Articles | Volume 21, issue 23
https://doi.org/10.5194/acp-21-17833-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-17833-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Traces of urban forest in temperature and CO2 signals in monsoon East Asia
Keunmin Lee
Department of Atmospheric Sciences, Yonsei University, Seoul, 03722, Republic of Korea
Je-Woo Hong
Korea Adaptation Center for Climate Change, Korea Environment Institute, Sejong, 30147, Republic of Korea
Jeongwon Kim
Department of Atmospheric Sciences, Yonsei University, Seoul, 03722, Republic of Korea
Sungsoo Jo
Department of Atmospheric Sciences, Yonsei University, Seoul, 03722, Republic of Korea
Department of Atmospheric Sciences, Yonsei University, Seoul, 03722, Republic of Korea
Related authors
Mathew Lipson, Sue Grimmond, Martin Best, Winston T. L. Chow, Andreas Christen, Nektarios Chrysoulakis, Andrew Coutts, Ben Crawford, Stevan Earl, Jonathan Evans, Krzysztof Fortuniak, Bert G. Heusinkveld, Je-Woo Hong, Jinkyu Hong, Leena Järvi, Sungsoo Jo, Yeon-Hee Kim, Simone Kotthaus, Keunmin Lee, Valéry Masson, Joseph P. McFadden, Oliver Michels, Wlodzimierz Pawlak, Matthias Roth, Hirofumi Sugawara, Nigel Tapper, Erik Velasco, and Helen Claire Ward
Earth Syst. Sci. Data, 14, 5157–5178, https://doi.org/10.5194/essd-14-5157-2022, https://doi.org/10.5194/essd-14-5157-2022, 2022
Short summary
Short summary
We describe a new openly accessible collection of atmospheric observations from 20 cities around the world, capturing 50 site years. The observations capture local meteorology (temperature, humidity, wind, etc.) and the energy fluxes between the land and atmosphere (e.g. radiation and sensible and latent heat fluxes). These observations can be used to improve our understanding of urban climate processes and to test the accuracy of urban climate models.
Doyoon Kwon, Bonhoon Koo, Jooyeop Lee, Jeongwon Kim, Jaehyung Ahn, Jinkyu Hong, Eri Saikawa, Alexander Avramov, Changsub Shim, Je-Woo Hong, Daegeun Shin, Shanlan Li, Sumin Kim, and Sangwon Joo
EGUsphere, https://doi.org/10.5194/egusphere-2025-4938, https://doi.org/10.5194/egusphere-2025-4938, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
We introduce a high-resolution system to estimate how much carbon dioxide and methane people emit across the Korean Peninsula. It combines a weather model with continuous ground measurements to make more accurate maps of emissions. Tested for 2020, it reduced errors by about one third to one half and agreed well with aircraft profiles for carbon dioxide. The results pinpoint where current inventories likely miss sources, supporting national monitoring and stronger climate policy.
Kyoung-Min Kim, Si-Wan Kim, Seunghwan Seo, Donald R. Blake, Seogju Cho, James H. Crawford, Louisa K. Emmons, Alan Fried, Jay R. Herman, Jinkyu Hong, Jinsang Jung, Gabriele G. Pfister, Andrew J. Weinheimer, Jung-Hun Woo, and Qiang Zhang
Geosci. Model Dev., 17, 1931–1955, https://doi.org/10.5194/gmd-17-1931-2024, https://doi.org/10.5194/gmd-17-1931-2024, 2024
Short summary
Short summary
Three emission inventories were evaluated for East Asia using data acquired during a field campaign in 2016. The inventories successfully reproduced the daily variations of ozone and nitrogen dioxide. However, the spatial distributions of model ozone did not fully agree with the observations. Additionally, all simulations underestimated carbon monoxide and volatile organic compound (VOC) levels. Increasing VOC emissions over South Korea resulted in improved ozone simulations.
