Articles | Volume 21, issue 18
https://doi.org/10.5194/acp-21-13811-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-13811-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Ice and mixed-phase cloud statistics on the Antarctic Plateau
William Cossich
Physics and Astronomy Department, Alma Mater Studiorum –
University of Bologna, Italy
Physics and Astronomy Department, Alma Mater Studiorum –
University of Bologna, Italy
Davide Magurno
Physics and Astronomy Department, Alma Mater Studiorum –
University of Bologna, Italy
Michele Martinazzo
Physics and Astronomy Department, Alma Mater Studiorum –
University of Bologna, Italy
Gianluca Di Natale
Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche, Italy
Luca Palchetti
Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche, Italy
Giovanni Bianchini
Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche, Italy
Massimo Del Guasta
Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche, Italy
Related authors
Gianluca Di Natale, David D. Turner, Giovanni Bianchini, Massimo Del Guasta, Luca Palchetti, Alessandro Bracci, Luca Baldini, Tiziano Maestri, William Cossich, Michele Martinazzo, and Luca Facheris
Atmos. Meas. Tech., 15, 7235–7258, https://doi.org/10.5194/amt-15-7235-2022, https://doi.org/10.5194/amt-15-7235-2022, 2022
Short summary
Short summary
In this paper, we describe a new approach to test the consistency of the precipitating ice cloud optical and microphysical properties in Antarctica, Dome C, retrieved from hyperspectral measurements in the far-infrared, with the reflectivity detected by a co-located micro rain radar operating at 24 GHz. The retrieved ice crystal sizes were found in accordance with the direct measurements of an optical imager, also installed at Dome C, which can collect the falling ice particles.
Maya Ben-Yami, Hilke Oetjen, Helen Brindley, William Cossich, Dulce Lajas, Tiziano Maestri, Davide Magurno, Piera Raspollini, Luca Sgheri, and Laura Warwick
Atmos. Meas. Tech., 15, 1755–1777, https://doi.org/10.5194/amt-15-1755-2022, https://doi.org/10.5194/amt-15-1755-2022, 2022
Short summary
Short summary
Spectral emissivity is a key property of the Earth's surface. Few measurements exist in the far-infrared, despite recent work showing that its contribution is important for accurate modelling of global climate. In preparation for ESA’s EE9 FORUM mission (launch in 2026), this study takes the first steps towards the development of an operational emissivity retrieval for FORUM by investigating the sensitivity of the emissivity product to different physical and operational parameters.
Luca Sgheri, Claudio Belotti, Maya Ben-Yami, Giovanni Bianchini, Bernardo Carnicero Dominguez, Ugo Cortesi, William Cossich, Samuele Del Bianco, Gianluca Di Natale, Tomás Guardabrazo, Dulce Lajas, Tiziano Maestri, Davide Magurno, Hilke Oetjen, Piera Raspollini, and Cristina Sgattoni
Atmos. Meas. Tech., 15, 573–604, https://doi.org/10.5194/amt-15-573-2022, https://doi.org/10.5194/amt-15-573-2022, 2022
Short summary
Short summary
The FORUM instrument will look at the Earth's atmosphere from a satellite, covering a spectral range responsible for about 95 % of the radiation lost by our planet. FORUM helps to measure the imbalance between incoming and outgoing radiation that is responsible for the increasing average temperatures on Earth. The end-to-end simulator is a chain of codes that simulates the FORUM measurement process. The goal of the project is to study how the instrument reacts to different retrieval conditions.
Tiziano Maestri, William Cossich, and Iacopo Sbrolli
Atmos. Meas. Tech., 12, 3521–3540, https://doi.org/10.5194/amt-12-3521-2019, https://doi.org/10.5194/amt-12-3521-2019, 2019
Short summary
Short summary
An innovative and flexible methodology for cloud identification and classification, CIC, is tested on a synthetic dataset of high spectral resolution radiances in the far- and mid-infrared part of the spectrum, simulating measurements from the FORUM (Far Infrared Outgoing Radiation Understanding and Monitoring) mission. Results show that classification scores are greatly increased when far-infrared channels are accounted for and the identification of thin cirrus clouds is improved.
Giuliano Dreossi, Mauro Masiol, Barbara Stenni, Daniele Zannoni, Claudio Scarchilli, Virginia Ciardini, Mathieu Casado, Amaëlle Landais, Martin Werner, Alexandre Cauquoin, Giampietro Casasanta, Massimo Del Guasta, Vittoria Posocco, and Carlo Barbante
The Cryosphere, 18, 3911–3931, https://doi.org/10.5194/tc-18-3911-2024, https://doi.org/10.5194/tc-18-3911-2024, 2024
Short summary
Short summary
Oxygen and hydrogen stable isotopes have been extensively used to reconstruct past temperatures, with precipitation representing the input signal of the isotopic records in ice cores. We present a 10-year record of stable isotopes in daily precipitation at Concordia Station: this is the longest record for inland Antarctica and represents a benchmark for quantifying post-depositional processes and improving the paleoclimate interpretation of ice cores.
Philippe Ricaud, Pierre Durand, Paolo Grigioni, Massimo Del Guasta, Giuseppe Camporeale, Axel Roy, Jean-Luc Attié, and John Bognar
Atmos. Meas. Tech., 17, 5071–5089, https://doi.org/10.5194/amt-17-5071-2024, https://doi.org/10.5194/amt-17-5071-2024, 2024
Short summary
Short summary
Clouds in Antarctica are key elements affecting climate evolution. Some clouds are composed of supercooled liquid water (SLW; water held in liquid form below 0 °C) and are difficult to forecast by models. We performed in situ observations of SLW clouds at Concordia Station using SLW sondes attached to meteorological balloons in summer 2021–2022. The SLW clouds were observed in a saturated layer at the top of the planetary boundary layer in agreement with ground-based lidar observations.
Gianluca Di Natale, Marco Ridolfi, and Luca Palchetti
Atmos. Meas. Tech., 17, 3171–3186, https://doi.org/10.5194/amt-17-3171-2024, https://doi.org/10.5194/amt-17-3171-2024, 2024
Short summary
Short summary
This work aims to define a new approach to retrieve the distribution of the main ice crystal shapes occurring inside ice and cirrus clouds from infrared spectral measurements. The capability of retrieving these shapes of the ice crystals from satellites will allow us to extend the currently available climatologies to be used as physical constraints in general circulation models. This could could allow us to improve their accuracy and prediction performance.
Philippe Ricaud, Massimo Del Guasta, Angelo Lupi, Romain Roehrig, Eric Bazile, Pierre Durand, Jean-Luc Attié, Alessia Nicosia, and Paolo Grigioni
Atmos. Chem. Phys., 24, 613–630, https://doi.org/10.5194/acp-24-613-2024, https://doi.org/10.5194/acp-24-613-2024, 2024
Short summary
Short summary
Clouds affect the Earth's climate in ways that depend on the type of cloud (solid/liquid water). From observations at Concordia (Antarctica), we show that in supercooled liquid water (liquid water for temperatures below 0°C) clouds (SLWCs), temperature and SLWC radiative forcing increase with liquid water (up to 70 W m−2). We extrapolated that the maximum SLWC radiative forcing can reach 40 W m−2 over the Antarctic Peninsula, highlighting the importance of SLWCs for global climate prediction.
Brian Kahn, Cameron Bertossa, Xiuhong Chen, Brian Drouin, Erin Hokanson, Xianglei Huang, Tristan L'Ecuyer, Kyle Mattingly, Aronne Merrelli, Tim Michaels, Nate Miller, Federico Donat, Tiziano Maestri, and Michele Martinazzo
EGUsphere, https://doi.org/10.5194/egusphere-2023-2463, https://doi.org/10.5194/egusphere-2023-2463, 2023
Preprint archived
Short summary
Short summary
A cloud detection mask algorithm is developed for the upcoming Polar Radiant Energy in the Far Infrared Experiment (PREFIRE) satellite mission to be launched by NASA in May 2024. The cloud mask is compared to "truth" and is capable of detecting over 90 % of all clouds globally tested with simulated data, and about 87 % of all clouds in the Arctic region.
