Ma, Z., Liu, C., Zhang, C., Liu, P., Ye, C., Xue, C., and Mu, Y.:
The levels , sources and reactivity of volatile organic compounds in a
typical urban area of Northeast China, J. Environ. Sci.,
79, 121–134, https://doi.org/10.1016/j.jes.2018.11.015, 2019.
Meng, H. A. N., Xueqiang, L. U., Chunsheng, Z., Liang, R. A. N., and Suqin,
H. A. N.: Characterization and Source Apportionment of Volatile Organic
Compounds in Urban and Suburban Tianjin, China, Adv. Atmos. Sci., 32, 439–444, https://doi.org/10.1007/s00376-014-4077-4.1,
2015.
Mo, Z., Shao, M., Lu, S., Niu, H., Zhou, M., and Sun, J.: Characterization
of non-methane hydrocarbons and their sources in an industrialized coastal
city , Yangtze River Delta, China, Sci. Tot. Environ.,
593, 641–653, https://doi.org/10.1016/j.scitotenv.2017.03.123, 2017.
Mozaffar, A. and Zhang, Y. L.: Atmospheric Volatile Organic Compounds
(VOCs) in China: a Review, Current Pollution Reports, 6, 250–263,
https://doi.org/10.1007/s40726-020-00149-1, 2020.
Mozaffar, A., Zhang, Y. L., Fan, M., Cao, F., and Lin, Y. C.:
Characteristics of summertime ambient VOCs and their contributions to O3 and
SOA formation in a suburban area of Nanjing, China, Atmos. Res.,
240, 104923, https://doi.org/10.1016/j.atmosres.2020.104923, 2020.
Mozaffar, A.: VOC in Nanjing, available at: https://osf.io/bm6cs/, [data set], last access: 17 December 2020, 2021.
Na, K., Kim, Y. P., Moon, K.-C., Moon, I., and Fung, K.: Concentrations of
volatile organic compounds in an industrial area of Korea, Atmos. Environ., 35, 2747–2756,
https://doi.org/https://doi.org/10.1016/S1352-2310(00)00313-7, 2001.
Petit, J. E., Favez, O., Albinet, A., and Canonaco, F.: A user-friendly
tool for comprehensive evaluation of the geographical origins of atmospheric
pollution: Wind and trajectory analyses, Environ. Modell. Softw., 88, 183–187, https://doi.org/10.1016/j.envsoft.2016.11.022, 2017.
Saunders, S. M., Jenkin, M. E., Derwent, R. G., and Pilling, M. J.: Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part A): tropospheric degradation of non-aromatic volatile organic compounds, Atmos. Chem. Phys., 3, 161–180, https://doi.org/10.5194/acp-3-161-2003, 2003.
Shao, P., An, J., Xin, J., Wu, F., Wang, J., Ji, D., and Wang, Y.: Source
apportionment of VOCs and the contribution to photochemical ozone formation
during summer in the typical industrial area in the Yangtze River Delta,
China, Atmos. Res., 176, 64–74,
https://doi.org/10.1016/j.atmosres.2016.02.015, 2016.
Shi, J., Deng, H., Bai, Z., Kong, S., Wang, X., Hao, J., and Ning,
P.: Emission and profile characteristic of volatile organic compounds
emitted from coke production, iron smelt, heating station and power plant in
Liaoning Province, China, Sci. Tot. Environ., 515,
101–108, https://doi.org/10.1016/j.scitotenv.2015.02.034, 2015.
Song, M., Li, X., Yang, S., Yu, X., Zhou, S., Yang, Y., Chen, S., Dong, H., Liao, K., Chen, Q., Lu, K., Zhang, N., Cao, J., Zeng, L., and Zhang, Y.: Spatiotemporal variation, sources, and secondary transformation potential of volatile organic compounds in Xi'an, China, Atmos. Chem. Phys., 21, 4939–4958, https://doi.org/10.5194/acp-21-4939-2021, 2021.
Song, M., Tan, Q., Feng, M., Qu, Y., and Liu, X.: Source Apportionment and
Secondary Transformation of Atmospheric Nonmethane Hydrocarbons in Chengdu ,
Southwest China, J. Geophys. Res.-Atmos., 123,
9741–9763, https://doi.org/10.1029/2018JD028479, 2018.
Sun, J., Shen, Z., Zhang, Y., Zhang, Z., Zhang, Q., Zhang, T., and
Li, X.: Urban VOC profiles, possible sources, and its role in ozone
formation for a summer campaign over Xi'an, China, Environ. Sci.
Pollut. Res., 26, 27769–27782,
https://doi.org/10.1007/s11356-019-05950-0, 2019.
Tan, Z., Lu, K., Dong, H., Hu, M., Li, X., Liu, Y., and Zhang, Y.: Explicit diagnosis of the local ozone production rate and the
ozone-NOx-VOC sensitivities, Sci. Bull., 63, 1067–1076,
https://doi.org/10.1016/j.scib.2018.07.001, 2018a.
Tan, Z., Lu, K., Jiang, M., Su, R., Dong, H., Zeng, L., and Zhang,
Y.: Exploring ozone pollution in Chengdu, southwestern China: A case study
from radical chemistry to O3-VOC-NOx sensitivity, Sci. Tot. Environ., 636, 775–786, https://doi.org/10.1016/J.SCITOTENV.2018.04.286,
2018b.