Mathew Lipson, Sue Grimmond, Martin Best, Winston T. L. Chow, Andreas Christen, Nektarios Chrysoulakis, Andrew Coutts, Ben Crawford, Stevan Earl, Jonathan Evans, Krzysztof Fortuniak, Bert G. Heusinkveld, Je-Woo Hong, Jinkyu Hong, Leena Järvi, Sungsoo Jo, Yeon-Hee Kim, Simone Kotthaus, Keunmin Lee, Valéry Masson, Joseph P. McFadden, Oliver Michels, Wlodzimierz Pawlak, Matthias Roth, Hirofumi Sugawara, Nigel Tapper, Erik Velasco, and Helen Claire Ward
Earth Syst. Sci. Data, 14, 5157–5178, https://doi.org/10.5194/essd-14-5157-2022, https://doi.org/10.5194/essd-14-5157-2022, 2022
Short summary
Short summary
We describe a new openly accessible collection of atmospheric observations from 20 cities around the world, capturing 50 site years. The observations capture local meteorology (temperature, humidity, wind, etc.) and the energy fluxes between the land and atmosphere (e.g. radiation and sensible and latent heat fluxes). These observations can be used to improve our understanding of urban climate processes and to test the accuracy of urban climate models.
Lim-Seok Chang, Donghee Kim, Hyunkee Hong, Deok-Rae Kim, Jeong-Ah Yu, Kwangyul Lee, Hanlim Lee, Daewon Kim, Jinkyu Hong, Hyun-Young Jo, and Cheol-Hee Kim
Atmos. Chem. Phys., 22, 10703–10720, https://doi.org/10.5194/acp-22-10703-2022, https://doi.org/10.5194/acp-22-10703-2022, 2022
Short summary
Short summary
Our study explored the synergy of combined column and surface measurements during GMAP (GEMS Map of Air Pollution) campaign. It has several points to note for vertical distribution analysis. Particularly under prevailing local wind meteorological conditions, Pandora-based vertical structures sometimes showed negative correlations between column and surface measurements. Vertical analysis should be done carefully in some local meteorological conditions when employing either surface or columns.
Jooyeop Lee, Martin Claussen, Jeongwon Kim, Je-Woo Hong, In-Sun Song, and Jinkyu Hong
Clim. Past, 18, 313–326, https://doi.org/10.5194/cp-18-313-2022, https://doi.org/10.5194/cp-18-313-2022, 2022
Short summary
Short summary
It is still a challenge to simulate the so–called Green Sahara (GS), which was a wet and vegetative Sahara region in the mid–Holocene, using current climate models. Our analysis shows that Holocene greening is simulated better if the amount of soil nitrogen and soil texture is properly modified for the humid and vegetative GS period. Future climate simulation needs to consider consequent changes in soil nitrogen and texture with changes in vegetation cover for proper climate simulations.
Chang-Hwan Park, Aaron Berg, Michael H. Cosh, Andreas Colliander, Andreas Behrendt, Hida Manns, Jinkyu Hong, Johan Lee, Runze Zhang, and Volker Wulfmeyer
Hydrol. Earth Syst. Sci., 25, 6407–6420, https://doi.org/10.5194/hess-25-6407-2021, https://doi.org/10.5194/hess-25-6407-2021, 2021
Short summary
Short summary
In this study, we proposed an inversion of the dielectric mixing model for a 50 Hz soil sensor for agricultural organic soil. This model can reflect the variability of soil organic matter (SOM) in wilting point and porosity, which play a critical role in improving the accuracy of SM estimation, using a dielectric-based soil sensor. The results of statistical analyses demonstrated a higher performance of the new model than the factory setting probe algorithm.
