Articles | Volume 21, issue 19
https://doi.org/10.5194/acp-21-15239-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-15239-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Characterization of ambient volatile organic compounds, source apportionment, and the ozone–NOx–VOC sensitivities in a heavily polluted megacity of central China: effect of sporting events and emission reductions
Shijie Yu
College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
Institute of Environmental Sciences, Zhengzhou University, Zhengzhou 450001, China
Fangcheng Su
College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
Institute of Environmental Sciences, Zhengzhou University, Zhengzhou 450001, China
Shasha Yin
Institute of Environmental Sciences, Zhengzhou University, Zhengzhou 450001, China
School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
Shenbo Wang
Institute of Environmental Sciences, Zhengzhou University, Zhengzhou 450001, China
School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
Ruixin Xu
Institute of Environmental Sciences, Zhengzhou University, Zhengzhou 450001, China
School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
Bing He
Environmental Protection Monitoring Center Station of Zhengzhou, Zhengzhou 450007, China
Xiangge Fan
Environmental Protection Monitoring Center Station of Zhengzhou, Zhengzhou 450007, China
Minghao Yuan
Environmental Protection Monitoring Center Station of Zhengzhou, Zhengzhou 450007, China
Ruiqin Zhang
CORRESPONDING AUTHOR
Institute of Environmental Sciences, Zhengzhou University, Zhengzhou 450001, China
School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
Related authors
Shijie Yu, Hongyu Liu, Hui Wang, Fangcheng Su, Beibei Wang, Minghao Yuan, Kunao Song, Zixian Wang, Daoqing Xu, and Ruiqin Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2024-4178, https://doi.org/10.5194/egusphere-2024-4178, 2025
Preprint archived
Short summary
Short summary
This study investigates O3 pollution in Zhengzhou. The results show that traffic and industrial emissions are the main sources of O3 and its precursors. The study highlights the significant impact of local emissions and the role of atmospheric free radicals in ozone formation. Reducing emissions of aromatics and alkenes can effectively reduce ozone pollution. These findings stress the importance of controlling traffic and industrial sources to mitigate O3 pollution.
Shijie Yu, Shenbo Wang, Ruixin Xu, Dong Zhang, Meng Zhang, Fangcheng Su, Xuan Lu, Xiao Li, Ruiqin Zhang, and Lingling Wang
Atmos. Chem. Phys., 22, 14859–14878, https://doi.org/10.5194/acp-22-14859-2022, https://doi.org/10.5194/acp-22-14859-2022, 2022
Short summary
Short summary
In this study, the hourly data of 57 VOC species were collected during 2018–2020 at an urban site in Zhengzhou, China. The research of concentrations, source apportionment, and atmospheric environmental implications clearly elucidated the differences in major reactants observed in different seasons and years. Therefore, the control strategy should focus on key species and sources among interannual and seasonal variations. The results can provide references to develop control strategies.
Qixiang Xu, Zilin Jin, Qi Ying, Ke Wang, Fangcheng Su, Ruiqin Zhang, and Michael J. Kleeman
Atmos. Chem. Phys., 25, 9431–9449, https://doi.org/10.5194/acp-25-9431-2025, https://doi.org/10.5194/acp-25-9431-2025, 2025
Short summary
Short summary
This paper introduces a novel approach for improving the computational efficiency and scalability of source-oriented chemical mechanisms by simplifying the representation of reactions involving source-tagged species and implementing a source-oriented Euler backward iterative (EBI) solver. These advancements reduce simulation times by up to 74 % while maintaining accuracy, offering significant practical benefits for long-term source apportionment studies.
Hongyu Zhang, Shenbo Wang, Zhangsen Dong, Xiao Li, and Ruiqin Zhang
Atmos. Chem. Phys., 25, 6943–6955, https://doi.org/10.5194/acp-25-6943-2025, https://doi.org/10.5194/acp-25-6943-2025, 2025
Short summary
Short summary
Analyzing 12-year Zhengzhou data revealed post-2019 crustal material rebound caused by soil dust resuspension, elevating particle pH. Similar coarse particle increases are observed across cities of the North China Plain. Long-term particle acidity evolution in this region requires an integrated assessment of interactions among acidic precursors, ammonia, and crustal components.