Claudio Belotti, Flavio Barbara, Marco Barucci, Giovanni Bianchini, Francesco D'Amato, Samuele Del Bianco, Gianluca Di Natale, Marco Gai, Alessio Montori, Filippo Pratesi, Markus Rettinger, Christian Rolf, Ralf Sussmann, Thomas Trickl, Silvia Viciani, Hannes Vogelmann, and Luca Palchetti
Atmos. Meas. Tech., 16, 2511–2529, https://doi.org/10.5194/amt-16-2511-2023, https://doi.org/10.5194/amt-16-2511-2023, 2023
Short summary
Short summary
FIRMOS (Far-Infrared Radiation Mobile Observation System) is a spectroradiometer measuring in the far-infrared, developed to support the preparation of the FORUM (Far-infrared Outgoing Radiation Understanding and Monitoring) satellite mission. In this paper, we describe the instrument, its data products, and the results of the comparison with a suite of observations made from a high-altitude site during a field campaign, in winter 2018–2019.
Gianluca Di Natale, David D. Turner, Giovanni Bianchini, Massimo Del Guasta, Luca Palchetti, Alessandro Bracci, Luca Baldini, Tiziano Maestri, William Cossich, Michele Martinazzo, and Luca Facheris
Atmos. Meas. Tech., 15, 7235–7258, https://doi.org/10.5194/amt-15-7235-2022, https://doi.org/10.5194/amt-15-7235-2022, 2022
Short summary
Short summary
In this paper, we describe a new approach to test the consistency of the precipitating ice cloud optical and microphysical properties in Antarctica, Dome C, retrieved from hyperspectral measurements in the far-infrared, with the reflectivity detected by a co-located micro rain radar operating at 24 GHz. The retrieved ice crystal sizes were found in accordance with the direct measurements of an optical imager, also installed at Dome C, which can collect the falling ice particles.
Marco Ridolfi, Cecilia Tirelli, Simone Ceccherini, Claudio Belotti, Ugo Cortesi, and Luca Palchetti
Atmos. Meas. Tech., 15, 6723–6737, https://doi.org/10.5194/amt-15-6723-2022, https://doi.org/10.5194/amt-15-6723-2022, 2022
Short summary
Short summary
Synergistic retrieval (SR) and complete data fusion (CDF) methods exploit the complementarity of coinciding remote-sensing measurements. We assess the performance of the SR and CDF methods on the basis of synthetic measurements of the FORUM and IASI-NG missions. In the case of perfectly matching measurements, SR and CDF results differ by less than 1 / 10 of the error due to measurement noise. In the case of a realistic mismatch, the two methods show differences in the order of their error bars.
Massimo Del Guasta
Atmos. Meas. Tech., 15, 6521–6544, https://doi.org/10.5194/amt-15-6521-2022, https://doi.org/10.5194/amt-15-6521-2022, 2022
Short summary
Short summary
Any instrument on the Antarctic plateau must cope with a harsh environment. Concordia station is a special place for testing new instruments. With low temperatures and weak winds, precipitation can be studied by simply collecting it on horizontal surfaces. This is typically done manually. ICE-CAMERA is intended as an automatic alternative. The combined construction of rugged equipment for taking photographs of particles and the adoption of machine learning techniques have served this purpose.
Étienne Vignon, Lea Raillard, Christophe Genthon, Massimo Del Guasta, Andrew J. Heymsfield, Jean-Baptiste Madeleine, and Alexis Berne
Atmos. Chem. Phys., 22, 12857–12872, https://doi.org/10.5194/acp-22-12857-2022, https://doi.org/10.5194/acp-22-12857-2022, 2022
Short summary
Short summary
The near-surface atmosphere over the Antarctic Plateau is cold and pristine and resembles to a certain extent the high troposphere where cirrus clouds form. In this study, we use innovative humidity measurements at Concordia Station to study the formation of ice fogs at temperatures <−40°C. We provide observational evidence that ice fogs can form through the homogeneous freezing of solution aerosols, a common nucleation pathway for cirrus clouds.
Maya Ben-Yami, Hilke Oetjen, Helen Brindley, William Cossich, Dulce Lajas, Tiziano Maestri, Davide Magurno, Piera Raspollini, Luca Sgheri, and Laura Warwick
Atmos. Meas. Tech., 15, 1755–1777, https://doi.org/10.5194/amt-15-1755-2022, https://doi.org/10.5194/amt-15-1755-2022, 2022
Short summary
Short summary
Spectral emissivity is a key property of the Earth's surface. Few measurements exist in the far-infrared, despite recent work showing that its contribution is important for accurate modelling of global climate. In preparation for ESA’s EE9 FORUM mission (launch in 2026), this study takes the first steps towards the development of an operational emissivity retrieval for FORUM by investigating the sensitivity of the emissivity product to different physical and operational parameters.
Luca Sgheri, Claudio Belotti, Maya Ben-Yami, Giovanni Bianchini, Bernardo Carnicero Dominguez, Ugo Cortesi, William Cossich, Samuele Del Bianco, Gianluca Di Natale, Tomás Guardabrazo, Dulce Lajas, Tiziano Maestri, Davide Magurno, Hilke Oetjen, Piera Raspollini, and Cristina Sgattoni
Atmos. Meas. Tech., 15, 573–604, https://doi.org/10.5194/amt-15-573-2022, https://doi.org/10.5194/amt-15-573-2022, 2022
Short summary
Short summary
The FORUM instrument will look at the Earth's atmosphere from a satellite, covering a spectral range responsible for about 95 % of the radiation lost by our planet. FORUM helps to measure the imbalance between incoming and outgoing radiation that is responsible for the increasing average temperatures on Earth. The end-to-end simulator is a chain of codes that simulates the FORUM measurement process. The goal of the project is to study how the instrument reacts to different retrieval conditions.
Gianluca Di Natale, Marco Barucci, Claudio Belotti, Giovanni Bianchini, Francesco D'Amato, Samuele Del Bianco, Marco Gai, Alessio Montori, Ralf Sussmann, Silvia Viciani, Hannes Vogelmann, and Luca Palchetti
Atmos. Meas. Tech., 14, 6749–6758, https://doi.org/10.5194/amt-14-6749-2021, https://doi.org/10.5194/amt-14-6749-2021, 2021
Short summary
Short summary
The importance of cirrus and mixed-phase clouds in the Earth radiation budget has been proven by many studies. In this paper the properties that characterize these clouds are retrieved from lidar and far-infrared spectral measurements performed in winter 2018/19 on the Zugspitze (Germany). The synergy of lidar and spectrometer measurements allowed us to assess the exponent k of the power-law relationship between the backscattering and the extinction coefficients.
Luca Palchetti, Marco Barucci, Claudio Belotti, Giovanni Bianchini, Bertrand Cluzet, Francesco D'Amato, Samuele Del Bianco, Gianluca Di Natale, Marco Gai, Dina Khordakova, Alessio Montori, Hilke Oetjen, Markus Rettinger, Christian Rolf, Dirk Schuettemeyer, Ralf Sussmann, Silvia Viciani, Hannes Vogelmann, and Frank Gunther Wienhold
Earth Syst. Sci. Data, 13, 4303–4312, https://doi.org/10.5194/essd-13-4303-2021, https://doi.org/10.5194/essd-13-4303-2021, 2021
Short summary
Short summary
The FIRMOS far-infrared (IR) prototype, developed for the preparation of the ESA FORUM mission, was deployed for the first time at Mt. Zugspitze at 3000 m altitude to measure the far-IR spectrum of atmospheric emissions. The measurements, including co-located radiometers, lidars, radio soundings, weather, and surface properties, provide a unique dataset to study radiative properties of water vapour, cirrus clouds, and snow emissivity over the IR emissions, including the under-explored far-IR.
Tiziano Maestri, William Cossich, and Iacopo Sbrolli
Atmos. Meas. Tech., 12, 3521–3540, https://doi.org/10.5194/amt-12-3521-2019, https://doi.org/10.5194/amt-12-3521-2019, 2019
Short summary
Short summary
An innovative and flexible methodology for cloud identification and classification, CIC, is tested on a synthetic dataset of high spectral resolution radiances in the far- and mid-infrared part of the spectrum, simulating measurements from the FORUM (Far Infrared Outgoing Radiation Understanding and Monitoring) mission. Results show that classification scores are greatly increased when far-infrared channels are accounted for and the identification of thin cirrus clouds is improved.
Christophe Bellisario, Helen E. Brindley, Simon F. B. Tett, Rolando Rizzi, Gianluca Di Natale, Luca Palchetti, and Giovanni Bianchini
Atmos. Chem. Phys., 19, 7927–7937, https://doi.org/10.5194/acp-19-7927-2019, https://doi.org/10.5194/acp-19-7927-2019, 2019
Short summary
Short summary
We explore the possibility of inferring far-infrared downwelling radiances from mid-infrared observations to better constrain radiation schemes in climate models. Our results imply that while it is feasible to use this type of approach, the quality of the extension will be strongly dependent on the noise characteristics of the observations and on the accurate characterisation of the atmospheric state.