Yongkang Xue, Tandong Yao, Aaron A. Boone, Ismaila Diallo, Ye Liu, Xubin Zeng, William K. M. Lau, Shiori Sugimoto, Qi Tang, Xiaoduo Pan, Peter J. van Oevelen, Daniel Klocke, Myung-Seo Koo, Tomonori Sato, Zhaohui Lin, Yuhei Takaya, Constantin Ardilouze, Stefano Materia, Subodh K. Saha, Retish Senan, Tetsu Nakamura, Hailan Wang, Jing Yang, Hongliang Zhang, Mei Zhao, Xin-Zhong Liang, J. David Neelin, Frederic Vitart, Xin Li, Ping Zhao, Chunxiang Shi, Weidong Guo, Jianping Tang, Miao Yu, Yun Qian, Samuel S. P. Shen, Yang Zhang, Kun Yang, Ruby Leung, Yuan Qiu, Daniele Peano, Xin Qi, Yanling Zhan, Michael A. Brunke, Sin Chan Chou, Michael Ek, Tianyi Fan, Hong Guan, Hai Lin, Shunlin Liang, Helin Wei, Shaocheng Xie, Haoran Xu, Weiping Li, Xueli Shi, Paulo Nobre, Yan Pan, Yi Qin, Jeff Dozier, Craig R. Ferguson, Gianpaolo Balsamo, Qing Bao, Jinming Feng, Jinkyu Hong, Songyou Hong, Huilin Huang, Duoying Ji, Zhenming Ji, Shichang Kang, Yanluan Lin, Weiguang Liu, Ryan Muncaster, Patricia de Rosnay, Hiroshi G. Takahashi, Guiling Wang, Shuyu Wang, Weicai Wang, Xu Zhou, and Yuejian Zhu
Geosci. Model Dev., 14, 4465–4494, https://doi.org/10.5194/gmd-14-4465-2021, https://doi.org/10.5194/gmd-14-4465-2021, 2021
Short summary
Short summary
The subseasonal prediction of extreme hydroclimate events such as droughts/floods has remained stubbornly low for years. This paper presents a new international initiative which, for the first time, introduces spring land surface temperature anomalies over high mountains to improve precipitation prediction through remote effects of land–atmosphere interactions. More than 40 institutions worldwide are participating in this effort. The experimental protocol and preliminary results are presented.
Cited articles
Alekseychik, P., Mammarella, I., Karpov, D., Dengel, S., Terentieva, I., Sabrekov, A., Glagolev, M., and Lapshina, E.: Net ecosystem exchange and energy fluxes measured with the eddy covariance technique in a western Siberian bog, Atmos. Chem. Phys., 17, 9333–9345, https://doi.org/10.5194/acp-17-9333-2017, 2017.
Awal, M. A., Ohta, T., Matsumoto, K., Toba, T., Daikoku, K., Hattori, S., Hiyama, T., and Park, H.: Comparing the carbon sequestration capacity of temperate
deciduous forests between urban and rural landscapes in central Japan,
Urban For. Urban Gree., 9, 261–270, 2010.
Bae, J. and Ryu, Y.: Spatial and temporal variations in soil respiration
among different land cover types under wet and dry years in an urban park,
Landscape Urban Plan., 167, 378–385, 2017.
Ballinas, M. and Barradas, V. L.: The urban tree as a tool to mitigate the
urban heat island in Mexico City: A simple phenomenological model,
J. Environ. Qual., 45, 157–166, 2016.
Balogun, A. A., Adegoke, J. O., Vezhapparambu, S., Mauder, M., McFadden, J.
P., and Gallo, K.: Surface energy balance measurements above an exurban
residential neighbourhood of Kansas City, Missouri,
Bound.-Lay. Meteorol., 133, 299–321, 2009.
Bergeron, O. and Strachan, I. B.: CO2 sources and sinks in urban and
suburban areas of a northern mid-latitude city, Atmos. Environ.,
45, 1564–1573, 2011.
Bonan, G. B.: Forests and climate change: forcings, feedbacks, and the
climate benefits of forests, Science, 320, 1444–1449, 2008.
Bowler, D. E., Buyung-Ali, L., Knight, T. M., and Pullin, A. S.: Urban
greening to cool towns and cities: A systematic review of the empirical
evidence, Landscape Urban Plan., 97, 147–155, 2010.
Chang, C. R., Li, M. H., and Chang, S. D.: A preliminary study on the local
cool-island intensity of Taipei city parks, Landscape Urban Plan.,
80, 386–395, 2007.
Chatterjee, S., Swain, C. K., Nayak, A. K., Chatterjee, D., Bhattacharyya, P.,
Mahapatra, S. S., Debnath, M., Tripathi, R., Guru, P. K., and Dhal, B.:
Partitioning of eddy covariance-measured net ecosystem exchange of CO2
in tropical lowland paddy, Paddy Water Environ., 18, 623–636, 2020.
Chiesura, A.: The role of urban parks for the sustainable city, Landscape Urban Plan., 68, 129–138, 2004.