Shijie Yu, Hongyu Liu, Hui Wang, Fangcheng Su, Beibei Wang, Minghao Yuan, Kunao Song, Zixian Wang, Daoqing Xu, and Ruiqin Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2024-4178, https://doi.org/10.5194/egusphere-2024-4178, 2025
Preprint archived
Short summary
Short summary
This study investigates O3 pollution in Zhengzhou. The results show that traffic and industrial emissions are the main sources of O3 and its precursors. The study highlights the significant impact of local emissions and the role of atmospheric free radicals in ozone formation. Reducing emissions of aromatics and alkenes can effectively reduce ozone pollution. These findings stress the importance of controlling traffic and industrial sources to mitigate O3 pollution.
Bowen Zhang, Dong Zhang, Zhe Dong, Xinshuai Song, Ruiqin Zhang, and Xiao Li
Atmos. Chem. Phys., 24, 13587–13601, https://doi.org/10.5194/acp-24-13587-2024, https://doi.org/10.5194/acp-24-13587-2024, 2024
Short summary
Short summary
To gain insight into the impact of changes due to epidemic control policies, we undertook continuous online monitoring of volatile organic compounds (VOCs) at an urban site in Zhengzhou over a 2-month period. This study examines the characteristics of VOCs, their sources, and their temporal evolution. It also assesses the impact of the policy change on VOC pollution during the monitoring period, thus providing a basis for further research on VOC pollution and source control.
Xinyuan Zhang, Lingling Wang, Nan Wang, Shuangliang Ma, Shenbo Wang, Ruiqin Zhang, Dong Zhang, Mingkai Wang, and Hongyu Zhang
Atmos. Chem. Phys., 24, 9885–9898, https://doi.org/10.5194/acp-24-9885-2024, https://doi.org/10.5194/acp-24-9885-2024, 2024
Short summary
Short summary
This study highlights the importance of the redox reaction of NO2 with SO2 based on actual atmospheric observations. The particle pH in future China is expected to rise steadily. Consequently, this reaction could become a significant source of HONO in China. Therefore, it is crucial to coordinate the control of SO2, NOx, and NH3 emissions to avoid a rapid increase in the particle pH.
Dong Zhang, Xiao Li, Minghao Yuan, Yifei Xu, Qixiang Xu, Fangcheng Su, Shenbo Wang, and Ruiqin Zhang
Atmos. Chem. Phys., 24, 8549–8567, https://doi.org/10.5194/acp-24-8549-2024, https://doi.org/10.5194/acp-24-8549-2024, 2024
Short summary
Short summary
The increasing concentration of O3 precursors and unfavorable meteorological conditions are key factors in the formation of O3 pollution in Zhengzhou. Vehicular exhausts (28 %), solvent usage (27 %), and industrial production (22 %) are identified as the main sources of NMVOCs. Moreover, O3 formation in Zhengzhou is found to be in an anthropogenic volatile organic compound (AVOC)-limited regime. Thus, to reduce O3 formation, a minimum AVOCs / NOx reduction ratio ≥ 3 : 1 is recommended.
Shijie Yu, Shenbo Wang, Ruixin Xu, Dong Zhang, Meng Zhang, Fangcheng Su, Xuan Lu, Xiao Li, Ruiqin Zhang, and Lingling Wang
Atmos. Chem. Phys., 22, 14859–14878, https://doi.org/10.5194/acp-22-14859-2022, https://doi.org/10.5194/acp-22-14859-2022, 2022
Short summary
Short summary
In this study, the hourly data of 57 VOC species were collected during 2018–2020 at an urban site in Zhengzhou, China. The research of concentrations, source apportionment, and atmospheric environmental implications clearly elucidated the differences in major reactants observed in different seasons and years. Therefore, the control strategy should focus on key species and sources among interannual and seasonal variations. The results can provide references to develop control strategies.
Cited articles
Atkinson, R. and Arey, J.:
Atmospheric degradation of volatile organic compounds,
Chem. Rev.,
103, 4605–4638, https://doi.org/10.1021/cr0206420, 2003.
Bai, L., Lu, X., Yin, S., Zhang, H., Ma, S., Wang, C., Li, Y., and Zhang, R.:
A recent emission inventory of multiple air pollutant, PM2.5 chemical species and its spatial-temporal characteristics in central China,
J. Clean. Prod.,
269, 112–114, 2020.
Baudic, A., Gros, V., Sauvage, S., Locoge, N., Sanchez, O., Sarda-Estève, R., Kalogridis, C., Petit, J.-E., Bonnaire, N., Baisnée, D., Favez, O., Albinet, A., Sciare, J., and Bonsang, B.: Seasonal variability and source apportionment of volatile organic compounds (VOCs) in the Paris megacity (France), Atmos. Chem. Phys., 16, 11961–11989, https://doi.org/10.5194/acp-16-11961-2016, 2016.
