Articles | Volume 21, issue 22
https://doi.org/10.5194/acp-21-16793-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-16793-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Comment on “Isotopic evidence for dominant secondary production of HONO in near-ground wildfire plumes” by Chai et al. (2021)
James M. Roberts
CORRESPONDING AUTHOR
Chemical Sciences Laboratory, NOAA ESRL, Boulder, CO, USA
Related authors
Zachary Finewax, Aparajeo Chattopadhyay, J. Andrew Neuman, James M. Roberts, and James B. Burkholder
Atmos. Meas. Tech., 17, 6865–6873, https://doi.org/10.5194/amt-17-6865-2024, https://doi.org/10.5194/amt-17-6865-2024, 2024
Short summary
Short summary
This work provides a comprehensive sensitivity calibration of a chemical ionization instrument commonly used in field measurements for the measurement of the toxic isomers methyl isocyanate and hydroxyacetonitrile that are found in the atmosphere. The results from this work have demonstrated that the hydroyacetonitrile isomer was observed in previous field studies rather than the stated identification of methyl isocyanate.
James M. Roberts, Siyuan Wang, Patrick R. Veres, J. Andrew Neuman, Michael A. Robinson, Ilann Bourgeois, Jeff Peischl, Thomas B. Ryerson, Chelsea R. Thompson, Hannah M. Allen, John D. Crounse, Paul O. Wennberg, Samuel R. Hall, Kirk Ullmann, Simone Meinardi, Isobel J. Simpson, and Donald Blake
Atmos. Chem. Phys., 24, 3421–3443, https://doi.org/10.5194/acp-24-3421-2024, https://doi.org/10.5194/acp-24-3421-2024, 2024
Short summary
Short summary
We measured cyanogen bromide (BrCN) in the troposphere for the first time. BrCN is a product of the same active bromine chemistry that destroys ozone and removes mercury in polar surface environments and is a previously unrecognized sink for active Br compounds. BrCN has an apparent lifetime against heterogeneous loss in the range 1–10 d, so it serves as a cumulative marker of Br-radical chemistry. Accounting for BrCN chemistry is an important part of understanding polar Br cycling.
Michael A. Robinson, J. Andrew Neuman, L. Gregory Huey, James M. Roberts, Steven S. Brown, and Patrick R. Veres
Atmos. Meas. Tech., 15, 4295–4305, https://doi.org/10.5194/amt-15-4295-2022, https://doi.org/10.5194/amt-15-4295-2022, 2022
Short summary
Short summary
Iodide chemical ionization mass spectrometry (CIMS) is commonly used in atmospheric chemistry laboratory studies and field campaigns. Deployment of the NOAA iodide CIMS instrument in the summer of 2021 indicated a significant and overlooked temperature dependence of the instrument sensitivity. This work explores which analytes are influenced by this phenomena. Additionally, we recommend controls to reduce this effect for future field deployments.
Benjamin A. Nault, Duseong S. Jo, Brian C. McDonald, Pedro Campuzano-Jost, Douglas A. Day, Weiwei Hu, Jason C. Schroder, James Allan, Donald R. Blake, Manjula R. Canagaratna, Hugh Coe, Matthew M. Coggon, Peter F. DeCarlo, Glenn S. Diskin, Rachel Dunmore, Frank Flocke, Alan Fried, Jessica B. Gilman, Georgios Gkatzelis, Jacqui F. Hamilton, Thomas F. Hanisco, Patrick L. Hayes, Daven K. Henze, Alma Hodzic, James Hopkins, Min Hu, L. Greggory Huey, B. Thomas Jobson, William C. Kuster, Alastair Lewis, Meng Li, Jin Liao, M. Omar Nawaz, Ilana B. Pollack, Jeffrey Peischl, Bernhard Rappenglück, Claire E. Reeves, Dirk Richter, James M. Roberts, Thomas B. Ryerson, Min Shao, Jacob M. Sommers, James Walega, Carsten Warneke, Petter Weibring, Glenn M. Wolfe, Dominique E. Young, Bin Yuan, Qiang Zhang, Joost A. de Gouw, and Jose L. Jimenez
Atmos. Chem. Phys., 21, 11201–11224, https://doi.org/10.5194/acp-21-11201-2021, https://doi.org/10.5194/acp-21-11201-2021, 2021
Short summary
Short summary
Secondary organic aerosol (SOA) is an important aspect of poor air quality for urban regions around the world, where a large fraction of the population lives. However, there is still large uncertainty in predicting SOA in urban regions. Here, we used data from 11 urban campaigns and show that the variability in SOA production in these regions is predictable and is explained by key emissions. These results are used to estimate the premature mortality associated with SOA in urban regions.