Christen, A.: Atmospheric measurement techniques to quantify greenhouse gas
emissions from cities, Urban Climate, 10, 241–260, 2014.
Christen, A. and Vogt, R.: Energy and radiation balance of a central
European city, Int. J. Climatol., 24, 1395–1421, 2004.
Copernicus Service information: Copernicus Global Land Service Site, available at: https://land.copernicus.eu/global/, last access: 10 April 2020.
Coutts, A. M., Beringer, J., and Tapper, N. J.: Impact of increasing urban
density on local climate: Spatial and temporal variations in the surface
energy balance in Melbourne, Australia, J. Appl. Meteorol.
Clim., 46, 477–493, 2007a.
Coutts, A. M., Beringer, J., and Tapper, N. J.: Characteristics influencing
the variability of urban CO2 fluxes in Melbourne, Australia,
Atmos. Environ., 41, 51–62, 2007b.
Crawford, B. and Christen, A.: Spatial source attribution of measured urban
eddy covariance CO2 fluxes, Theor. Appl. Climatol.,
119, 733–755, 2015.
Crawford, B., Grimmond, C. S. B., and Christen, A.: Five years of carbon
dioxide fluxes measurements in a highly vegetated suburban area, Atmos. Environ., 45, 896–905, 2011.
Desai, A. R., Richardson, A. D., Moffat, A. M., Kattge, J., Hollinger, D. Y.,
Barr, A., Falge, E., Noormets, A., Papale, D., Reichstein, M., and Stauch,
V. J.: Cross-site evaluation of eddy covariance GPP and RE decomposition
techniques, Agr. Forest Meteorol., 148, 821–838, 2008.
Emmel, C., D'Odorico, P., Revill, A., Hörtnagl, L., Ammann, C.,
Buchmann, N., and Eugster, W.: Canopy photosynthesis of six major arable
crops is enhanced under diffuse light due to canopy architecture, Glob.
Change Biol., 26, 5164–5177, 2020.
Falge, E., Baldocchi, D., Olson, R., Anthoni, P., Aubinet, M., Bernhofer,
C., Burba, G., Ceulemans, R., Clement, R., Dolman, H., Granier, A., Gross,
P., Grünwald, T., Hollinger, D., Jensen, N., Katul, G., Keronen, P.,
Kwalski, A., Lai, C., Law, B., Meyers, T., Moncrieff, J., Moors, E., Munger,
W., Pilegaard, K., Rannik, Ü., Rebmann, C., Suyker, A., Tenhunen, J.,
Tu, K., Verma, S., Vesala, T., Wilson, K., and Wofsy, S.: Gap filling
strategies for long term energy flux data sets, Agr. Forest Meteorol., 107, 71–77, 2001.
Feigenwinter, C., Vogt, R., and Christen, A.: Eddy covariance measurements
over urban areas, in: Eddy Covariance, Springer, Dordrecht, the Netherlands, 377–397, 2012.
Feyisa, G. L., Dons, K., and Meilby, H.: Efficiency of parks in mitigating
urban heat island effect: An example from Addis Ababa, Landscape Urban Plan., 123, 87–95, 2014.
Goldbach, A. and Kuttler, W.: Quantification of turbulent heat fluxes for
adaptation strategies within urban planning, Int. J. Climatol., 33, 143–159, 2013.
Goulden, M. L., Munger, J. W., Fan, S. M., Daube, B. C., and Wofsy, S. C.:
Measurements of carbon sequestration by long-term eddy covariance: Methods
and a critical evaluation of accuracy, Glob. Change Biol., 2, 169–182,
1996.
Grimmond, C. S. B. and Oke, T. R.: Comparison of heat fluxes from summertime
observations in the suburbs of four North American cities, J.
Appl. Meteorol., 34, 873–889, 1995.
Grimmond, C. S. B. and Oke, T. R.: Aerodynamic properties of urban areas
derived from analysis of surface form, J. Appl. Meteorol.
Clim., 38, 1262–1292, 1999.
Haaland, C. and van Den Bosch, C. K.: Challenges and strategies for urban
green-space planning in cities undergoing densification: A review, Urban
For. Urban Gree., 14, 760–771, 2015.
