Articles | Volume 21, issue 18
Atmos. Chem. Phys., 21, 13811–13833, 2021
https://doi.org/10.5194/acp-21-13811-2021
Atmos. Chem. Phys., 21, 13811–13833, 2021
https://doi.org/10.5194/acp-21-13811-2021

Research article 17 Sep 2021

Research article | 17 Sep 2021

Ice and mixed-phase cloud statistics on the Antarctic Plateau

William Cossich et al.

Related authors

Emissivity Retrievals with FORUM's End-to-end Simulator: Challenges and Recommendations
Maya Ben-Yami, Hilke Oetjen, Helen Brindley, William Cossich, Dulce Lajas, Tiziano Maestri, Davide Magurno, Piera Raspollini, Luca Sgheri, and Laura Warwick
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-232,https://doi.org/10.5194/amt-2021-232, 2021
Preprint under review for AMT
Short summary
The FORUM End-to-End Simulator project: architecture and results
Luca Sgheri, Claudio Belotti, Maya Ben-Yami, Giovanni Bianchini, Bernardo Carnicero Dominguez, Ugo Cortesi, William Cossich, Samuele Del Bianco, Gianluca Di Natale, Tomás Guardabrazo, Dulce Lajas, Tiziano Maestri, Davide Magurno, Hilke Oetjen, Piera Raspollini, and Cristina Sgattoni
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-196,https://doi.org/10.5194/amt-2021-196, 2021
Revised manuscript accepted for AMT
Short summary
Cloud identification and classification from high spectral resolution data in the far infrared and mid-infrared
Tiziano Maestri, William Cossich, and Iacopo Sbrolli
Atmos. Meas. Tech., 12, 3521–3540, https://doi.org/10.5194/amt-12-3521-2019,https://doi.org/10.5194/amt-12-3521-2019, 2019
Short summary

Related subject area

Subject: Radiation | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Photovoltaic power potential in West Africa using long-term satellite data
Ina Neher, Susanne Crewell, Stefanie Meilinger, Uwe Pfeifroth, and Jörg Trentmann
Atmos. Chem. Phys., 20, 12871–12888, https://doi.org/10.5194/acp-20-12871-2020,https://doi.org/10.5194/acp-20-12871-2020, 2020
Short summary
A semi-empirical potential energy surface and line list for H216O extending into the near-ultraviolet
Eamon K. Conway, Iouli E. Gordon, Jonathan Tennyson, Oleg L. Polyansky, Sergei N. Yurchenko, and Kelly Chance
Atmos. Chem. Phys., 20, 10015–10027, https://doi.org/10.5194/acp-20-10015-2020,https://doi.org/10.5194/acp-20-10015-2020, 2020
Short summary
Global distribution and 14-year changes in erythemal irradiance, UV atmospheric transmission, and total column ozone for2005–2018 estimated from OMI and EPIC observations
Jay Herman, Alexander Cede, Liang Huang, Jerald Ziemke, Omar Torres, Nickolay Krotkov, Matthew Kowalewski, and Karin Blank
Atmos. Chem. Phys., 20, 8351–8380, https://doi.org/10.5194/acp-20-8351-2020,https://doi.org/10.5194/acp-20-8351-2020, 2020
Short summary
Biomass-burning-induced surface darkening and its impact on regional meteorology in eastern China
Rong Tang, Xin Huang, Derong Zhou, and Aijun Ding
Atmos. Chem. Phys., 20, 6177–6191, https://doi.org/10.5194/acp-20-6177-2020,https://doi.org/10.5194/acp-20-6177-2020, 2020
Short summary
Air pollution slows down surface warming over the Tibetan Plateau
Aolin Jia, Shunlin Liang, Dongdong Wang, Bo Jiang, and Xiaotong Zhang
Atmos. Chem. Phys., 20, 881–899, https://doi.org/10.5194/acp-20-881-2020,https://doi.org/10.5194/acp-20-881-2020, 2020
Short summary

Cited articles

Adhikari, L., Wang, Z., and Deng, M.: Seasonal variations of Antarctic clouds observed by CloudSat and CALIPSO satellites, J. Geophys. Res.-Atmos., 117, D04202, https://doi.org/10.1029/2011jd016719, 2012. a, b, c
Bianchini, G., Castagnoli, F., Di Natale, G., and Palchetti, L.: A Fourier transform spectroradiometer for ground-based remote sensing of the atmospheric downwelling long-wave radiance, Atmos. Meas. Tech., 12, 619–635, https://doi.org/10.5194/amt-12-619-2019, 2019. a
Bromwich, D. H., Nicolas, J. P., Hines, K. M., Kay, J. E., Key, E. L., Lazzara, M. A., Lubin, D., McFarquhar, G. M., Gorodetskaya, I. V., Grosvenor, D. P., Lachlan-Cope, T., and van Lipzig, N. P. M.: Tropospheric clouds in Antarctica, Rev. Geophys., 50, RG1004, https://doi.org/10.1029/2011rg000363, 2012. a, b, c, d
Ceccaldi, M., Delanoë, J., Hogan, R. J., Pounder, N. L., Protat, A., and Pelon, J.: From CloudSat-CALIPSO to EarthCare: Evolution of the DARDAR cloud classification and its comparison to airborne radar-lidar observations, J. Geophys. Res.-Atmos., 118, 7962–7981, https://doi.org/10.1002/jgrd.50579, 2013. a
Chan, M. A. and Comiso, J. C.: Cloud features detected by MODIS but not by CloudSat and CALIOP, Geophys. Res. Lett., 38, L24813, https://doi.org/10.1029/2011gl050063, 2011. a, b
Download
Short summary
The presence of clouds over Concordia, in the Antarctic Plateau, is investigated. Results are obtained by applying a machine learning algorithm to measurements of the infrared radiation emitted by the atmosphere toward the surface. The clear-sky, ice cloud, and mixed-phase cloud occurrence at different timescales is studied. A comparison with satellite measurements highlights the ability of the algorithm to identify multiple cloud conditions and study their variability at different timescales.
Altmetrics
Final-revised paper
Preprint