Articles | Volume 21, issue 16
https://doi.org/10.5194/acp-21-12413-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-12413-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Observation and modelling of ozone-destructive halogen chemistry in a passively degassing volcanic plume
Laboratoire de Physique et de Chimie de l’Environnement et de l’Espace, CNRS, Université d’Orléans, Orléans, France
LATMOS/IPSL, Sorbonne Université, UVSQ, CNRS, Paris, France
Department of Chemistry, University of Aberdeen, Aberdeen, UK
Tjarda Roberts
Laboratoire de Physique et de Chimie de l’Environnement et de l’Espace, CNRS, Université d’Orléans, Orléans, France
Slimane Bekki
LATMOS/IPSL, Sorbonne Université, UVSQ, CNRS, Paris, France
Related authors
Herizo Narivelo, Paul David Hamer, Virginie Marécal, Luke Surl, Tjarda Roberts, Sophie Pelletier, Béatrice Josse, Jonathan Guth, Mickaël Bacles, Simon Warnach, Thomas Wagner, Stefano Corradini, Giuseppe Salerno, and Lorenzo Guerrieri
Atmos. Chem. Phys., 23, 10533–10561, https://doi.org/10.5194/acp-23-10533-2023, https://doi.org/10.5194/acp-23-10533-2023, 2023
Short summary
Short summary
Volcanic emissions emit large quantities of gases and primary aerosols that can play an important role in atmospheric chemistry. We present a study of the fate of volcanic bromine emissions from the eruption of Mount Etna around Christmas 2018. Using a numerical model and satellite observations, we analyse the impact of the volcanic plume and how it modifies the composition of the air over the whole Mediterranean basin, in particular on tropospheric ozone through the bromine-explosion cycle.
Virginie Marécal, Ronan Voisin-Plessis, Tjarda Jane Roberts, Alessandro Aiuppa, Herizo Narivelo, Paul David Hamer, Béatrice Josse, Jonathan Guth, Luke Surl, and Lisa Grellier
Geosci. Model Dev., 16, 2873–2898, https://doi.org/10.5194/gmd-16-2873-2023, https://doi.org/10.5194/gmd-16-2873-2023, 2023
Short summary
Short summary
We implemented a halogen volcanic chemistry scheme in a one-dimensional modelling framework preparing for further use in a three-dimensional global chemistry-transport model. The results of the simulations for an eruption of Mt Etna in 2008, including various sensitivity tests, show a good consistency with previous modelling studies.
Yunqian Zhu, Hideharu Akiyoshi, Valentina Aquila, Elizabeth Asher, Ewa M. Bednarz, Slimane Bekki, Christoph Brühl, Amy H. Butler, Parker Case, Simon Chabrillat, Gabriel Chiodo, Margot Clyne, Peter R. Colarco, Sandip Dhomse, Lola Falletti, Eric Fleming, Ben Johnson, Andrin Jörimann, Mahesh Kovilakam, Gerbrand Koren, Ales Kuchar, Nicolas Lebas, Qing Liang, Cheng-Cheng Liu, Graham Mann, Michael Manyin, Marion Marchand, Olaf Morgenstern, Paul Newman, Luke D. Oman, Freja F. Østerstrøm, Yifeng Peng, David Plummer, Ilaria Quaglia, William Randel, Samuel Rémy, Takashi Sekiya, Stephen Steenrod, Timofei Sukhodolov, Simone Tilmes, Kostas Tsigaridis, Rei Ueyama, Daniele Visioni, Xinyue Wang, Shingo Watanabe, Yousuke Yamashita, Pengfei Yu, Wandi Yu, Jun Zhang, and Zhihong Zhuo
Geosci. Model Dev., 18, 5487–5512, https://doi.org/10.5194/gmd-18-5487-2025, https://doi.org/10.5194/gmd-18-5487-2025, 2025
Short summary
Short summary
To understand the climate impact of the 2022 Hunga volcanic eruption, we developed a climate model–observation comparison project. The paper describes the protocols and models that participate in the experiments. We designed several experiments to achieve our goals of this activity: (1) to evaluate the climate model performance and (2) to understand the Earth system responses to this eruption.