Giovanni Bianchini, Francesco Castagnoli, Gianluca Di Natale, and Luca Palchetti
Atmos. Meas. Tech., 12, 619–635, https://doi.org/10.5194/amt-12-619-2019, https://doi.org/10.5194/amt-12-619-2019, 2019
Short summary
Short summary
The characterization of infrared radiation emitted by the atmosphere is a crucial task in the study of the Earth's climate. The Radiation Explorer in the Far Infrared (REFIR) spectroradiometer allows us to perform this task adding the capability of resolving, through spectroscopy, the atmospheric components responsible for the measured radiative effects. The analysis of the measurements also allows us to retrieve the atmospheric structure, making REFIR a complete tool for atmospheric studies.
Gianluca Di Natale, Luca Palchetti, Giovanni Bianchini, and Massimo Del Guasta
Atmos. Meas. Tech., 10, 825–837, https://doi.org/10.5194/amt-10-825-2017, https://doi.org/10.5194/amt-10-825-2017, 2017
Short summary
Short summary
We evaluate the simultaneous remote sensing of atmospheric vertical profiles of water vapour and temperature along with some micro-physical parameters, such as ice-particle effective diameter and ice water content of cirrus clouds, using far infrared spectral measurements of the downwelling longwave radiation. The developed methodology allows to retrieve the atmospheric state with good accuracy and high repetition rate, about 12 min, opening the capability to identify fast atmospheric events.
Massimo Carlotti, Bianca Maria Dinelli, Giada Innocenti, and Luca Palchetti
Atmos. Meas. Tech., 9, 5853–5867, https://doi.org/10.5194/amt-9-5853-2016, https://doi.org/10.5194/amt-9-5853-2016, 2016
Short summary
Short summary
We introduce a strategy for the measurement of CO2 in the stratosphere. We use an orbiting limb sounder to measure both the thermal infrared (TIR) and far-infrared (FIR) atmospheric emissions. The rotational transitions of O2 in the FIR are exploited to derive the temperature and pressure fields that are needed to retrieve the CO2 from its spectrum in the TIR. The proposed experiment can determine two-dimensional distributions of the CO2 with precision of 1 ppm at altitudes between 10 and 50 km.
Related subject area
Subject: Radiation | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Understanding the trends in reflected solar radiation: a latitude- and month-based perspective
Evaluating the representation of Arctic cirrus solar radiative effects in the Integrated Forecasting System with airborne measurements
Uncertainty in simulated brightness temperature due to sensitivity to atmospheric gas spectroscopic parameters from the centimeter- to submillimeter-wave range
Direct observational evidence from space of the effect of CO2 increase on longwave spectral radiances: the unique role of high-spectral-resolution measurements
LIME: Lunar Irradiance Model of ESA, a new tool for absolute radiometric calibration using the Moon
Influence of cloud retrieval errors due to three-dimensional radiative effects on calculations of broadband shortwave cloud radiative effect
Estimation of 1 km downwelling shortwave radiation over the Tibetan Plateau under all-sky conditions
Record-breaking statistics detect islands of cooling in a sea of warming
Radiative closure and cloud effects on the radiation budget based on satellite and shipborne observations during the Arctic summer research cruise, PS106
Impacts of active satellite sensors' low-level cloud detection limitations on cloud radiative forcing in the Arctic
Longwave radiative effect of the cloud–aerosol transition zone based on CERES observations
Photovoltaic power potential in West Africa using long-term satellite data
A semi-empirical potential energy surface and line list for H216O extending into the near-ultraviolet
Global distribution and 14-year changes in erythemal irradiance, UV atmospheric transmission, and total column ozone for2005–2018 estimated from OMI and EPIC observations
Biomass-burning-induced surface darkening and its impact on regional meteorology in eastern China
Air pollution slows down surface warming over the Tibetan Plateau
Estimation of hourly land surface heat fluxes over the Tibetan Plateau by the combined use of geostationary and polar-orbiting satellites
Estimations of global shortwave direct aerosol radiative effects above opaque water clouds using a combination of A-Train satellite sensors
Uncertainty of atmospheric microwave absorption model: impact on ground-based radiometer simulations and retrievals
Simulated and observed horizontal inhomogeneities of optical thickness of Arctic stratus
Net radiative effects of dust in the tropical North Atlantic based on integrated satellite observations and in situ measurements
Comparison of global observations and trends of total precipitable water derived from microwave radiometers and COSMIC radio occultation from 2006 to 2013
Characterizing energy budget variability at a Sahelian site: a test of NWP model behaviour
Scale dependence of cirrus horizontal heterogeneity effects on TOA measurements – Part I: MODIS brightness temperatures in the thermal infrared
Aerosol scattering effects on water vapor retrievals over the Los Angeles Basin
Directional, horizontal inhomogeneities of cloud optical thickness fields retrieved from ground-based and airbornespectral imaging
Airborne observations of far-infrared upwelling radiance in the Arctic
Retrieval of aerosol optical depth from surface solar radiation measurements using machine learning algorithms, non-linear regression and a radiative transfer-based look-up table
Microwave signatures of ice hydrometeors from ground-based observations above Summit, Greenland
Shortwave direct radiative effects of above-cloud aerosols over global oceans derived from 8 years of CALIOP and MODIS observations
Retrieving high-resolution surface solar radiation with cloud parameters derived by combining MODIS and MTSAT data
Instantaneous longwave radiative impact of ozone: an application on IASI/MetOp observations
A method to retrieve super-thin cloud optical depth over ocean background with polarized sunlight
Airborne observations and simulations of three-dimensional radiative interactions between Arctic boundary layer clouds and ice floes
Deriving polarization properties of desert-reflected solar spectra with PARASOL data
Using IASI to simulate the total spectrum of outgoing long-wave radiances
Investigation of the "elevated heat pump" hypothesis of the Asian monsoon using satellite observations
Improved retrieval of direct and diffuse downwelling surface shortwave flux in cloudless atmosphere using dynamic estimates of aerosol content and type: application to the LSA-SAF project
Surface-sensible and latent heat fluxes over the Tibetan Plateau from ground measurements, reanalysis, and satellite data
Influence of local surface albedo variability and ice crystal shape on passive remote sensing of thin cirrus
Combining MODIS, AVHRR and in situ data for evapotranspiration estimation over heterogeneous landscape of the Tibetan Plateau
Modeling polarized solar radiation from the ocean–atmosphere system for CLARREO inter-calibration applications
HIRS channel 12 brightness temperature dataset and its correlations with major climate indices
Performance of the Line-By-Line Radiative Transfer Model (LBLRTM) for temperature, water vapor, and trace gas retrievals: recent updates evaluated with IASI case studies
Multi-satellite aerosol observations in the vicinity of clouds
CLARA-SAL: a global 28 yr timeseries of Earth's black-sky surface albedo
Quantitative comparison of the variability in observed and simulated shortwave reflectance
Regional radiative impact of volcanic aerosol from the 2009 eruption of Mt. Redoubt
Airborne hyperspectral observations of surface and cloud directional reflectivity using a commercial digital camera
Direct and semi-direct radiative forcing of smoke aerosols over clouds
Ruixue Li, Bida Jian, Jiming Li, Deyu Wen, Lijie Zhang, Yang Wang, and Yuan Wang
Atmos. Chem. Phys., 24, 9777–9803, https://doi.org/10.5194/acp-24-9777-2024, https://doi.org/10.5194/acp-24-9777-2024, 2024
Short summary
Short summary
Hemispheric or interannual averages of reflected solar radiation (RSR) can mask signals from seasonally active or region-specific mechanisms. We examine RSR characteristics from latitude and month perspectives, revealing decreased trends observed by CERES in both hemispheres driven by clear-sky atmospheric and cloud components at 30–50° N and cloud components at 0–50° S. AVHRR achieves symmetry criteria within uncertainty and is suitable for the long-term analysis of hemispheric RSR symmetry.
Johannes Röttenbacher, André Ehrlich, Hanno Müller, Florian Ewald, Anna E. Luebke, Benjamin Kirbus, Robin J. Hogan, and Manfred Wendisch
Atmos. Chem. Phys., 24, 8085–8104, https://doi.org/10.5194/acp-24-8085-2024, https://doi.org/10.5194/acp-24-8085-2024, 2024
Short summary
Short summary
Weather prediction models simplify the physical processes related to light scattering by clouds consisting of complex ice crystals. Whether these simplifications are the cause for uncertainties in their prediction can be evaluated by comparing them with measurement data. Here we do this for Arctic ice clouds over sea ice using airborne measurements from two case studies. The model performs well for thick ice clouds but not so well for thin ones. This work can be used to improve the model.