Bressi, M., Sciare, J., Ghersi, V., Mihalopoulos, N., Petit, J.-E., Nicolas, J. B., Moukhtar, S., Rosso, A., Féron, A., Bonnaire, N., Poulakis, E., and Theodosi, C.: Sources and geographical origins of fine aerosols in Paris (France), Atmos. Chem. Phys., 14, 8813–8839, https://doi.org/10.5194/acp-14-8813-2014, 2014.
Brito, J., Wurm, F., Serrano, A., Assuno, J., Artaxo, P., Godoy, J., and Artaxo, P.: Vehicular Emission Ratios of VOCs in a Megacity Impacted by Extensive Ethanol Use: Results of Ambient Measurements in Sao Paulo, Brazil, Environ. Sci. Technol., 49, 11381, https://doi.org/10.1021/acs.est.5b03281, 2015.
Byun, D. and Ching, J.:
Science Algorithms of the EPA Models-3 Community Multiscale Air Quality (CMAQ) Modeling System,
US Environmental Protection Agency, Office of Research and Development, Washington, DC, USA, 1999.
Carter, W.:
Development of ozone reactivity scales for volatile organic compounds,
J. Air Waste Manage.,
44, 881–899, 1994.
Carter, W.: Updated Maximum Incremental Reactivity Scale and Hydrocarbon Bin Reactivities for Regulatory Applications, prepared for California Air Resources Board Contract 07-339, College of Engineering Center for Environmental Research and Technology, University of California, Riverside, California, 2010a.
Carter, W.:
Development of the SAPRC-07 chemical mechanism,
Atmos. Environ.,
44, 5324–5335, 2010b.
Chan, K. L., Hartl, A., Lam, Y. F., Xie, P. H., Liu, W. Q., Cheung, H. M., Lampel, J., Pöhler, D., Li, A., Xu, J., Zhou, H. J., Ning, Z., and Wenig, M. O.:
Observations of tropospheric NO2 using ground based MAX-DOAS and OMI measurements during the Shanghai World Expo 2010,
Atmos. Environ.,
119, 45–58, 2015.
Chen, X., Situ, S., Zhang, Q., Wang, X., Sha, C., Zhouc, L., Wu, L., Wu, L., Ye, L., and Li, C.:
The synergetic control of NO2 and O3 concentrations in a manufacturing city of southern China,
Atmos. Environ.,
201, 402–416, 2019.
Chemel, C., Fisher, B., Kong, X., Francis, X., Sokhi, R., Good, N., Collins, W., and Folberth, G.:
Application of chemical transport model CMAQ to policy decisions regarding PM2.5 in the UK,
Atmos. Environ.,
82, 410–417, 2014.
Chi, X., Liu, C., Xie, Z., Fan, G., Wang, Y., He, P., Fan, S., Hong, Q., Wang, Z., Yu, X., Yue, F., Duan, J., Zhang, P., and Liu, J.:
Observations of ozone vertical profiles and corresponding precursors in the low troposphere in Beijing, China,
Atmos. Res.,
213, 224–235, 2018.
Dörter, M., Odabasi, M., and Yenisoy-Karaka, S.: Source apportionment of biogenic and anthropogenic VOCs in Bolu plateau, Sci. Total Environ., 731, 139201, https://doi.org/10.1016/j.scitotenv.2020.139201, 2020.
Gentner, D., Harley, R., Miller, A., and Goldstein, A.:
Diurnal and seasonal variability of gasoline-related volatile organic compound emissions in Riverside, California,
Environ. Sci. Technol.,
43, 4247–4252, 2009.
Gu, Y., Li, Q., Wei, D., Gao, L., Tan, L., Su, G., Liu, G., Liu, W., Li, C., and Wang, Q.:
Emission characteristics of 99 NMVOCs in different seasonal days and the relationship with air quality parameters in Beijing, China,
Ecotox. Environ. Safe.,
169, 797–806, 2019.
Guenther, A.:
Seasonal and spatial variations in natural volatile organic compound emissions,
Ecol. Appl.,
7, 34–45, 1997.
Guenther, A., Hewitt, C. N., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P., Klinger, L., Lerdau, M., McKay, W. A., Pierce, T., Scholes, B., Steinbrecher, R., Tallamraju, R., Taylor, J., and Zimmerman, P.:
A global model of natural volatile organic compound emissions,
J. Geophys. Res.,
100, 8873–8892, 1995.