Zachary Finewax, Aparajeo Chattopadhyay, J. Andrew Neuman, James M. Roberts, and James B. Burkholder
Atmos. Meas. Tech., 17, 6865–6873, https://doi.org/10.5194/amt-17-6865-2024, https://doi.org/10.5194/amt-17-6865-2024, 2024
Short summary
Short summary
This work provides a comprehensive sensitivity calibration of a chemical ionization instrument commonly used in field measurements for the measurement of the toxic isomers methyl isocyanate and hydroxyacetonitrile that are found in the atmosphere. The results from this work have demonstrated that the hydroyacetonitrile isomer was observed in previous field studies rather than the stated identification of methyl isocyanate.
James M. Roberts, Siyuan Wang, Patrick R. Veres, J. Andrew Neuman, Michael A. Robinson, Ilann Bourgeois, Jeff Peischl, Thomas B. Ryerson, Chelsea R. Thompson, Hannah M. Allen, John D. Crounse, Paul O. Wennberg, Samuel R. Hall, Kirk Ullmann, Simone Meinardi, Isobel J. Simpson, and Donald Blake
Atmos. Chem. Phys., 24, 3421–3443, https://doi.org/10.5194/acp-24-3421-2024, https://doi.org/10.5194/acp-24-3421-2024, 2024
Short summary
Short summary
We measured cyanogen bromide (BrCN) in the troposphere for the first time. BrCN is a product of the same active bromine chemistry that destroys ozone and removes mercury in polar surface environments and is a previously unrecognized sink for active Br compounds. BrCN has an apparent lifetime against heterogeneous loss in the range 1–10 d, so it serves as a cumulative marker of Br-radical chemistry. Accounting for BrCN chemistry is an important part of understanding polar Br cycling.
Michael A. Robinson, J. Andrew Neuman, L. Gregory Huey, James M. Roberts, Steven S. Brown, and Patrick R. Veres
Atmos. Meas. Tech., 15, 4295–4305, https://doi.org/10.5194/amt-15-4295-2022, https://doi.org/10.5194/amt-15-4295-2022, 2022
Short summary
Short summary
Iodide chemical ionization mass spectrometry (CIMS) is commonly used in atmospheric chemistry laboratory studies and field campaigns. Deployment of the NOAA iodide CIMS instrument in the summer of 2021 indicated a significant and overlooked temperature dependence of the instrument sensitivity. This work explores which analytes are influenced by this phenomena. Additionally, we recommend controls to reduce this effect for future field deployments.
Benjamin A. Nault, Duseong S. Jo, Brian C. McDonald, Pedro Campuzano-Jost, Douglas A. Day, Weiwei Hu, Jason C. Schroder, James Allan, Donald R. Blake, Manjula R. Canagaratna, Hugh Coe, Matthew M. Coggon, Peter F. DeCarlo, Glenn S. Diskin, Rachel Dunmore, Frank Flocke, Alan Fried, Jessica B. Gilman, Georgios Gkatzelis, Jacqui F. Hamilton, Thomas F. Hanisco, Patrick L. Hayes, Daven K. Henze, Alma Hodzic, James Hopkins, Min Hu, L. Greggory Huey, B. Thomas Jobson, William C. Kuster, Alastair Lewis, Meng Li, Jin Liao, M. Omar Nawaz, Ilana B. Pollack, Jeffrey Peischl, Bernhard Rappenglück, Claire E. Reeves, Dirk Richter, James M. Roberts, Thomas B. Ryerson, Min Shao, Jacob M. Sommers, James Walega, Carsten Warneke, Petter Weibring, Glenn M. Wolfe, Dominique E. Young, Bin Yuan, Qiang Zhang, Joost A. de Gouw, and Jose L. Jimenez
Atmos. Chem. Phys., 21, 11201–11224, https://doi.org/10.5194/acp-21-11201-2021, https://doi.org/10.5194/acp-21-11201-2021, 2021
Short summary
Short summary
Secondary organic aerosol (SOA) is an important aspect of poor air quality for urban regions around the world, where a large fraction of the population lives. However, there is still large uncertainty in predicting SOA in urban regions. Here, we used data from 11 urban campaigns and show that the variability in SOA production in these regions is predictable and is explained by key emissions. These results are used to estimate the premature mortality associated with SOA in urban regions.
Cited articles
Alvarado, M. J., Logan, J. A., Mao, J., Apel, E., Riemer, D., Blake, D., Cohen, R. C., Min, K.-E., Perring, A. E., Browne, E. C., Wooldridge, P. J., Diskin, G. S., Sachse, G. W., Fuelberg, H., Sessions, W. R., Harrigan, D. L., Huey, G., Liao, J., Case-Hanks, A., Jimenez, J. L., Cubison, M. J., Vay, S. A., Weinheimer, A. J., Knapp, D. J., Montzka, D. D., Flocke, F. M., Pollack, I. B., Wennberg, P. O., Kurten, A., Crounse, J., Clair, J. M. St., Wisthaler, A., Mikoviny, T., Yantosca, R. M., Carouge, C. C., and Le Sager, P.: Nitrogen oxides and PAN in plumes from boreal fires during ARCTAS-B and their impact on ozone: an integrated analysis of aircraft and satellite observations, Atmos. Chem. Phys., 10, 9739–9760, https://doi.org/10.5194/acp-10-9739-2010, 2010.