Hamada, S. and Ohta, T.: Seasonal variations in the cooling effect of urban
green areas on surrounding urban areas, Urban For. Urban Gree.,
9, 15–24, 2010.
Hiller, R. V., McFadden, J. P., and Kljun, N.: Interpreting CO2 fluxes
over a suburban lawn: the influence of traffic emissions, Bound.-Lay. Meteorol., 138, 215–230, 2011.
Hong, J. and Kim, J.: Impact of the Asian monsoon climate on ecosystem
carbon and water exchanges: a wavelet analysis and its ecosystem modeling
implications, Glob. Change Biol., 17, 1900–1916, 2011.
Hong, J., Kwon, H., Lim, J., Byun, Y., Lee, J., and Kim, J.: Standardization
of KoFlux eddy-covariance data processing, Korean J. Agric. For. Meteorol.,
11, 19–26, 2009.
Hong, J., Takagi, K., Ohta, T., and Kodama, Y.: Wet surface resistance of
forest canopy in monsoon Asia: Implications for eddy-covariance measurement
of evapotranspiration, Hydrol. Process., 28, 37–42, 2014.
Hong, J. W. and Hong, J.: Changes in the Seoul metropolitan area urban heat
environment with residential redevelopment, J. Appl. Meteorol.
Clim., 55, 1091–1106, 2016.
Hong, J. W., Hong, J., Lee, S. E., and Lee, J.: Spatial distribution of
urban heat island based on local climate zone of automatic weather station
in Seoul metropolitan area, Atmosphere, 23, 413–424, 2013.
Hong, J. W., Hong, J., Kwon, E. E., and Yoon, D.: Temporal dynamics of urban
heat island correlated with the socio-economic development over the past
half-century in Seoul, Korea, Environ. Pollut., 254, 112934, https://doi.org/10.1016/j.envpol.2019.07.102, 2019a.
Hong, J.-W., Hong, J. Chun, J., Lee, Y., Chang, L., Lee, J., Yi, K., Park,
Y., Byun, B., and Joo, S.: Comparative assessment of net CO2 exchange
across an urbanization gradient in Korea based on in situ observation,
Carbon Balance and Management, 14, 13, https://doi.org/10.1186/s13021-019-0128-6,
2019b.
Hong, J. W., Lee, S. D., Lee, K., and Hong, J.: Seasonal variations in the
surface energy and CO2 flux over a high-rise, high-population,
residential urban area in the East Asian monsoon region, Int. J. Climatol., 40, 4384–4407, https://doi.org/10.1002/joc.6463, 2020.
Hsieh, C. I., Katul, G., and Chi, T. W.: An approximate analytical model for
footprint estimation of scalar fluxes in thermally stratified atmospheric
flows, Adv. Water Resour., 23, 765–772, 2000.
Kanda, M., Inagaki, A., Miyamoto, T., Gryschka, M., and Raasch, S.: A new
aerodynamic parametrization for real urban surfaces, Bound.-Lay.
Meteorol., 148, 357–377, 2013.
Kennedy, C. A., Ibrahim, N., and Hoornweg, D.: Low-carbon infrastructure
strategies for cities, Nat. Clim. Change, 4, 343–346, 2014.
Kent, C. W., Grimmond, S., and Gatey, D.: Aerodynamic roughness parameters
in cities: Inclusion of vegetation, J. Wind Eng.
Ind. Aerod., 169, 168–176, 2017.
Kent, C. W., Lee, K., Ward, H. C., Hong, J. W., Hong, J., Gatey, D., and
Grimmond, S.: Aerodynamic roughness variation with vegetation: analysis in a
suburban neighbourhood and a city park, Urban Ecosyst., 21, 227–243,
2018.
Khatun, R., Ohta, T., Kotani, A., Asanuma, J., Gamo, M., Han, S., Hirano,
T., Nakai, Y., Saigusa, N., Takagi, K., and Wang, H.: Spatial
variations in evapotranspiration over East Asian forest sites. I.
Evapotranspiration and decoupling coefficient, Hydrological Research
Letters, 5, 83–87, 2011.