Hakami, A., Henze, D. K., Seinfeld, J. H., Singh, K., Sandu, A., Kim, S., Byun, D., and Li, Q.:
The adjoint of CMAQ,
Environ. Sci. Technol.,
41, 7807–7817, https://doi.org/10.1021/es070944p, 2007.
Hsu, C. Y., Chiang, H. C., Shie, R. H., Ku, C. H., Lin, T. Y., Chen, M. J., Chen, N. T., and Chen, Y. C.:
Ambient VOCs in residential areas near a large-scale petrochemical complex: Spatiotemporal variation, source apportionment and health risk,
Environ. Pollut.,
240, 95–104, 2018.
Hu, R., Liu, G., Zhang, H., Xue, H., and Wang, X.:
Levels, characteristics and health risk assessment of VOCs in different functional zones of Hefei,
Ecotox. Environ. Safe.,
160, 301–307, 2018.
Huang, W., Fang, D., Shang, J., Li, Z., Zhang, Y., Huo, P., Liu, Z., Schauer, J. J., and Zhang, Y.:
Relative impact of short-term emissions controls on gas and particle-phase oxidative potential during the 2015 China Victory Day Parade in Beijing, China,
Atmos. Environ.,
183, 49–56, 2018.
Huang, Y. S. and Hsieh, C. C.:
Ambient volatile organic compound presence in the highly urbanized city: source apportionment and emission position,
Atmos. Environ.,
206, 45–59, 2019.
Hui, L., Liu, X., Tan, Q., Feng, M., An, J., Qu, Y., Zhang, Y., and Jiang, M.:
Characteristics, source apportionment and contribution of VOCs to ozone formation in Wuhan, Central China,
Atmos. Environ.,
192, 55–71, 2018.
Hui, L., Liu, X., Tan, Q., Feng, M., An, J., Qu, Y., Zhang, Y., and Cheng, N.:
VOC characteristics, sources and contributions to SOA formation during haze events in Wuhan, Central China,
Sci. Total Environ.,
650, 2624–2639, 2019.
Hui, L., Liu, X., Tan, Q., Feng, M., An, J., Qu, Y., Zhang, Y., Deng, Y., Zhai, R., and Wang, Z.: VOC characteristics, chemical reactivity and sources in urban Wuhan, central China, Atmos. Environ., 224, 117340, https://doi.org/10.1016/j.atmosenv.2020.117340, 2020.
Jaars, K., Vestenius, M., van Zyl, P. G., Beukes, J. P., Hellén, H., Vakkari, V., Venter, M., Josipovic, M., and Hakola, H.:
Receptor modelling and risk assessment of volatile organic compounds measured at a regional background site in South Africa,
Atmos. Environ.,
172, 133–148, 2018.
Jiang, N., Li, L., Wang, S., Li, Q., Dong, Z., Duan, S., Zhang, R., and Li, S.:
Variation tendency of pollution characterization, sources, and health risks of PM2.5-bound polycyclic aromatic hydrocarbons in an emerging megacity in China: Based on three-year data,
Atmos. Res.,
217, 81–92, 2019.
Kumar, A., Singh, D., Kumar, K., Singh, B. B., and Jain, V. K.:
Distribution of VOCs in urban and rural atmospheres of subtropical India: Temporal variation, source attribution, ratios, OFP and risk assessment,
Sci. Total Environ.,
613-614, 492–501, 2018.
Li, B., Ho, S. S. H., Gong, S., Ni, J., Li, H., Han, L., Yang, Y., Qi, Y., and Zhao, D.: Characterization of VOCs and their related atmospheric processes in a central Chinese city during severe ozone pollution periods, Atmos. Chem. Phys., 19, 617–638, https://doi.org/10.5194/acp-19-617-2019, 2019.
Li, H., Wang, D., Cui, L., Gao, Y., Huo, J., Wang, X., Zhang, Z., Tan, Y., Huang, Y., Cao, J., Chow, J., Lee, S., and Fu, Q.: Characteristics of atmospheric PM2.5 composition during the implementation of stringent pollution control measures in shanghai for the 2016 G20 summit, Sci. Total. Environ., 648, 1121–1129, https://doi.org/10.1016/j.scitotenv.2018.08.219, 2019.
Li, J., Xie, S. D., Zeng, L. M., Li, L. Y., Li, Y. Q., and Wu, R. R.: Characterization of ambient volatile organic compounds and their sources in Beijing, before, during, and after Asia-Pacific Economic Cooperation China 2014, Atmos. Chem. Phys., 15, 7945–7959, 2015.