Sergey Khaykin, Slimane Bekki, Sophie Godin-Beekmann, Michael D. Fromm, Philippe Goloub, Qiaoyun Hu, Béatrice Josse, Alexandra Laeng, Mehdi Meziane, David A. Peterson, Sophie Pelletier, and Valérie Thouret
EGUsphere, https://doi.org/10.5194/egusphere-2025-3152, https://doi.org/10.5194/egusphere-2025-3152, 2025
Short summary
Short summary
In 2023, massive wildfires in Canada injected huge amounts of smoke into the atmosphere. Surprisingly, despite their intensity, the smoke didn’t rise very high but lingered at flight cruising altitudes, causing widespread pollution. This study shows how two different pathways lifted smoke into the lower stratosphere and reveals new insights into how wildfires affect air quality and climate, challenging what we thought we knew about fire and atmospheric impacts.
Antonio Donateo, Gianluca Pappaccogli, Federico Scoto, Maurizio Busetto, Francesca Lucia Lovisco, Natalie Brett, Douglas Keller, Brice Barret, Elsa Dieudonné, Roman Pohorsky, Andrea Baccarini, Slimane Bekki, Jean-Christophe Raut, Julia Schmale, Kathy S. Law, Steve R. Arnold, Gilberto Javier Fochesatto, William R. Simpson, and Stefano Decesari
EGUsphere, https://doi.org/10.5194/egusphere-2025-1366, https://doi.org/10.5194/egusphere-2025-1366, 2025
Short summary
Short summary
A study in Fairbanks, Alaska, measured winter aerosol fluxes on snow. Both emission and deposition occurred, with larger particles settling faster. Weather influenced dispersion and deposition, while wind-driven turbulence enhanced deposition despite stable conditions. Results show aerosol accumulation in snow impacts pollution and snowmelt. Findings help improve aerosol models and pollution studies in cold cities.
Roman Pohorsky, Andrea Baccarini, Natalie Brett, Brice Barret, Slimane Bekki, Gianluca Pappaccogli, Elsa Dieudonné, Brice Temime-Roussel, Barbara D'Anna, Meeta Cesler-Maloney, Antonio Donateo, Stefano Decesari, Kathy S. Law, William R. Simpson, Javier Fochesatto, Steve R. Arnold, and Julia Schmale
Atmos. Chem. Phys., 25, 3687–3715, https://doi.org/10.5194/acp-25-3687-2025, https://doi.org/10.5194/acp-25-3687-2025, 2025
Short summary
Short summary
This study presents an analysis of vertical measurements of pollution in an Alaskan city during winter. It investigates the relationship between the atmospheric structure and the layering of aerosols and trace gases. Results indicate an overall very shallow surface mixing layer. The height of this layer is strongly influenced by a local shallow wind. The study also provides information on the pollution chemical composition at different altitudes, including pollution signatures from power plants.
Brice Barret, Patrice Medina, Natalie Brett, Roman Pohorsky, Kathy S. Law, Slimane Bekki, Gilberto J. Fochesatto, Julia Schmale, Steve R. Arnold, Andrea Baccarini, Maurizio Busetto, Meeta Cesler-Maloney, Barbara D'Anna, Stefano Decesari, Jingqiu Mao, Gianluca Pappaccogli, Joel Savarino, Federico Scoto, and William R. Simpson
Atmos. Meas. Tech., 18, 1163–1184, https://doi.org/10.5194/amt-18-1163-2025, https://doi.org/10.5194/amt-18-1163-2025, 2025
Short summary
Short summary
The Fairbanks area experiences severe pollution episodes in winter because of enhanced emissions of pollutants trapped near the surface by strong temperature inversions. Low-cost sensors were deployed on board a car and a tethered balloon to measure the concentrations of gaseous pollutants (CO, O3, and NOx) in Fairbanks during winter 2022. Data calibration with reference measurements and machine learning methods enabled us to document pollution at the surface and power plant plumes aloft.