Kim, Y., Woo, S. K., Park, S., Kim, M., and Han, D.: A Study on Evaluation
Methodology of Greenhouse Gas and Air Pollutant Emissions on Road Network –
Focusing on Evaluation Methodology of CO2 and NOx Emissions from Road. Korea: The Korea Transport Institute, Annual Report, Sejong, Korea, https://doi.org/10.23000/TRKO201300014649, 2011.
Kirschbaum, M. U. F., Eamus, D., Gifford, R. M., Roxburgh, S. H., and Sands,
P. J.: Definitions of some ecological terms commonly used in carbon
accounting, in: Proceedings Net Ecosystem Exchange CRC Workshop, 18–20 April 2001, Canberra, Australia, 2–5, 2001.
Kordowski, K. and Kuttler, W.: Carbon dioxide fluxes over an urban park
area, Atmos. Environ., 44, 2722–2730, 2010.
Kroeger, T., McDonald, R. I., Boucher, T., Zhang, P., and Wang, L.: Where
the people are: Current trends and future potential targeted investments in
urban trees for PM10 and temperature mitigation in 27 US cities, Landscape Urban Plan., 177, 227–240, 2018.
Kwon, H., Park, T. Y., Hong, J., Lim, J. H., and Kim, J.: Seasonality of Net
Ecosystem Carbon Exchange in Two Major Plant Functional Types in Korea,
Asia-Pac. J. Atmos. Sci., 45, 149–163, 2009.
Lee, K.: Energy, water and CO2 exchanges in an artificially constructed
urban forest, Master Degree Dissertation, Yonsei University, Seoul, Korea, 2015.
Lee, K., Hong, J. W., Kim, J., and Hong, J.: Partitioning of net CO2
exchanges at the city-atmosphere interface into biotic and abiotic
components, MethodsX, 8, 101231, https://doi.org/10.1016/j.mex.2021.101231, 2021a.
Lee, K., Hong, J. W., Kim, J., and Hong, J.: CO2 flux partitioning program and example data over the urban forest, Yonsei University [data set], https://doi.org/10.22647/EAPL-SFP_202101, 2021b.
Lietzke, B., Vogt, R., Feigenwinter, C., and Parlow, E.: On the controlling
factors for the variability of carbon dioxide flux in a heterogeneous urban
environment, Int. J. Climatol., 35, 3921–3941, 2015.
Macdonald, R. W., Griffiths, R. F., and Hall, D. J.: An improved method for
the estimation of surface roughness of obstacle arrays, Atmos. Environ., 32, 1857–1864, 1998.
Mahecha, M. D., Reichstein, M., Carvalhais, N., Lasslop, G., Lange, H.,
Seneviratne, S. I., Vargas, R., Ammann, C., Arain, M. A., Cescatti, A.,
Janssens, I., Migliavacca, M., Montagnani, L., and Richardson, A.: Global
convergence in the temperature sensitivity of respiration at ecosystem
level, Science, 329, 838–840, 2010.
McCarthy, M. P., Best, M. J., and Betts, R. A.: Climate change in cities due
to global warming and urban effects, Geophys. Res. Lett., 37, L09705, https://doi.org/10.1029/2010GL042845, 2010.
Menzer, O. and McFadden, J. P.: Statistical partitioning of a three-year
time series of direct urban net CO2 flux measurements into biogenic and
anthropogenic components, Atmos. Environ., 170, 319–333, 2017.
Moriwaki, R. and Kanda, M.: Seasonal and diurnal fluxes of radiation, heat,
water vapor, and carbon dioxide over a suburban area, J. Appl.
Meteorol., 43, 1700–1710, 2004.
Munger, J. W., Loescher, H. W., and Luo, H.: Measurement, tower, and site
design considerations, in: Eddy Covariance, Springer, Dordrecht, the Netherlands, 21–58,
2012.
Norton, B. A., Coutts, A. M., Livesley, S. J., Harris, R. J., Hunter, A. M.,
and Williams, N. S.: Planning for cooler cities: A framework to prioritise
green infrastructure to mitigate high temperatures in urban landscapes,
Landscape Urban Plan., 134, 127–138, 2015.
Nowak, D. J.: Atmospheric carbon reduction by urban trees, J. Environ. Manage., 37, 207–217, 1993.