Li, J., Zhai, C., Yu, J., Liu, R., Li, Y., Zeng, L., and Xie, S.:
Spatiotemporal variations of ambient volatile organic compounds and their sources in Chongqing, a mountainous megacity in China,
Sci. Total Environ.,
627, 1442–1452, 2018.
Li, K., Li, J., Wang, W., Tong, S., Liggio, J., and Ge, M.:
Evaluating the effectiveness of joint emission control policies on the reduction of ambient VOCs: Implications from observation during the 2014 APEC summit in suburban Beijing,
Atmos. Environ.,
164, 117–127, 2017.
Li, K., Li, J., Tong, S., Wang, W., Huang, R.-J., and Ge, M.: Characteristics of wintertime VOCs in suburban and urban Beijing: concentrations, emission ratios, and festival effects, Atmos. Chem. Phys., 19, 8021–8036, https://doi.org/10.5194/acp-19-8021-2019, 2019.
Li, R., Wang, Z., Cui, L., Fu, H., Zhang, L., Kong, L., Chen, W., and Chen, J.:
Air pollution characteristics in China during 2015-2016: Spatiotemporal variations and key meteorological factors,
Sci. Total Environ.,
648, 902–915, 2019.
Li, Y., Yin, S., Yu, S., Yuan, M., Dong, Z., Zhang, D., Yang, L., and Zhang, R.: Characteristics, source apportionment and health risks of ambient VOCs during high ozone period at an urban site in central plain, China, Chemosphere, 250, 126283, https://doi.org/10.1016/j.chemosphere.2020.126283, 2020.
Li, Y., Yin, S., Yu, S., Bai, L., Wang, X., Lu, X., and Ma, S.:
Characteristics of ozone pollution and the sensitivity to precursors during early summer in central plain, China,
J. Environ. Sci.-China,
99, 354–368, 2021.
Ling, Z. H., Guo, H., Cheng, H. R., and Yu, Y. F.:
Sources of ambient volatile organic compounds and their contributions to photochemical ozone formation at a site in the Pearl River Delta, southern China,
Environ. Pollut.,
159, 2310–2319, 2011.
Liu, Y., Wang, H., Jing, S., Gao, Y., Peng, Y., Lou, S., Cheng, T., Tao, S., Li, L., Li, Y., Huang, D., Wang, Q., and An, J.: Characteristics and sources of volatile organic compounds (VOCs) in Shanghai during summer: Implications of regional transport, Atmos. Environ., 215, 116902, https://doi.org/10.1016/j.atmosenv.2019.116902, 2019.
Liu, Y., Song, M., Liu, X., Zhang, Y., Hui, L., Kong, L., Zhang, Y., Zhang, C., Qu, Y., An, J., Ma, D., Tan, Q., and Feng, M.: Characterization and sources of volatile organic compounds (VOCs) and their related changes during ozone pollution days in 2016 in Beijing, China, Environ. Pollut., 257, 113599, https://doi.org/10.1016/j.envpol.2019.113599, 2020.
Ma, T., Duan, F., He, K., Qin, Y., Tong, D., Geng, G., Liu, X., Li, H., Yang, S., Ye, S., Xu, B., Zhang, Q., and Ma, Y.:
Air pollution characteristics and their relationship with emissions and meteorology in the Yangtze River Delta region during 2014–2016,
J. Environ. Sci.-China,
83, 8–20, 2019.
McRoberts, W., Keppler, F., Harper, D., and Hamilton, J.:
Seasonal changes in chlorine and methoxyl content of leaves of deciduous trees and their impact on release of chloromethane and methanol at elevated temperatures,
Environ. Chem.,
12, 426–437, 2015.
Norris, G., Duvall, R., Brown, S., and Bai, S.:
EPA Positive Matrix Factorization (PMF) 5.0, Fundamentals and User Guide, EPA/600/R-14/108,
US Environmental Protection Agency, Washington, DC, 2014.
RAIS (The Risk Assessment Information System): available at: http://rais.ornl.gov/tools/profile.php (last access: 10 October 2019), 2016.
Ren, Y., Li, H., Meng, F., Wang, G., Zhang, H., Yang, T., Li, W., Ji, Y., Bi, F., and Wang, X.:
Impact of emission controls on air quality in Beijing during the 2015 China Victory Day Parade: Implication from organic aerosols,
Atmos. Environ.,
198, 207–214, 2019.
Sahu, L., Tripathi, N., and Yadav, R.:
Contribution of biogenic and photochemical sources to ambient VOCs during winter to summer transition at a semi-arid urban site in India,
Environ. Pollut.,
229, 595–606, 2017.