Donatello Gallucci, Domenico Cimini, Emma Turner, Stuart Fox, Philip W. Rosenkranz, Mikhail Y. Tretyakov, Vinia Mattioli, Salvatore Larosa, and Filomena Romano
Atmos. Chem. Phys., 24, 7283–7308, https://doi.org/10.5194/acp-24-7283-2024, https://doi.org/10.5194/acp-24-7283-2024, 2024
Short summary
Short summary
Nowadays, atmospheric radiative transfer models are widely used to simulate satellite and ground-based observations. A meaningful comparison between observations and simulations requires an estimate of the uncertainty associated with both. This work quantifies the uncertainty in atmospheric radiative transfer models in the microwave range, providing the uncertainty associated with simulations of new-generation satellite microwave sensors.
João Teixeira, R. Chris Wilson, and Heidar Th. Thrastarson
Atmos. Chem. Phys., 24, 6375–6383, https://doi.org/10.5194/acp-24-6375-2024, https://doi.org/10.5194/acp-24-6375-2024, 2024
Short summary
Short summary
This paper presents direct evidence from space (solely based on observations) that CO2 increase leads to the theoretically expected effects on longwave spectral radiances. This is achieved by using a methodology that allows us to isolate the CO2 effects from the temperature and water vapor effects. By searching for ensembles of temperature and water vapor profiles that are similar to each other but have different values of CO2, it is possible to estimate the direct effects of CO2 on the spectra.
Carlos Toledano, Sarah Taylor, África Barreto, Stefan Adriaensen, Alberto Berjón, Agnieszka Bialek, Ramiro González, Emma Woolliams, and Marc Bouvet
Atmos. Chem. Phys., 24, 3649–3671, https://doi.org/10.5194/acp-24-3649-2024, https://doi.org/10.5194/acp-24-3649-2024, 2024
Short summary
Short summary
The calibration of Earth observation sensors is key to ensuring the continuity of long-term and global climate records. Satellite sensors, calibrated prior to launch, are susceptible to degradation in space. The Moon provides a stable calibration reference; however, its illumination depends on the Sun–Earth–Moon geometry and must be modelled. A new lunar irradiance model is presented, built upon observations over 5 years at a high-altitude observatory and a rigorous calibration and validation.
Adeleke S. Ademakinwa, Zahid H. Tushar, Jianyu Zheng, Chenxi Wang, Sanjay Purushotham, Jianwu Wang, Kerry G. Meyer, Tamas Várnai, and Zhibo Zhang
Atmos. Chem. Phys., 24, 3093–3114, https://doi.org/10.5194/acp-24-3093-2024, https://doi.org/10.5194/acp-24-3093-2024, 2024
Short summary
Short summary
Clouds play a critical role in our climate system. At present and in the near future, satellite-based remote sensing is the only means to obtain regional and global observations of cloud properties. The current satellite remote sensing algorithms are mostly based on the so-called 1D radiative transfer. This deviation from the 3D world reality can lead to large errors. In this study we investigate how this error affects our estimation of cloud radiative effects.
Peizhen Li, Lei Zhong, Yaoming Ma, Yunfei Fu, Meilin Cheng, Xian Wang, Yuting Qi, and Zixin Wang
Atmos. Chem. Phys., 23, 9265–9285, https://doi.org/10.5194/acp-23-9265-2023, https://doi.org/10.5194/acp-23-9265-2023, 2023
Short summary
Short summary
In this paper, all-sky downwelling shortwave radiation (DSR) over the entire Tibetan Plateau (TP) at a spatial resolution of 1 km was estimated using an improved parameterization scheme. The influence of topography and different radiative attenuations were comprehensively taken into account. The derived DSR showed good agreement with in situ measurements. The accuracy was better than six other DSR products. The derived DSR also provided more reasonable and detailed spatial patterns.
Elisa T. Sena, Ilan Koren, Orit Altaratz, and Alexander B. Kostinski
Atmos. Chem. Phys., 22, 16111–16122, https://doi.org/10.5194/acp-22-16111-2022, https://doi.org/10.5194/acp-22-16111-2022, 2022
Short summary
Short summary
We used record-breaking statistics together with spatial information to create record-breaking SST maps. The maps reveal warming patterns in the overwhelming majority of the ocean and coherent islands of cooling, where low records occur more frequently than high ones. Some of these cooling spots are well known; however, a surprising elliptical area in the Southern Ocean is observed as well. Similar analyses can be performed on other key climatological variables to explore their trend patterns.
Carola Barrientos-Velasco, Hartwig Deneke, Anja Hünerbein, Hannes J. Griesche, Patric Seifert, and Andreas Macke
Atmos. Chem. Phys., 22, 9313–9348, https://doi.org/10.5194/acp-22-9313-2022, https://doi.org/10.5194/acp-22-9313-2022, 2022
Short summary
Short summary
This article describes an intercomparison of radiative fluxes and cloud properties from satellite, shipborne observations, and 1D radiative transfer simulations. The analysis focuses on research for PS106 expedition aboard the German research vessel, Polarstern. The results are presented in detailed case studies, time series for the PS106 cruise and extended to the central Arctic region. The findings illustrate the main periods of agreement and discrepancies of both points of view.
Yinghui Liu
Atmos. Chem. Phys., 22, 8151–8173, https://doi.org/10.5194/acp-22-8151-2022, https://doi.org/10.5194/acp-22-8151-2022, 2022
Short summary
Short summary
Cloud detection from state-of-art satellite radar and lidar misses low-level clouds. Using in situ observations, this study confirms this cloud detection limitation over the Arctic Ocean. Impacts of this detection limitation from combined satellite radar and lidar on the monthly mean radiation flux estimations at the surface and at the top of the atmosphere in the Arctic are limited but larger from only satellite radar or satellite lidar in monthly mean and instantaneous values.
Babak Jahani, Hendrik Andersen, Josep Calbó, Josep-Abel González, and Jan Cermak
Atmos. Chem. Phys., 22, 1483–1494, https://doi.org/10.5194/acp-22-1483-2022, https://doi.org/10.5194/acp-22-1483-2022, 2022
Short summary
Short summary
The change in the state of sky from cloudy to cloudless (or vice versa) comprises an additional phase called
transition zonewith characteristics laying between those of aerosols and clouds. This study presents an approach for the quantification of the broadband longwave radiative effects of the cloud–aerosol transition zone at the top of the atmosphere during daytime over the ocean based on satellite observations and radiative transfer simulations.
Ina Neher, Susanne Crewell, Stefanie Meilinger, Uwe Pfeifroth, and Jörg Trentmann
Atmos. Chem. Phys., 20, 12871–12888, https://doi.org/10.5194/acp-20-12871-2020, https://doi.org/10.5194/acp-20-12871-2020, 2020
Short summary
Short summary
Photovoltaic power is one current option to meet the rising energy demand with low environmental impact. Global horizontal irradiance (GHI) is the fuel for photovoltaic power installations and needs to be evaluated to plan and dimension power plants. In this study, 35 years of satellite-based GHI data are analyzed over West Africa to determine their impact on photovoltaic power generation. The major challenges for the development of a solar-based power system in West Africa are then outlined.
Eamon K. Conway, Iouli E. Gordon, Jonathan Tennyson, Oleg L. Polyansky, Sergei N. Yurchenko, and Kelly Chance
Atmos. Chem. Phys., 20, 10015–10027, https://doi.org/10.5194/acp-20-10015-2020, https://doi.org/10.5194/acp-20-10015-2020, 2020
Short summary
Short summary
Water vapour has a complex spectrum and absorbs from the microwave to the near-UV where it dissociates. There is limited knowledge of the absorption features in the near-UV, and there is a large disagreement for the available models and experiments. We created a new ab initio model that is in good agreement with observation at 363 nm. At lower wavelengths, our calculations suggest that the latest experiments overestimate absorption. This has implications for trace gas retrievals in the near-UV.