Nowak, D. J., Crane, D. E., Stevens, J. C., Hoehn, R. E., Walton, J. T., and
Bond, J.: A ground-based method of assessing urban forest structure and
ecosystem services, Aboriculture and Urban Forestry, 34, 347–358,
2008.
Oke, T. R.: The energetic basis of the urban heat island, Q. J. Roy. Meteor. Soc., 108, 1–24, 1982.
Oke, T. R.: The micrometeorology of the urban forest, Philos. T. Roy. Soc. B,
324, 335–349, 1989.
Oke, T. R., Johnson, G. T., Steyn, D. G., and Watson, I. D.: Simulation of
surface urban heat islands under “ideal” conditions at night part 2:
Diagnosis of causation, Bound.-Lay. Meteorol., 56, 339–358, 1991.
Oke, T. R., Mills, G., Christen, A., and Voogt, J. A.: Urban Climates, Cambridge University Press, Cambridge, UK, 2017.
Pataki, D. E., Bowling, D. R., and Ehleringer, J. R.: Seasonal cycle of
carbon dioxide and its isotopic composition in an urban atmosphere:
Anthropogenic and biogenic effects, J. Geophys. Res.-Atmos., 108, 4735, https://doi.org/10.1029/2003JD003865, 2003.
Peters, E. B. and McFadden, J. P.: Continuous measurements of net CO2
exchange by vegetation and soils in a suburban landscape, J.
Geophys. Res.-Biogeo., 117, G03005,
https://doi.org/10.1029/2011JG001933, 2012.
Piao, S., Luyssaert, S., Ciais, P., Janssens, I. A., Chen, A., Cao, C.,
Fang, J., Friedlingstein, P., Luo, Y., and Wang, S.: Forest annual carbon
cost: A global-scale analysis of autotrophic respiration, Ecology, 91,
652–661, 2010.
Rahmstorf, S. and Coumou, D.: Increase of extreme events in a warming
world, P. Natl. Acad. Sci. USA, 108,
17905–17909, 2011.
Randerson, J. T., Chapin III, F. S., Harden, J. W., Neff, J. C., and Harmon,
M. E.: Net ecosystem production: a comprehensive measure of net carbon
accumulation by ecosystems, Ecol. Appl., 12, 937–947, 2002.
Rowntree, R. A. and Nowak, D. J.: Quantifying the role of urban forests in
removing atmospheric carbon dioxide, Journal of Arboriculture, 17,
269–275, 1991.
Roy, S., Byrne, J., and Pickering, C.: A systematic quantitative review of
urban tree benefits, costs, and assessment methods across cities in
different climatic zones, Urban For. Urban Gree., 11, 351–363,
2012.
Schmid, H. P., Grimmond, C. S. B., Cropley, F., Offerle, B., and Su, H. B.:
Measurements of CO2 and energy fluxes over a mixed hardwood forest in
the mid-western United States, Agr. Forest Meteorol., 103,
357–374, 2000.
Schmid, H. P., Su, H. B., Vogel, C. S., and Curtis, P. S.:
Ecosystem-atmosphere exchange of carbon dioxide over a mixed hardwood forest
in northern lower Michigan, J. Geophys. Res.-Atmos.,
108, 4417, https://doi.org/10.1029/2002JD003011, 2003.
Shashua-Bar, L. and Hoffman, M. E.: Vegetation as a climatic component in
the design of an urban street: An empirical model for predicting the cooling
effect of urban green areas with trees, Energ. Buildings, 31,
221–235, 2000.
Spronken-Smith, R. A., Oke, T. R., and Lowry, W. P.: Advection and the
surface energy balance across an irrigated urban park, Int. J. Climatol., 20,
1033–1047, 2000.
Stagakis, S., Chrysoulakis, N., Spyridakis, N., Feigenwinter, C., and Vogt,
R.: Eddy Covariance measurements and source partitioning of CO2
emissions in an urban environment: Application for Heraklion, Greece,
Atmos. Environ., 201, 278–292, 2019.
Stewart, I. D.: A systematic review and scientific critique of methodology
in modern urban heat island literature, Int. J. Climatol., 31, 200–217, 2011.
Stewart, I. D. and Oke, T. R.: Local climate zones for urban temperature
studies, B. Am. Meteorol. Soc., 93, 1879–1900,
2012.