Schauer, J., Kleeman, M., Cass, G., and Simoneit, B.:
Measurement of emissions from air pollution sources. 3. C1-C29 organic compounds fromfireplace combustion of wood,
Environ. Sci. Technol.,
35, 1716–1728, 2001.
Schleicher, N., Norra, S., and Chen, Y.:
Efficiency of mitigation measures to reduce particulate air pollution-a case study during the Olympic Summer Games 2008 in Beijing, China,
Sci. Total Environ.,
427–428, 146–158, 2012.
Sillman, S.:
The relation between ozone, NOx and hydrocarbons in urban and polluted rural environments,
Atmos. Environ.,
33, 1821–1845, 1999.
Song, C., Liu, B., Dai, Q., Li, H., and Mao, H.:
Temperature dependence and source apportionment of volatile organic compounds (VOCs) at an urban site on the north China plain,
Atmos. Environ.,
207, 167–181, https://doi.org/10.1016/j.atmosenv.2019.03.030, 2019.
Song, M., Liu, X., Zhang, Y., Shao, M., Lu, K., Tan, Q., Feng, M., and Qu, Y.:
Sources and abatement mechanisms of VOCs in southern China,
Atmos. Environ.,
201, 28–40, https://doi.org/10.1016/j.atmosenv.2018.12.019, 2019.
Su, F., Xu, Q., Wang, K., Yin, S., Wang, S., Zhang, R., Tang, X., and Ying, Q.:
On the effectiveness of short-term intensive emission controls on ozone and particulate matter in a heavily polluted megacity in central China,
Atmos. Environ.,
246, 118111, https://doi.org/10.1016/j.atmosenv.2020.118111, 2021.
Tan, Z., Lu, K., Dong, H., Hu, M., Li, X., Liu, Y., Lu, S., Shao, M., Su, R., Wang, H., Wu, Y., Wahner, A., and Zhang, Y.:
Explicit diagnosis of the local ozone production rate and the ozone-NOx-VOC sensitivities,
Sci. Bull.,
63, 1067–1076, 2018.
Ulbrich, I. M., Canagaratna, M. R., Zhang, Q., Worsnop, D. R., and Jimenez, J. L.: Interpretation of organic components from Positive Matrix Factorization of aerosol mass spectrometric data, Atmos. Chem. Phys., 9, 2891–2918, https://doi.org/10.5194/acp-9-2891-2009, 2009.
US EPA: Air Method, Toxic Organics-15 (TO-15): Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, 2nd edn., Determination of Volatile Organic Compounds (VOCs) in Air Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS), Cincinnati, 1999.
US EPA:
Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment), EPA-540-R-070–002,
US Environmental Protection Agency, Washington, DC, USA, 2009.
Waked, A., Favez, O., Alleman, L. Y., Piot, C., Petit, J.-E., Delaunay, T., Verlinden, E., Golly, B., Besombes, J.-L., Jaffrezo, J.-L., and Leoz-Garziandia, E.: Source apportionment of PM10 in a north-western Europe regional urban background site (Lens, France) using positive matrix factorization and including primary biogenic emissions, Atmos. Chem. Phys., 14, 3325–3346, https://doi.org/10.5194/acp-14-3325-2014, 2014.
Wang, H., Chen, C., Wang, Q., Huang, C., Su, L., Huang, H., Lou, S., Zhou, M., Li, L., Qiao, L., and Wang, Y.:
Chemical loss of volatile organic compounds and its impact on the source analysis through a two-year continuous measurement,
Atmos. Environ.,
80, 488–498, 2013.
Wang, M., Zhu, T., Zheng, J., Zhang, R. Y., Zhang, S. Q., Xie, X. X., Han, Y. Q., and Li, Y.: Use of a mobile laboratory to evaluate changes in on-road air pollutants during the Beijing 2008 Summer Olympics, Atmos. Chem. Phys., 9, 8247–8263, https://doi.org/10.5194/acp-9-8247-2009, 2009.
Wang, N., Lyu, X., Deng, X., Huang, X., Jiang, F., and Ding, A.:
Aggravating O3 pollution due to NOx emission control in eastern China,
Sci. Total Environ.,
677, 732–744, https://doi.org/10.1016/j.scitotenv.2019.04.388, 2019.
Wang, P., Chen, Y., Hu, J., Zhang, H., and Ying, Q.:
Attribution of tropospheric ozone to NOx and VOC emissions: considering ozone formation in the transition regime,
Environ. Sci. Technol.,
53, 1404–1412, 2019.