Jay Herman, Alexander Cede, Liang Huang, Jerald Ziemke, Omar Torres, Nickolay Krotkov, Matthew Kowalewski, and Karin Blank
Atmos. Chem. Phys., 20, 8351–8380, https://doi.org/10.5194/acp-20-8351-2020, https://doi.org/10.5194/acp-20-8351-2020, 2020
Short summary
Short summary
The amount of erythemal irradiance reaching the Earth's surface has been calculated from ozone, aerosol, and reflectivity data obtained from OMI and DSCOVR/EPIC satellite instruments showing areas with high levels of solar UV radiation. Changes in erythemal irradiance, cloud transmission, aerosol transmission, and ozone absorption have been estimated for 14 years 2005–2018 in units of percent per year for 191 locations, mostly large cities, and from EPIC for the entire illuminated Earth.
Rong Tang, Xin Huang, Derong Zhou, and Aijun Ding
Atmos. Chem. Phys., 20, 6177–6191, https://doi.org/10.5194/acp-20-6177-2020, https://doi.org/10.5194/acp-20-6177-2020, 2020
Short summary
Short summary
Biomass-burning-induced large areas of dark char (i.e.
surface darkening) could influence the radiative energy balance. During the harvest season in eastern China, satellite retrieval shows that surface albedo was significantly decreased. Observational evidence of meteorological perturbations from the surface darkening is identified, which is further examined by model simulation. This work highlights the importance of burning-induced albedo change in weather forecast and regional climate.
Aolin Jia, Shunlin Liang, Dongdong Wang, Bo Jiang, and Xiaotong Zhang
Atmos. Chem. Phys., 20, 881–899, https://doi.org/10.5194/acp-20-881-2020, https://doi.org/10.5194/acp-20-881-2020, 2020
Short summary
Short summary
The Tibetan Plateau (TP) plays a vital role in regional and global climate change due to its location and orography. After generating a long-term surface radiation (SR) dataset, we characterized the SR spatiotemporal variation along with temperature. Evidence from multiple data sources indicated that the TP dimming was primarily driven by increased aerosols from human activities, and the cooling effect of aerosol loading offsets TP surface warming, revealing the human impact on regional warming.
Lei Zhong, Yaoming Ma, Zeyong Hu, Yunfei Fu, Yuanyuan Hu, Xian Wang, Meilin Cheng, and Nan Ge
Atmos. Chem. Phys., 19, 5529–5541, https://doi.org/10.5194/acp-19-5529-2019, https://doi.org/10.5194/acp-19-5529-2019, 2019
Short summary
Short summary
Fine-temporal-resolution turbulent heat fluxes at the plateau scale have significant importance for studying diurnal variation characteristics of atmospheric boundary and weather systems in the Tibetan Plateau (TP) and its surroundings. Time series of land surface heat fluxes with high temporal resolution over the entire TP were derived. The derived surface heat fluxes proved to be in good agreement with in situ measurements and were superior to GLDAS flux products.
Meloë S. Kacenelenbogen, Mark A. Vaughan, Jens Redemann, Stuart A. Young, Zhaoyan Liu, Yongxiang Hu, Ali H. Omar, Samuel LeBlanc, Yohei Shinozuka, John Livingston, Qin Zhang, and Kathleen A. Powell
Atmos. Chem. Phys., 19, 4933–4962, https://doi.org/10.5194/acp-19-4933-2019, https://doi.org/10.5194/acp-19-4933-2019, 2019
Short summary
Short summary
Significant efforts are required to estimate the direct radiative effects of aerosols above clouds (DAREcloudy). We have used a combination of passive and active A-Train satellite sensors and derive mainly positive global and regional DAREcloudy values (e.g., global seasonal values between 0.13 and 0.26 W m-2). Despite differences in methods and sensors, the DAREcloudy values in this study are generally higher than previously reported. We discuss the primary reasons for these higher estimates.
Domenico Cimini, Philip W. Rosenkranz, Mikhail Y. Tretyakov, Maksim A. Koshelev, and Filomena Romano
Atmos. Chem. Phys., 18, 15231–15259, https://doi.org/10.5194/acp-18-15231-2018, https://doi.org/10.5194/acp-18-15231-2018, 2018
Short summary
Short summary
The paper presents a general approach to quantify the uncertainty related to atmospheric absorption models. These models describe how the atmosphere interacts with radiation, and they have general implications for atmospheric sciences.
The presented approach contributes to a better understanding of the total uncertainty affecting atmospheric radiative properties, thus reducing the chances of systematic errors when observations are exploited for weather forecast or climate trend derivations.
Michael Schäfer, Katharina Loewe, André Ehrlich, Corinna Hoose, and Manfred Wendisch
Atmos. Chem. Phys., 18, 13115–13133, https://doi.org/10.5194/acp-18-13115-2018, https://doi.org/10.5194/acp-18-13115-2018, 2018
Short summary
Short summary
Airborne observed horizontal fields of cloud optical thickness are compared with semi-idealized large eddy simulations of Arctic stratus. The comparison focuses on horizontal cloud inhomogeneities and directional features of the small-scale cloud structures. Using inhomogeneity parameters and autocorrelation analysis it is investigated, if the observed small-scale cloud inhomogeneities can be represented by the model. Forcings for cloud inhomogeneities are investigated in a sensitivity study.
Qianqian Song, Zhibo Zhang, Hongbin Yu, Seiji Kato, Ping Yang, Peter Colarco, Lorraine A. Remer, and Claire L. Ryder
Atmos. Chem. Phys., 18, 11303–11322, https://doi.org/10.5194/acp-18-11303-2018, https://doi.org/10.5194/acp-18-11303-2018, 2018
Short summary
Short summary
Mineral dust is the most abundant atmospheric aerosol component in terms of dry mass. In this study, we integrate recent aircraft measurements of dust microphysical and optical properties with satellite retrievals of aerosol and radiative fluxes to quantify the dust direct radiative effects on the shortwave and longwave radiation at both the top of the atmosphere and the surface in the tropical North Atlantic during summer months.
Shu-Peng Ho, Liang Peng, Carl Mears, and Richard A. Anthes
Atmos. Chem. Phys., 18, 259–274, https://doi.org/10.5194/acp-18-259-2018, https://doi.org/10.5194/acp-18-259-2018, 2018
Short summary
Short summary
In this study, we compare 7 years of atmospheric total precipitable water (TPW) derived from multiple microwave radiometers to collocated TPW estimates derived from COSMIC radio occultation under various atmospheric conditions over the oceans. Results show that these two TPW trends from independent observations are larger than previous estimates and are a strong indication of the positive water vapor–temperature feedback on a warming planet.
Anna Mackie, Paul I. Palmer, and Helen Brindley
Atmos. Chem. Phys., 17, 15095–15119, https://doi.org/10.5194/acp-17-15095-2017, https://doi.org/10.5194/acp-17-15095-2017, 2017
Short summary
Short summary
We compare the balance of solar and thermal radiation at the surface and the top of the atmosphere from a forecasting model to observations at a site in Niamey, Niger, in the Sahel. To interpret the energy budgets we examine other factors, such as cloud properties, water vapour and aerosols, which we use to understand the differences between the observation and model. We find that some differences are linked to lack of ice in clouds, underestimated aerosol loading and surface temperatures.
Thomas Fauchez, Steven Platnick, Kerry Meyer, Céline Cornet, Frédéric Szczap, and Tamás Várnai
Atmos. Chem. Phys., 17, 8489–8508, https://doi.org/10.5194/acp-17-8489-2017, https://doi.org/10.5194/acp-17-8489-2017, 2017
Short summary
Short summary
This study presents impact of cirrus cloud horizontal heterogeneity on simulated thermal infrared brightness temperatures at the top of the atmosphere for spatial resolutions ranging from 50 m to 10 km. The cirrus is generated by the 3DCLOUD code and the radiative transfer by the 3DMCPOL code. Brightness temperatures are mostly impacted by the horizontal transport effect and plane-parallel bias at high and coarse spatial resolutions, respectively, with a minimum around 100 m–250 m.
Zhao-Cheng Zeng, Qiong Zhang, Vijay Natraj, Jack S. Margolis, Run-Lie Shia, Sally Newman, Dejian Fu, Thomas J. Pongetti, Kam W. Wong, Stanley P. Sander, Paul O. Wennberg, and Yuk L. Yung
Atmos. Chem. Phys., 17, 2495–2508, https://doi.org/10.5194/acp-17-2495-2017, https://doi.org/10.5194/acp-17-2495-2017, 2017
Short summary
Short summary
We propose a novel approach to describing the scattering effects of atmospheric aerosols using H2O retrievals in the near infrared. We found that the aerosol scattering effect is the primary contributor to the variations in the wavelength dependence of the H2O SCD retrievals and the scattering effects can be derived using H2O retrievals from multiple bands. This proposed method could potentially contribute towards reducing biases in greenhouse gas retrievals from space.
