Articles | Volume 21, issue 17
https://doi.org/10.5194/acp-21-13667-2021
https://doi.org/10.5194/acp-21-13667-2021
Research article
 | 
14 Sep 2021
Research article |  | 14 Sep 2021

Atmospheric oxidation of α,β-unsaturated ketones: kinetics and mechanism of the OH radical reaction

Niklas Illmann, Rodrigo Gastón Gibilisco, Iustinian Gabriel Bejan, Iulia Patroescu-Klotz, and Peter Wiesen

Related authors

Biomass burning plume chemistry: OH-radical-initiated oxidation of 3-penten-2-one and its main oxidation product 2-hydroxypropanal
Niklas Illmann, Iulia Patroescu-Klotz, and Peter Wiesen
Atmos. Chem. Phys., 21, 18557–18572, https://doi.org/10.5194/acp-21-18557-2021,https://doi.org/10.5194/acp-21-18557-2021, 2021
Short summary

Cited articles

Allen, G., Remedios, J. J., Newnham, D. A., Smith, K. M., and Monks, P. S.: Improved mid-infrared cross-sections for peroxyacetyl nitrate (PAN) vapour, Atmos. Chem. Phys., 5, 47–56, https://doi.org/10.5194/acp-5-47-2005, 2005. 
Aschmann, S. M., Arey, J., and Atkinson, R.: Atmospheric Chemistry of Selected Hydroxycarbonyls, J. Phys. Chem. A, 104, 3998–4003, https://doi.org/10.1021/jp9939874, 2000. 
Atkinson, R: Kinetics and Mechanisms of the Gas-Phase Reactions of the NO3 Radical with Organic Compounds, J. Phys. Chem. Ref. Data, 20, 459–507, https://doi.org/10.1063/1.555887, 1991. 
Atkinson, R: Rate constants for the atmospheric reactions of alkoxy radicals: An updated estimation method, Atmos. Environ., 41, 8468–8485, https://doi.org/10.1016/j.atmosenv.2007.07.002, 2007. 
Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., and IUPAC Subcommittee: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II – gas phase reactions of organic species, Atmos. Chem. Phys., 6, 3625–4055, https://doi.org/10.5194/acp-6-3625-2006, 2006. 
Download
Short summary
Within this work we determined the rate coefficients and products of the reaction of unsaturated ketones with OH radicals in an effort to complete the gaps in the knowledge needed for modelling chemistry in the atmosphere. Both substances are potentially emitted by biomass burning, industrial activities or formed in the troposphere by oxidation of terpenes. As products we identified aldehydes and ketones which in turn are known to be responsible for the transportation of NOx species.
Share
Altmetrics
Final-revised paper
Preprint