Tan, Z., Lu, K., Jiang, M., Su, R., Wang, H., Lou, S., Fu, Q., Zhai, C., Tan, Q., Yue, D., Chen, D., Wang, Z., Xie, S., Zeng, L., and Zhang, Y.: Daytime atmospheric oxidation capacity in four Chinese megacities during the photochemically polluted season: a case study based on box model simulation, Atmos. Chem. Phys., 19, 3493–3513, https://doi.org/10.5194/acp-19-3493-2019, 2019.
Tiwari, V., Hanai, Y., and Masunaga, S.: Ambient levels of volatile organic
compounds in the vicinity of petrochemical industrial area of Yokohama,
Japan, Air Quality, Atmos. Health, 3, 65–75,
https://doi.org/10.1007/s11869-009-0052-0, 2010.
Vermeuel, M. P., Novak, G. A., Alwe, H. D., Hughes, D. D., Kaleel, R.,
Dickens, A. F., and Bertram, T. H.: Sensitivity of Ozone
Production to NOx and VOC Along the Lake Michigan Coastline, J. Geophys. Res.-Atmos., 124, 10989–11006,
https://doi.org/10.1029/2019JD030842, 2019.
Wolfe, G. M., Marvin, M. R., Roberts, S. J., Travis, K. R., and Liao, J.: The Framework for 0-D Atmospheric Modeling (F0AM) v3.1, Geosci. Model Dev., 9, 3309–3319, https://doi.org/10.5194/gmd-9-3309-2016, 2016.
Wu, R., Zhao, Y., Zhang, J., and Zhang, L.: Variability and sources of
ambient volatile organic compounds based on online measurements in a
suburban region of nanjing, eastern China, Aerosol Air Qual. Res.,
20, 606–619, https://doi.org/10.4209/aaqr.2019.10.0517, 2020.
Xu, Z., Huang, X., Nie, W., Chi, X., and Xu, Z.: Influence of synoptic
condition and holiday effects on VOCs and ozone production in the Yangtze
River Delta region, China, Atmos. Environ., 168, 112–124,
https://doi.org/10.1016/j.atmosenv.2017.08.035, 2017.
Yan, Y., Yang, C., Peng, L., Li, R., and Bai, H.: Emission characteristics
of volatile organic compounds from coal-, coal gangue-, and biomass-fired
power plants in China, Atmos. Environ., 143, 261–269,
https://doi.org/10.1016/j.atmosenv.2016.08.052, 2016.
Yoshino, A., Nakashima, Y., Miyazaki, K., Kato, S., Suthawaree, J., Shimo,
N., and Kajii, Y.: Air quality diagnosis from comprehensive
observations of total OH reactivity and reactive trace species in urban
central Tokyo, Atmos. Environ., 49, 51–59,
https://doi.org/10.1016/j.atmosenv.2011.12.029, 2012.
Zhang, F., Shang, X., Chen, H., Xie, G., Fu, Y., Wu, D., and Chen,
J.: Significant impact of coal combustion on VOCs emissions in winter in a
North China rural site, Sci. Tot. Environ., 720, 137617,
https://doi.org/10.1016/j.scitotenv.2020.137617, 2020.
Zhang, H., Li, H., Zhang, Q., Zhang, Y., Zhang, W., Wang, X., and
Xia, F.: Atmospheric volatile organic compounds in a typical urban area of
beijing: Pollution characterization, health risk assessment and source
apportionment, Atmosphere, 8, 61, https://doi.org/10.3390/atmos8030061,
2017.
Zhang, Y., Li, R., Fu, H., Zhou, D., and Chen, J.: Observation and analysis
of atmospheric volatile organic compounds in a typical petrochemical area in
Yangtze River, J. Environ. Sci., 71, 233–248,
https://doi.org/10.1016/j.jes.2018.05.027, 2018.
Zhang, Z., Yan, X., Gao, F., Thai, P., Wang, H., Chen, D., and
Wang, B.: Emission and health risk assessment of volatile organic compounds
in various processes of a petroleum refinery in the Pearl River Delta,
Environ. Pollut., 238, 452–461,
https://doi.org/10.1016/j.envpol.2018.03.054, 2018.
Zhao, R., Dou, X., Zhang, N., Zhao, X., Yang, W., Han, B., and
Bai, Z.: The characteristics of inorganic gases and volatile organic
compounds at a remote site in the Tibetan Plateau, Atmos. Res.,
234, 104740, https://doi.org/10.1016/j.atmosres.2019.104740,
2020.
Zhu, J., Wang, S., Wang, H., Jing, S., Lou, S., Saiz-Lopez, A., and Zhou, B.: Observationally constrained modeling of atmospheric oxidation capacity and photochemical reactivity in Shanghai, China, Atmos. Chem. Phys., 20, 1217–1232, https://doi.org/10.5194/acp-20-1217-2020, 2020.
Zou, Y., Deng, X. J., Zhu, D., Gong, D. C., Wang, H., Li, F., Tan, H. B., Deng, T., Mai, B. R., Liu, X. T., and Wang, B. G.: Characteristics of 1 year of observational data of VOCs, NOx and O3 at a suburban site in Guangzhou, China, Atmos. Chem. Phys., 15, 6625–6636, https://doi.org/10.5194/acp-15-6625-2015, 2015.
Short summary
We performed a long-term investigation of ambient volatile organic compounds (VOCs) in an industrial area in Nanjing, China. Followed by alkanes, halocarbons and aromatics were the most abundant VOC groups. Vehicle-related emissions were the major VOC sources in the study area. Aromatic and alkene VOCs were responsible for most of the atmospheric reactions.
We performed a long-term investigation of ambient volatile organic compounds (VOCs) in an...
Altmetrics
Final-revised paper
Preprint