Wang, S., He, B., Yuan, M., Su, F., Yin, S., Yan, Q., Jiang, N., Zhang, R., and Tang, X.:
Characterization of individual particles and meteorological conditions during the cold season in Zhengzhou using a single particle aerosol mass spectrometer,
Atmos. Res.,
219, 13–23, https://doi.org/10.1016/j.atmosres.2018.12.021, 2019.
Wang, W., Jing, L., Zhan, J., Wang, B., Zhang, D. P., Zhang, H. W., Wang, D. Q., Yang, Y., Zhao, J., Sun, Y. F., Bi, X. H., Wang, X. T., and Feng, J. L.:
Nitrated polycyclic aromatic hydrocarbon pollution during the Shanghai World Expo 2010,
Atmos. Environ.,
89, 242–248, 2014.
Wei, X.-Y., Liu, M., Yang, J., Du, W.-N., Sun, X., Huang, Y.-P., Zhang, X., Khalil, S. K., Luo, D.-M., and Zhou, Y.-D.:
Characterization of PM2.5-bound PAHs and carbonaceous aerosols during three-month severe haze episode in Shanghai, China: Chemical composition, source apportionment and long-range transportation,
Atmos. Environ.,
203, 1–9, 2019.
Wu, F., Yu, Y., Sun, J., Zhang, J., Wang, J., Tang, G., and Wang, Y.:
Characteristics, source apportionment and reactivity of ambient volatile organic compounds at Dinghu Mountain in Guangdong Province, China,
Sci. Total Environ.,
548–549, 347–359, 2016.
Wu, R., Li, J., Hao, Y., Li, Y., Zeng, L., and Xie, S.:
Evolution process and sources of ambient volatile organic compounds during a severe haze event in Beijing, China,
Sci. Total Environ.,
560–561, 62–72, https://doi.org/10.1016/j.scitotenv.2016.04.030, 2016.
Xiong, Y. and Du, K.:
Source-resolved attribution of ground-level ozone formation potential from VOC emissions in Metropolitan Vancouver, BC,
Sci. Total Environ.,
721, 137698, https://doi.org/10.1016/j.scitotenv.2020.137698, 2020.
Xu, W., Liu, X., Liu, L., Dore, A. J., Tang, A., Lu, L., Wu, Q., Zhang, Y., Hao, T., Pan, Y., Chen, J., and Zhang, F.:
Impact of emission controls on air quality in Beijing during APEC 2014: Implications from water-soluble ions and carbonaceous aerosol in PM2.5 and their precursors,
Atmos. Environ.,
210, 241–252, 2019.
Yadav, R., Sahu, L. K., Tripathi, N., Pal, D., Beig, G., and Jaaffrey, S. N. A.:
Investigation of emission characteristics of NMVOCs over urban site of western India,
Environ. Pollut.,
252, 245–255, 2019.
Yan, Y., Peng, L., Li, R., Li, Y., Li, L., and Bai, H.:
Concentration, ozone formation potential and source analysis of volatile organic compounds (VOCs) in a thermal power station centralized area: A study in Shuozhou, China,
Environ. Pollut.,
223, 295–304, 2017.
Yang, W., Zhang, Y., Wang, X., Li, S., Zhu, M., Yu, Q., Li, G., Huang, Z., Zhang, H., Wu, Z., Song, W., Tan, J., and Shao, M.: Volatile organic compounds at a rural site in Beijing: influence of temporary emission control and wintertime heating, Atmos. Chem. Phys., 18, 12663–12682, https://doi.org/10.5194/acp-18-12663-2018, 2018.
Yang, Y., Ji, D., Sun, J., Wang, Y., Yao, D., Zhao, S., Yu, X., Zeng, L., Zhang, R., Zhang, H., Wang, Y., and Wang, Y.:
Ambient volatile organic compounds in a suburban site between Beijing and Tianjin: Concentration levels, source apportionment and health risk assessment,
Sci. Total Environ.,
695, 133889, https://doi.org/10.1016/j.scitotenv.2019.133889, 2019a.
Yenisoy-Karakas, S., Dorter, M., and Odabasi, M.:
Intraday and interday variations of 69 volatile organic compounds (BVOCs and AVOCs) and their source profiles at a semi-urban site,
Sci. Total Environ.,
723, 138028, https://doi.org/10.1016/j.scitotenv.2020.138028, 2020.
Yu, S., Yin, S., Zhang, R., Wang, L., Su, F., Zhang, Y., and Yang, J.:
Spatiotemporal characterization and regional contributions of O3 and NO2: An investigation of two years of monitoring data in Henan, China,
J. Environ. Sci.-China,
90, 29–40, 2020.
