Articles | Volume 21, issue 23
https://doi.org/10.5194/acp-21-18087-2021
https://doi.org/10.5194/acp-21-18087-2021
Measurement report
 | 
13 Dec 2021
Measurement report |  | 13 Dec 2021

Measurement report: High contributions of halocarbon and aromatic compounds to atmospheric volatile organic compounds in an industrial area

Ahsan Mozaffar, Yan-Lin Zhang, Yu-Chi Lin, Feng Xie, Mei-Yi Fan, and Fang Cao

Related authors

Hydroxymethanesulfonate (HMS) formation in urban and marine atmospheres: role of aerosol ionic strength
Rongshuang Xu, Yu-Chi Lin, Siyu Bian, Feng Xie, and Yan-Lin Zhang
Atmos. Chem. Phys., 25, 12721–12735, https://doi.org/10.5194/acp-25-12721-2025,https://doi.org/10.5194/acp-25-12721-2025, 2025
Short summary
The critical role of volatile organic compound emissions in nitrate formation in Lhasa, Tibetan Plateau: insights from oxygen isotope anomaly measurements
Xueqin Zheng, Junwen Liu, Nima Chuduo, Bian Ba, Pengfei Yu, Phu Drolgar, Fang Cao, and Yanlin Zhang
Atmos. Chem. Phys., 25, 12451–12465, https://doi.org/10.5194/acp-25-12451-2025,https://doi.org/10.5194/acp-25-12451-2025, 2025
Short summary
Sources and trends of black carbon aerosol in the megacity of Nanjing, eastern China, after the China Clean Action Plan and Three-Year Action Plan
Abudurexiati Abulimiti, Yanlin Zhang, Mingyuan Yu, Yihang Hong, Yu-Chi Lin, Chaman Gul, and Fang Cao
Atmos. Chem. Phys., 25, 6161–6178, https://doi.org/10.5194/acp-25-6161-2025,https://doi.org/10.5194/acp-25-6161-2025, 2025
Short summary
Significant role of biomass burning in heavy haze formation in Nanjing, a megacity in China: molecular-level insights from intensive PM2.5 sampling on winter hazy days
Mingjie Kang, Mengying Bao, Wenhuai Song, Aduburexiati Abulimiti, Changliu Wu, Fang Cao, Sönke Szidat, and Yanlin Zhang
Atmos. Chem. Phys., 25, 73–91, https://doi.org/10.5194/acp-25-73-2025,https://doi.org/10.5194/acp-25-73-2025, 2025
Short summary
Large contributions of soil emissions to the atmospheric nitrogen budget and their impacts on air quality and temperature rise in North China
Tong Sha, Siyu Yang, Qingcai Chen, Liangqing Li, Xiaoyan Ma, Yan-Lin Zhang, Zhaozhong Feng, K. Folkert Boersma, and Jun Wang
Atmos. Chem. Phys., 24, 8441–8455, https://doi.org/10.5194/acp-24-8441-2024,https://doi.org/10.5194/acp-24-8441-2024, 2024
Short summary

Cited articles

An, J., Zhu, B., Wang, H., Li, Y., Lin, X., and Yang, H.: Characteristics and source apportionment of VOCs measured in an industrial area of Nanjing, Yangtze River Delta, China, Atmos. Environ., 97, 206–214, https://doi.org/10.1016/j.atmosenv.2014.08.021, 2014. 
An, J., Zou, J., Wang, J., Lin, X., and Zhu, B.: Differences in ozone photochemical characteristics between the megacity Nanjing and its suburban surroundings, Yangtze River Delta, China, Environ. Sci. Pollut. Res., 22, 19607–19617, https://doi.org/10.1007/s11356-015-5177-0, 2015. 
An, J., Wang, J., Zhang, Y., and Zhu, B.: Source Apportionment of Volatile Organic Compounds in an Urban Environment at the Yangtze River Delta, China, Archives of Environmental Contamination and Toxicology, 72, 335–348, https://doi.org/10.1007/s00244-017-0371-3, 2017. 
Cardelino, C. A. and Chameides, W. L.: An observation-based model for analyzing ozone precursor relationships in the urban atmosphere, J. Air Waste Manage. Assoc., 45, 161–180, https://doi.org/10.1080/10473289.1995.10467356, 1995. 
Carter, W. P. L.: Development of the SAPRC-07 chemical mechanism, Atmos. Environ., 44, 5324–5335, https://doi.org/10.1016/j.atmosenv.2010.01.026, 2010. 
Download
Short summary
We performed a long-term investigation of ambient volatile organic compounds (VOCs) in an industrial area in Nanjing, China. Followed by alkanes, halocarbons and aromatics were the most abundant VOC groups. Vehicle-related emissions were the major VOC sources in the study area. Aromatic and alkene VOCs were responsible for most of the atmospheric reactions.
Share
Altmetrics
Final-revised paper
Preprint