Michael Schäfer, Eike Bierwirth, André Ehrlich, Evelyn Jäkel, Frank Werner, and Manfred Wendisch
Atmos. Chem. Phys., 17, 2359–2372, https://doi.org/10.5194/acp-17-2359-2017, https://doi.org/10.5194/acp-17-2359-2017, 2017
Short summary
Short summary
Cloud optical thickness fields, retrieved from solar spectral radiance measurements, are used to investigate the directional structure of horizontal cloud inhomogeneities with scalar one-dimensional inhomogeneity parameters, two-dimensional auto-correlation functions, and two-dimensional Fourier analysis. The investigations reveal that it is not sufficient to quantify horizontal cloud inhomogeneities by one-dimensional inhomogeneity parameters; two-dimensional parameters are necessary.
Quentin Libois, Liviu Ivanescu, Jean-Pierre Blanchet, Hannes Schulz, Heiko Bozem, W. Richard Leaitch, Julia Burkart, Jonathan P. D. Abbatt, Andreas B. Herber, Amir A. Aliabadi, and Éric Girard
Atmos. Chem. Phys., 16, 15689–15707, https://doi.org/10.5194/acp-16-15689-2016, https://doi.org/10.5194/acp-16-15689-2016, 2016
Short summary
Short summary
The first airborne measurements performed with the FIRR are presented. Vertical profiles of upwelling spectral radiance in the far-infrared are measured in the Arctic atmosphere for the first time. They show the impact of the temperature inversion on the radiative budget of the atmosphere, especially in the far-infrared. The presence of ice clouds also significantly alters the far-infrared budget, highlighting the critical interplay between water vapour and clouds in this very dry region.
Jani Huttunen, Harri Kokkola, Tero Mielonen, Mika Esa Juhani Mononen, Antti Lipponen, Juha Reunanen, Anders Vilhelm Lindfors, Santtu Mikkonen, Kari Erkki Juhani Lehtinen, Natalia Kouremeti, Alkiviadis Bais, Harri Niska, and Antti Arola
Atmos. Chem. Phys., 16, 8181–8191, https://doi.org/10.5194/acp-16-8181-2016, https://doi.org/10.5194/acp-16-8181-2016, 2016
Short summary
Short summary
For a good estimate of the current forcing by anthropogenic aerosols, knowledge in past is needed. One option to lengthen time series is to retrieve aerosol optical depth from solar radiation measurements. We have evaluated several methods for this task. Most of the methods produce aerosol optical depth estimates with a good accuracy. However, machine learning methods seem to be the most applicable not to produce any systematic biases, since they do not need constrain the aerosol properties.
Claire Pettersen, Ralf Bennartz, Mark S. Kulie, Aronne J. Merrelli, Matthew D. Shupe, and David D. Turner
Atmos. Chem. Phys., 16, 4743–4756, https://doi.org/10.5194/acp-16-4743-2016, https://doi.org/10.5194/acp-16-4743-2016, 2016
Short summary
Short summary
We examined four summers of data from a ground-based atmospheric science instrument suite at Summit Station, Greenland, to isolate the signature of the ice precipitation. By using a combination of instruments with different specialities, we identified a passive microwave signature of the ice precipitation. This ice signature compares well to models using synthetic data characteristic of the site.
Zhibo Zhang, Kerry Meyer, Hongbin Yu, Steven Platnick, Peter Colarco, Zhaoyan Liu, and Lazaros Oreopoulos
Atmos. Chem. Phys., 16, 2877–2900, https://doi.org/10.5194/acp-16-2877-2016, https://doi.org/10.5194/acp-16-2877-2016, 2016
Short summary
Short summary
The frequency of occurrence and shortwave direct radiative effects (DRE) of above-cloud aerosols (ACAs) over global oceans are investigated using 8 years of collocated CALIOP and MODIS observations. We estimated that ACAs have a global ocean annual mean diurnally averaged cloudy-sky DRE of 0.015 W m−2 (range of −0.03 to 0.06 W m−2) at TOA. The DREs at surface and within atmosphere are −0.15 W m−2 (range of −0.09 to −0.21 W m−2), and 0.17 W m−2 (range of 0.11 to 0.24 W m−2), respectively.
Wenjun Tang, Jun Qin, Kun Yang, Shaomin Liu, Ning Lu, and Xiaolei Niu
Atmos. Chem. Phys., 16, 2543–2557, https://doi.org/10.5194/acp-16-2543-2016, https://doi.org/10.5194/acp-16-2543-2016, 2016
Short summary
Short summary
In this paper, we develop a new method to quickly retrieve high-resolution surface solar radiation (SSR) over China by combining MODIS and MTSAT data. The RMSEs of the retrieved SSR at hourly, daily, and monthly scales are about 98.5, 34.2, and 22.1 W m−2. The accuracy is comparable to or even higher than other two satellite radiation products. Finally, we derive an 8-year high-resolution SSR data set (hourly, 5 km) from 2007 to 2014, which would contribute to studies of land surface processes.
S. Doniki, D. Hurtmans, L. Clarisse, C. Clerbaux, H. M. Worden, K. W. Bowman, and P.-F. Coheur
Atmos. Chem. Phys., 15, 12971–12987, https://doi.org/10.5194/acp-15-12971-2015, https://doi.org/10.5194/acp-15-12971-2015, 2015
W. Sun, R. R. Baize, G. Videen, Y. Hu, and Q. Fu
Atmos. Chem. Phys., 15, 11909–11918, https://doi.org/10.5194/acp-15-11909-2015, https://doi.org/10.5194/acp-15-11909-2015, 2015
Short summary
Short summary
A method is reported for retrieving super-thin cloud optical depth with polarized light. It is found that near-backscatter p-polarized light is sensitive to clouds, but not to ocean conditions. Near-backscatter p-polarized intensity linearly relates to super-thin cloud optical depth. Based on these findings, super-thin cloud optical depth can be retrieved with little effect from surface reflection.