Zeng, P., Lyu, X. P., Guo, H., Cheng, H. R., Jiang, F., Pan, W. Z., Wang, Z. W., Liang, S. W., and Hu, Y. Q.:
Causes of ozone pollution in summer in Wuhan, Central China,
Environ. Pollut.,
241, 852–861, 2018.
Zhang, H., Chen, G., Hu, J., Chen, S., Wiedinmyer, C., Kleeman, M., and Ying, Q.:
Evaluation of a seven-year air quality simulation using the Weather Research and Forecasting (WRF)/Community Multiscale Air Quality (CMAQ) models in the eastern United States,
Sci. Total Environ.,
473–474, 275–85, 2014.
Zhang, Y., Wang, X., Zhang, Z., Lu, S., Huang, Z., and Li, L.:
Sources of C(2)-C(4) alkenes, the most important ozone nonmethane hydrocarbon precursors in the Pearl River Delta region,
Sci. Total Environ.,
502, 236–245, 2015.
Zhang, Y., Li, R., Fu, H., Zhou, D., and Chen, J.:
Observation and analysis of atmospheric volatile organic compounds in a typical petrochemical area in Yangtze River Delta, China,
J. Environ. Sci.-China,
71, 117312, https://doi.org/10.1016/j.jes.2018.05.027, 2018.
Zhang, Y., Sun, J., Zheng, P., Chen, T., Liu, Y., Han, G., Simpson, I. J., Wang, X., Blake, D. R., Li, Z., Yang, X., Qi, Y., Wang, Q., Wang, W., and Xue, L.:
Observations of C1-C5 alkyl nitrates in the Yellow River Delta, northern China: Effects of biomass burning and oil field emissions,
Sci. Total Environ.,
656, 129–139, 2019.
Zhang, Y., Hong, Z., Chen, J., Xu, L., Hong, Y., Li, M., Hao, H., Chen, Y., Qiu, Y., Wu, X., Li, J.-R., Tong, L., and Xiao, H.:
Impact of control measures and typhoon weather on characteristics and formation of PM2.5 during the 2016 G20 summit in China,
Atmos. Environ.,
224, 233–248, 2020.
Zheng, H., Kong, S., Xing, X., Mao, Y., Hu, T., Ding, Y., Li, G., Liu, D., Li, S., and Qi, S.: Monitoring of volatile organic compounds (VOCs) from an oil and gas station in northwest China for 1 year, Atmos. Chem. Phys., 18, 4567–4595, https://doi.org/10.5194/acp-18-4567-2018, 2018.
Zheng, H., Kong, S., Yan, Y., Chen, N., Yao, L., Liu, X., Wu, F., Cheng, Y., Niu, Z., Zheng, S., Zeng, X., Yan, Q., Wu, J., Zheng, M., Liu, D., Zhao, D., and Qi, S.:
Compositions, sources and health risks of ambient volatile organic compounds (VOCs) at a petrochemical industrial park along the Yangtze River,
Sci. Total Environ.,
703, 135505, https://doi.org/10.1016/j.scitotenv.2019.135505, 2020.
Zou, Y., Deng, X. J., Zhu, D., Gong, D. C., Wang, H., Li, F., Tan, H. B., Deng, T., Mai, B. R., Liu, X. T., and Wang, B. G.: Characteristics of 1 year of observational data of VOCs, NOx and O3 at a suburban site in Guangzhou, China, Atmos. Chem. Phys., 15, 6625–6636, https://doi.org/10.5194/acp-15-6625-2015, 2015.
Zou, Y., Charlesworth, E., Yin, C. Q., Yan, X. L., Deng, X. J., and Li, F.:
The weekday/weekend ozone differences induced by the emissions change during summer and autumn in Guangzhou, China,
Atmos. Environ.,
199, 114–126, 2019.
Short summary
This study measured 106 VOC species using a GC-MS/FID. Meanwhile, the WRF-CMAQ model was used to investigate the nonlinearity of the O3 response to precursor reductions. This study highlights the effectiveness of stringent emission controls in relation to solvent utilization and coal combustion. However, unreasonable emission reduction may aggravate ozone pollution during control periods. It is suggested that emission-reduction ratios of the precursors (VOC : NOx) should be more than 2.
This study measured 106 VOC species using a GC-MS/FID. Meanwhile, the WRF-CMAQ model was used to...
Altmetrics
Final-revised paper
Preprint