Chai, J.: Author comment 1, https://doi.org/10.5194/acp-2021-225-AC1, 2021.
Chai, J., Dibb, J. E., Anderson, B. E., Bekker, C., Blum, D. E., Heim, E., Jordan, C. E., Joyce, E. E., Kaspari, J. H., Munro, H., Walters, W. W., and Hastings, M. G.: Isotopic evidence for dominant secondary production of HONO in near-ground wildfire plumes, Atmos. Chem. Phys., 21, 13077–13098, https://doi.org/10.5194/acp-21-13077-2021, 2021.
Grosjean, D., Fung, K., Collins, J., Harrison, J., and Breitung, E.: Portable generator for on-site calibration of peroxyacetyl nitrate
analyzers, Anal. Chem., 56, 569–573, 1984.
Grosjean, D. and Harrison, J., Peroxyacetyl nitrate: Comparison of alkaline
hydrolysis and chemiluminescence methods, Environ. Sci. Technol., 19,
749–752, 1985.
Juncosa Calahorrano, J. F., Lindaas, J., O'Dell, K., Palm, B. B., Peng, Q.,
Flocke, F., Pollack, I. B., Garofalo, L. A., Farmer, D. K., Pierce, J. R.,
Collett Jr., J. L., Weinheimer, A., Campos, T., Hornbrook, R. S., Hall, S.
R., Ullman, K., Pothier, M. A., Apel, E. C., Permar, W., Hu, L., Hills, A.
J., Montzka, D., Tyndall, G. S., Thornton, J. A., and Fischer, E. V.:
Daytime oxidized reactive nitrogen partitioning in western U.S. wildfire
smoke plumes, J. Geophys. Res., 126, e2020JD033484, https://doi.org/10.1029/2020JD033484, 2020.
Kabir, M., Jagiella, S., and Zabel, F.: Thermal stability of n-acyl
peroxynitrates, Int. J. Chem Kinet., 46, 462–469, 2014.
Kirchner, F., Mayer-Figge, A., Zabel, F., and Becker, K. H.: Thermal
stability of peroxynitrates, Int. J. Chem. Kinet., 31, 127–144, 1999.
McClure, C. D. and Jaffe, D. A.: Investiation of high ozone events due to wildfire
samoke in an urban area, Atmos Environ., 194, 146–157, 2018.
Roberts, J.: Referee comment 1,
https://doi.org/10.5194/acp-2021-225-RC1.
Roberts, J. M.: The atmospheric chemistry of organic nitrates, Atmos.
Environ., 24A, 243–287, 1990.
Roberts, J. M., Flocke, F., Stroud, C. A., Hereid, D., Williams, E. J.,
Fehsenfeld, F. C., Brune, W., Martinez, M., and Harder, H.: Ground-based
measurements of PANs during the 1999 Southern Oxidants Study Nashville
intensive, J. Geophys. Res., 107, 4554, https://doi.org/10.1029/2001JD000947, 2002.
Roberts, J. M., Marchewka, M., Bertman, S. B., Sommariva, R., Kuster, W. C.,
Goldan, P. D., Williams, E. J., Lerner, B. M., and Fehsenfeld, F. C.:
Measurements of peroxycarboxylic nitric anhydrides off the coast of the
northeast United States during the New England Air Quality Study, (NEAQS)
2002, J. Geophys. Res., 112, D20306, https://doi.org/10.1029/2007JD008667, 2007.
Sander, R.: Compilation of Henry's law constants (version 4.0) for water as solvent, Atmos. Chem. Phys., 15, 4399–4981, https://doi.org/10.5194/acp-15-4399-2015, 2015.
Steer, R. P., Darnall, K. R., and Pitts Jr., J. N.: The base-induced
decomposition of peroxyacetylnitrate, Tetrahedron Lett., 43, 3765–3767, 1969.
Stephens, E. R.: The formation, reactions, and properties of peroxyacyl
nitrates (PANs) in photochemical air pollution, Adv. Environ. Sci., 1,
119–146, 1969.
Talukdar, R. K., Burkholder, J. B., Schmoltner, A.-M., Roberts, J. M.,
Wilson, R. R., and Ravishankara, A. R.: Investigation of the loss processes
for peroxyacetyl nitrate in the atmosphere: UV photolysis and reaction with
OH, J. Geophys. Res., 100, 14163–14173, 1995.
Short summary
This comment provides evidence that recently reported measurements of the isotope composition of wildfire-derived oxides of nitrogen have a significant interference from other nitrogen compounds. In addition, the conceptual model used to interpret the results was missing several key reactions.
This comment provides evidence that recently reported measurements of the isotope composition of...
Altmetrics
Final-revised paper
Preprint