M. Schäfer, E. Bierwirth, A. Ehrlich, E. Jäkel, and M. Wendisch
Atmos. Chem. Phys., 15, 8147–8163, https://doi.org/10.5194/acp-15-8147-2015, https://doi.org/10.5194/acp-15-8147-2015, 2015
W. Sun, R. R. Baize, C. Lukashin, and Y. Hu
Atmos. Chem. Phys., 15, 7725–7734, https://doi.org/10.5194/acp-15-7725-2015, https://doi.org/10.5194/acp-15-7725-2015, 2015
E. C. Turner, H.-T. Lee, and S. F. B. Tett
Atmos. Chem. Phys., 15, 6561–6575, https://doi.org/10.5194/acp-15-6561-2015, https://doi.org/10.5194/acp-15-6561-2015, 2015
M. M. Wonsick, R. T. Pinker, and Y. Ma
Atmos. Chem. Phys., 14, 8749–8761, https://doi.org/10.5194/acp-14-8749-2014, https://doi.org/10.5194/acp-14-8749-2014, 2014
X. Ceamanos, D. Carrer, and J.-L. Roujean
Atmos. Chem. Phys., 14, 8209–8232, https://doi.org/10.5194/acp-14-8209-2014, https://doi.org/10.5194/acp-14-8209-2014, 2014
Q. Shi and S. Liang
Atmos. Chem. Phys., 14, 5659–5677, https://doi.org/10.5194/acp-14-5659-2014, https://doi.org/10.5194/acp-14-5659-2014, 2014
C. Fricke, A. Ehrlich, E. Jäkel, B. Bohn, M. Wirth, and M. Wendisch
Atmos. Chem. Phys., 14, 1943–1958, https://doi.org/10.5194/acp-14-1943-2014, https://doi.org/10.5194/acp-14-1943-2014, 2014
Y. Ma, Z. Zhu, L. Zhong, B. Wang, C. Han, Z. Wang, Y. Wang, L. Lu, P. M. Amatya, W. Ma, and Z. Hu
Atmos. Chem. Phys., 14, 1507–1515, https://doi.org/10.5194/acp-14-1507-2014, https://doi.org/10.5194/acp-14-1507-2014, 2014
W. Sun and C. Lukashin
Atmos. Chem. Phys., 13, 10303–10324, https://doi.org/10.5194/acp-13-10303-2013, https://doi.org/10.5194/acp-13-10303-2013, 2013
L. Shi, C. J. Schreck III, and V. O. John
Atmos. Chem. Phys., 13, 6907–6920, https://doi.org/10.5194/acp-13-6907-2013, https://doi.org/10.5194/acp-13-6907-2013, 2013
M. J. Alvarado, V. H. Payne, E. J. Mlawer, G. Uymin, M. W. Shephard, K. E. Cady-Pereira, J. S. Delamere, and J.-L. Moncet
Atmos. Chem. Phys., 13, 6687–6711, https://doi.org/10.5194/acp-13-6687-2013, https://doi.org/10.5194/acp-13-6687-2013, 2013
T. Várnai, A. Marshak, and W. Yang
Atmos. Chem. Phys., 13, 3899–3908, https://doi.org/10.5194/acp-13-3899-2013, https://doi.org/10.5194/acp-13-3899-2013, 2013
A. Riihelä, T. Manninen, V. Laine, K. Andersson, and F. Kaspar
Atmos. Chem. Phys., 13, 3743–3762, https://doi.org/10.5194/acp-13-3743-2013, https://doi.org/10.5194/acp-13-3743-2013, 2013
Y. L. Roberts, P. Pilewskie, B. C. Kindel, D. R. Feldman, and W. D. Collins
Atmos. Chem. Phys., 13, 3133–3147, https://doi.org/10.5194/acp-13-3133-2013, https://doi.org/10.5194/acp-13-3133-2013, 2013
C. L. Young, I. N. Sokolik, and J. Dufek
Atmos. Chem. Phys., 12, 3699–3715, https://doi.org/10.5194/acp-12-3699-2012, https://doi.org/10.5194/acp-12-3699-2012, 2012
A. Ehrlich, E. Bierwirth, M. Wendisch, A. Herber, and J.-F. Gayet
Atmos. Chem. Phys., 12, 3493–3510, https://doi.org/10.5194/acp-12-3493-2012, https://doi.org/10.5194/acp-12-3493-2012, 2012
E. M. Wilcox
Atmos. Chem. Phys., 12, 139–149, https://doi.org/10.5194/acp-12-139-2012, https://doi.org/10.5194/acp-12-139-2012, 2012
Cited articles
Adhikari, L., Wang, Z., and Deng, M.: Seasonal variations of Antarctic clouds observed by CloudSat and CALIPSO satellites, J. Geophys. Res.-Atmos., 117, D04202, https://doi.org/10.1029/2011jd016719, 2012. a, b, c
Bianchini, G., Castagnoli, F., Di Natale, G., and Palchetti, L.: A Fourier transform spectroradiometer for ground-based remote sensing of the atmospheric downwelling long-wave radiance, Atmos. Meas. Tech., 12, 619–635, https://doi.org/10.5194/amt-12-619-2019, 2019. a
Bromwich, D. H., Nicolas, J. P., Hines, K. M., Kay, J. E., Key, E. L., Lazzara, M. A., Lubin, D., McFarquhar, G. M., Gorodetskaya, I. V., Grosvenor, D. P., Lachlan-Cope, T., and van Lipzig, N. P. M.: Tropospheric clouds in Antarctica, Rev. Geophys., 50, RG1004, https://doi.org/10.1029/2011rg000363, 2012. a, b, c, d
Ceccaldi, M., Delanoë, J., Hogan, R. J., Pounder, N. L., Protat, A., and Pelon, J.: From CloudSat-CALIPSO to EarthCare: Evolution of the DARDAR cloud classification and its comparison to airborne radar-lidar observations, J. Geophys. Res.-Atmos., 118, 7962–7981, https://doi.org/10.1002/jgrd.50579, 2013. a
Chan, M. A. and Comiso, J. C.: Cloud features detected by MODIS but not by CloudSat and CALIOP, Geophys. Res. Lett., 38, L24813, https://doi.org/10.1029/2011gl050063, 2011. a, b
Chan, M. A. and Comiso, J. C.: Arctic Cloud Characteristics as Derived from MODIS, CALIPSO, and CloudSat, J. Climate, 26, 3285–3306, https://doi.org/10.1175/jcli-d-12-00204.1, 2013. a
Cox, C. J., Turner, D. D., Rowe, P. M., Shupe, M. D., and Walden, V. P.: Cloud Microphysical Properties Retrieved from Downwelling Infrared Radiance Measurements Made at Eureka, Nunavut, Canada (2006–09), J. Appl. Meteorol. Clim., 53, 772–791, https://doi.org/10.1175/jamc-d-13-0113.1, 2014. a
Delanoë, J. and Hogan, R. J.: Combined CloudSat-CALIPSO-MODIS retrievals of the properties of ice clouds, J. Geophys. Res., 115, D00H29, https://doi.org/10.1029/2009jd012346, 2010. a
Di Natale, G., Palchetti, L., Bianchini, G., and Del Guasta, M.: Simultaneous retrieval of water vapour, temperature and cirrus clouds properties from measurements of far infrared spectral radiance over the Antarctic Plateau, Atmos. Meas. Tech., 10, 825–837, https://doi.org/10.5194/amt-10-825-2017, 2017. a
Di Natale, G., Bianchini, G., Del Guasta, M., Ridolfi, M., Maestri, T., Cossich, W., Magurno, D., and Palchetti, L.: Characterization of the Far Infrared Properties and Radiative Forcing of Antarctic Ice and Water Clouds Exploiting the Spectrometer-LiDAR Synergy, Remote Sens.-Basel, 12, 3574, https://doi.org/10.3390/rs12213574, 2020. a, b
Droppo, J. G. and Napier, B. A.: Wind Direction Bias in Generating Wind Roses and Conducting Sector-Based Air Dispersion Modeling, Journal of the Air and Waste Management Association, 58, 913–918, https://doi.org/10.3155/1047-3289.58.7.913, 2008. a
Freudenthaler, V., Homburg, F., and Jäger, H.: Optical parameters of contrails from lidar measurements: Linear depolarization, Geophys. Res. Lett., 23, 3715–3718, https://doi.org/10.1029/96gl03646, 1996. a
Haynes, J.: CloudSat Level 3 RMCP Gridded Data Product, CloudSat [data set], available at: http://www.cloudsat.cira.colostate.edu (last access: 14 September 2021), 2019. a
Henderson, D. S., L'Ecuyer, T., Stephens, G., Partain, P., and Sekiguchi, M.: A Multisensor Perspective on the Radiative Impacts of Clouds and Aerosols, J. Appl. Meteorol. Clim., 52, 853–871, https://doi.org/10.1175/jamc-d-12-025.1, 2013. a
Kiehl, J. T. and Trenberth, K. E.: Earth's annual global mean energy budget, B. Am. Meteorol. Soc., 78, 197–207, 1997. a
King, J. C. and Turner, J.: Antarctic Meteorology and Climatology, Cambridge University Press, https://doi.org/10.1017/cbo9780511524967, 1997. a, b, c
King, M., Kaufman, Y., Menzel, W., and Tanre, D.: Remote sensing of cloud, aerosol, and water vapor properties from the moderate resolution imaging spectrometer (MODIS), IEEE T. Geosci. Remote, 30, 2–27, https://doi.org/10.1109/36.124212, 1992. a
Lachlan-Cope, T.: Antarctic clouds, Polar Research, 29, 150–158, https://doi.org/10.1111/j.1751-8369.2010.00148.x, 2010. a
L'Ecuyer, T. S., Wood, N. B., Haladay, T., Stephens, G. L., and Stackhouse, P. W.: Impact of clouds on atmospheric heating based on the R04 CloudSat fluxes and heating rates data set, J. Geophys. Res., 113, D00A15, https://doi.org/10.1029/2008jd009951, 2008. a
Liou, K.: An introduction to atmospheric radiation, Academic Press, Amsterdam, Boston, 2002. a