Stoy, P. C., Katul, G. G., Siqueira, M. B., Juang, J. Y., Novick, K. A.,
Uebelherr, J. M., and Oren, R.: An evaluation of models for partitioning
eddy covariance-measured net ecosystem exchange into photosynthesis and
respiration, Agr. Forest Meteorol., 141, 2–18, 2006.
Suyker, A. E. and Verma, S. B.: Interannual water vapor and energy exchange in an irrigated maize-based agroecosystem, Agr. Forest Meteorol., 148, 417–427, 2008.
Takanashi, S., Kosugi, Y., Tanaka, Y., Yano, M., Katayama, T., Tanaka, H.,
and Tani, M.: CO2 exchange in a temperate Japanese cypress forest
compared with that in a cool-temperate deciduous broad-leaved forest,
Ecol. Res., 20, 313–324, 2005.
Ueyama, M. and Ando, T.: Diurnal, weekly, seasonal, and spatial variabilities in carbon dioxide flux in different urban landscapes in Sakai, Japan, Atmos. Chem. Phys., 16, 14727–14740, https://doi.org/10.5194/acp-16-14727-2016, 2016.
United Nations (UN): World Urbanization Prospects: The 2018 Revision
(ST/ESA/SER.A/420), Department of Economic and Social Affairs, Population
Division, United Nations, New York, USA, 2019.
Velasco, E. and Roth, M.: Cities as net sources of CO2: Review of
atmospheric CO2 exchange in urban environments measured by eddy
covariance technique, Geography Compass, 4, 1238–1259, 2010.
Velasco, E., Roth, M., Tan, S. H., Quak, M., Nabarro, S. D. A., and Norford, L.: The role of vegetation in the CO2 flux from a tropical urban neighbourhood, Atmos. Chem. Phys., 13, 10185–10202, https://doi.org/10.5194/acp-13-10185-2013, 2013.
Velasco, E., Roth, M., Norford, L., and Molina, L. T.: Does urban vegetation
enhance carbon sequestration?, Landscape Urban Plan., 148, 99–107,
2016.
Wang, L., Lee, X., Schultz, N., Chen, S., Wei, Z., Fu, C., Gao, Y., Yang, Y,
and Lin, G.: Response of surface temperature to afforestation in the Kubuqi
Desert, Inner Mongolia, J. Geophys. Res.-Atmos., 123,
948–964, 2018.
Ward, H. C., Evans, J. G., and Grimmond, C. S. B.: Multi-season eddy covariance observations of energy, water and carbon fluxes over a suburban area in Swindon, UK, Atmos. Chem. Phys., 13, 4645–4666, https://doi.org/10.5194/acp-13-4645-2013, 2013.
Ward, H. C., Kotthaus, S., Grimmond, C. S. B., Bjorkegren, A., Wilkinson,
M., Morrison, W. T. J., Evans, J. G., Morison, J. I. L., and Iamarino, M.:
Effects of urban density on carbon dioxide exchanges: Observations of dense
urban, suburban and woodland areas of southern England, Environ.
Pollut., 198, 186–200, 2015.
Weissert, L. F., Salmond, J. A., and Schwendenmann, L.: A review of the
current progress in quantifying the potential of urban forests to mitigate
urban CO2 emissions, Urban Climate, 8, 100–125, 2014.
York D., Evensen N., Martinez M., and Delgado J.: Unified equations for the
slope, intercept, and standard errors of the best straight line, Am.
J. Phys., 72, 367–375, 2004.
Yu, C. and Hien, W. N.: Thermal benefits of city parks, Energ.
Buildings, 38, 105–120, 2006.
Short summary
This study examine two benefits of urban forest, thermal mitigation and carbon uptake. Our analysis indicates that the urban forest reduces both the warming trend and urban heat island intensity. Urban forest is a net CO2 source despite larger photosynthetic carbon uptake because of strong contribution of ecosystem respiration, which can be attributed to the substantial amount of soil organic carbon by intensive historical soil use and warm temperature in a city.
This study examine two benefits of urban forest, thermal mitigation and carbon uptake. Our...
Altmetrics
Final-revised paper
Preprint