Liou, K. and Yang, P.: Light scattering by ice crystals: fundamentals and applications, Cambridge University Press, Cambridge, 2016. a
Listowski, C., Delanoë, J., Kirchgaessner, A., Lachlan-Cope, T., and King, J.: Antarctic clouds, supercooled liquid water and mixed phase, investigated with DARDAR: geographical and seasonal variations, Atmos. Chem. Phys., 19, 6771–6808, https://doi.org/10.5194/acp-19-6771-2019, 2019. a, b, c
Lubin, D., Chen, B., Bromwich, D. H., Somerville, R. C. J., Lee, W.-H., and Hines, K. M.: The Impact of Antarctic Cloud Radiative Properties on a GCM Climate Simulation, J. Climate, 11, 447–462, https://doi.org/10.1175/1520-0442(1998)011<0447:tioacr>2.0.co;2, 1998. a
Lubin, D., Zhang, D., Silber, I., Scott, R. C., Kalogeras, P., Battaglia, A., Bromwich, D. H., Cadeddu, M., Eloranta, E., Fridlind, A., Frossard, A., Hines, K. M., Kneifel, S., Leaitch, W. R., Lin, W., Nicolas, J., Powers, H., Quinn, P. K., Rowe, P., Russell, L. M., Sharma, S., Verlinde, J., and Vogelmann, A. M.: AWARE: The Atmospheric Radiation Measurement (ARM) West Antarctic Radiation Experiment, B. Am. Meteorol. Soc., 101, E1069–E1091, https://doi.org/10.1175/BAMS-D-18-0278.1, 2020. a
Maestri, T., Arosio, C., Rizzi, R., Palchetti, L., Bianchini, G., and Guasta, M. D.: Antarctic Ice Cloud Identification and Properties Using Downwelling Spectral Radiance From 100 to 1, 400 cm−1, J. Geophys. Res.-Atmos., 124, 4761–4781, https://doi.org/10.1029/2018jd029205, 2019a. a, b
Magurno, D., Cossich, W., Maestri, T., Bantges, R., Brindley, H., Fox, S., Harlow, C., Murray, J., Pickering, J., Warwick, L., and Oetjen, H.: Cirrus Cloud Identification from Airborne Far-Infrared and Mid-Infrared Spectra, Remote Sens.-Basel, 12, 2097, https://doi.org/10.3390/rs12132097, 2020. a
Mahesh, A., Walden, V. P., and Warren, S. G.: Ground-Based Infrared Remote Sensing of Cloud Properties over the Antarctic Plateau. Part I: Cloud-Base Heights, J. Appl. Meteorol., 40, 1265–1278, https://doi.org/10.1175/1520-0450(2001)040<1265:gbirso>2.0.co;2, 2001. a
MODIS Atmosphere Science Team: MODIS/Terra and MODIS/Aqua Aerosol Cloud Water
Vapor Ozone Monthly L3 Global 1 Deg CMG, NASA Level 1 and Atmosphere Archive and Distribution System (LAADS), Greenbelt, Maryland, USA [data set], https://doi.org/10.5067/MODIS/MOD08_M3.061,
2017. a
Palchetti, L., Bianchini, G., Natale, G. D., and Guasta, M. D.: Far-Infrared Radiative Properties of Water Vapor and Clouds in Antarctica, B. Am. Meteorol. Soc., 96, 1505–1518, https://doi.org/10.1175/bams-d-13-00286.1, 2015. a, b, c, d
Palchetti, L., Di Natale, G., and Bianchini, G.: Remote sensing of cirrus cloud microphysical properties using spectral measurements over the full range of their thermal emission, J. Geophys. Res.-Atmos., 121, 10,804–10,819, https://doi.org/10.1002/2016JD025162, 2016. a
Palchetti, L., Brindley, H., Bantges, R., Buehler, S. A., Camy-Peyret, C., Carli, B., Cortesi, U., Bianco, S. D., Natale, G. D., Dinelli, B. M., Feldman, D., Huang, X. L., C.-Labonnote, L., Libois, Q., Maestri, T., Mlynczak, M. G., Murray, J. E., Oetjen, H., Ridolfi, M., Riese, M., Russell, J., Saunders, R., and Serio, C.: FORUM: Unique Far-Infrared Satellite Observations to Better Understand How Earth Radiates Energy to Space, B. Am. Meteorol. Soc., 101, E2030–E2046, https://doi.org/10.1175/bams-d-19-0322.1, 2020. a
Rathke, C., Fischer, J., Neshyba, S., and Shupe, M.: Improving IR cloud phase determination with 20 microns spectral observations, Geophys. Res. Lett., 29, 50-1–50-4, https://doi.org/10.1029/2001gl014594, 2002. a
Ricaud, P., Del Guasta, M., Bazile, E., Azouz, N., Lupi, A., Durand, P., Attié, J.-L., Veron, D., Guidard, V., and Grigioni, P.: Supercooled liquid water cloud observed, analysed, and modelled at the top of the planetary boundary layer above Dome C, Antarctica, Atmos. Chem. Phys., 20, 4167–4191, https://doi.org/10.5194/acp-20-4167-2020, 2020. a, b, c
Sassen, K.: The Polarization Lidar Technique for Cloud Research: A Review and Current Assessment, B. Am. Meteorol. Soc., 72, 1848–1866, https://doi.org/10.1175/1520-0477(1991)072<1848:tpltfc>2.0.co;2, 1991. a
Sassen, K. and Hsueh, C. Y.: Contrail properties derived from high-resolution polarization lidar studies during SUCCESS, Geophys. Res. Lett., 25, 1165–1168, https://doi.org/10.1029/97gl03503, 1998. a
Silber, I., Verlinde, J., Eloranta, E. W., and Cadeddu, M.: Antarctic Cloud Macrophysical, Thermodynamic Phase, and Atmospheric Inversion Coupling Properties at McMurdo Station: I. Principal Data Processing and Climatology, J. Geophys. Res.-Atmos., 123, 6099–6121, https://doi.org/10.1029/2018jd028279, 2018. a
Stubenrauch, C. J., Rossow, W. B., Kinne, S., Ackerman, S., Cesana, G., Chepfer, H., Girolamo, L. D., Getzewich, B., Guignard, A., Heidinger, A., Maddux, B. C., Menzel, W. P., Minnis, P., Pearl, C., Platnick, S., Poulsen, C., Riedi, J., Sun-Mack, S., Walther, A., Winker, D., Zeng, S., and Zhao, G.: Assessment of Global Cloud Datasets from Satellites: Project and Database Initiated by the GEWEX Radiation Panel, B. Am. Meteorol. Soc., 94, 1031–1049, https://doi.org/10.1175/bams-d-12-00117.1, 2013. a
Town, M. S., Walden, V. P., and Warren, S. G.: Spectral and Broadband Longwave Downwelling Radiative Fluxes, Cloud Radiative Forcing, and Fractional Cloud Cover over the South Pole, J. Climate, 18, 4235–4252, https://doi.org/10.1175/jcli3525.1, 2005. a
Turner, D. D., Knuteson, R. O., Revercomb, H. E., Lo, C., and Dedecker, R. G.: Noise Reduction of Atmospheric Emitted Radiance Interferometer (AERI) Observations Using Principal Component Analysis, J. Atmos. Ocean. Tech., 23, 1223–1238, https://doi.org/10.1175/jtech1906.1, 2006.
a
Verlinden, K. L., Thompson, D. W. J., and Stephens, G. L.: The Three-Dimensional Distribution of Clouds over the Southern Hemisphere High Latitudes, J. Climate, 24, 5799–5811, https://doi.org/10.1175/2011jcli3922.1, 2011. a
Walsh, J. E., Bromwich, D. H., Overland, J. E., Serreze, M. C., and Wood, K. R.: 100 years of Progress in Polar Meteorology, Meteor. Mon., 59, 21.1–21.36, https://doi.org/10.1175/amsmonographs-d-18-0003.1, 2018. a
Webb, M. J., Andrews, T., Bodas-Salcedo, A., Bony, S., Bretherton, C. S., Chadwick, R., Chepfer, H., Douville, H., Good, P., Kay, J. E., Klein, S. A., Marchand, R., Medeiros, B., Siebesma, A. P., Skinner, C. B., Stevens, B., Tselioudis, G., Tsushima, Y., and Watanabe, M.: The Cloud Feedback Model Intercomparison Project (CFMIP) contribution to CMIP6, Geosci. Model Dev., 10, 359–384, https://doi.org/10.5194/gmd-10-359-2017, 2017. a
Winker, D.: CALIPSO Lidar Level 3 Cloud Occurrence Data, Standard V1-00, NASA Earthdata [data set], available at: https://asdc.larc.nasa.gov/project/CALIPSO/CAL_LID_L3_Cloud_Occurrence-Standard-V1-00_V1-00 (last access: 14 September 2021), 2018. a
Short summary
The presence of clouds over Concordia, in the Antarctic Plateau, is investigated. Results are obtained by applying a machine learning algorithm to measurements of the infrared radiation emitted by the atmosphere toward the surface. The clear-sky, ice cloud, and mixed-phase cloud occurrence at different timescales is studied. A comparison with satellite measurements highlights the ability of the algorithm to identify multiple cloud conditions and study their variability at different timescales.
The presence of clouds over Concordia, in the Antarctic Plateau, is investigated. Results are...
Altmetrics
Final-revised paper
Preprint