Natalie Brett, Kathy S. Law, Steve R. Arnold, Javier G. Fochesatto, Jean-Christophe Raut, Tatsuo Onishi, Robert Gilliam, Kathleen Fahey, Deanna Huff, George Pouliot, Brice Barret, Elsa Dieudonné, Roman Pohorsky, Julia Schmale, Andrea Baccarini, Slimane Bekki, Gianluca Pappaccogli, Federico Scoto, Stefano Decesari, Antonio Donateo, Meeta Cesler-Maloney, William Simpson, Patrice Medina, Barbara D'Anna, Brice Temime-Roussel, Joel Savarino, Sarah Albertin, Jingqiu Mao, Becky Alexander, Allison Moon, Peter F. DeCarlo, Vanessa Selimovic, Robert Yokelson, and Ellis S. Robinson
Atmos. Chem. Phys., 25, 1063–1104, https://doi.org/10.5194/acp-25-1063-2025, https://doi.org/10.5194/acp-25-1063-2025, 2025
Short summary
Short summary
Processes influencing dispersion of local anthropogenic pollution in Arctic wintertime are investigated with Lagrangian dispersion modelling. Simulated power plant plume rise that considers temperature inversion layers improves results compared to observations (interior Alaska). Modelled surface concentrations are improved by representation of vertical mixing and emission estimates. Large increases in diesel vehicle emissions at temperatures reaching −35°C are required to reproduce observed NOx.
Amna Ijaz, Brice Temime-Roussel, Benjamin Chazeau, Sarah Albertin, Stephen R. Arnold, Brice Barrett, Slimane Bekki, Natalie Brett, Meeta Cesler-Maloney, Elsa Dieudonne, Kayane K. Dingilian, Javier G. Fochesatto, Jingqiu Mao, Allison Moon, Joel Savarino, William Simpson, Rodney J. Weber, Kathy S. Law, and Barbara D'Anna
EGUsphere, https://doi.org/10.5194/egusphere-2024-3789, https://doi.org/10.5194/egusphere-2024-3789, 2024
Short summary
Short summary
Fairbanks is among the most polluted cities with the highest particulate matter (PM) levels in the US during winters. Highly time-resolved measurements of the sub-micron PM elucidated residential heating with wood and oil and hydrocarbon-like organics from traffic, as well as sulphur-containing organic aerosol, to be the key pollution sources. Remarkable differences existed between complementary instruments, warranting the deployment of multiple tools at sites with wide-ranging influences.
Christina V. Brodowsky, Timofei Sukhodolov, Gabriel Chiodo, Valentina Aquila, Slimane Bekki, Sandip S. Dhomse, Michael Höpfner, Anton Laakso, Graham W. Mann, Ulrike Niemeier, Giovanni Pitari, Ilaria Quaglia, Eugene Rozanov, Anja Schmidt, Takashi Sekiya, Simone Tilmes, Claudia Timmreck, Sandro Vattioni, Daniele Visioni, Pengfei Yu, Yunqian Zhu, and Thomas Peter
Atmos. Chem. Phys., 24, 5513–5548, https://doi.org/10.5194/acp-24-5513-2024, https://doi.org/10.5194/acp-24-5513-2024, 2024
Short summary
Short summary
The aerosol layer is an essential part of the climate system. We characterize the sulfur budget in a volcanically quiescent (background) setting, with a special focus on the sulfate aerosol layer using, for the first time, a multi-model approach. The aim is to identify weak points in the representation of the atmospheric sulfur budget in an intercomparison of nine state-of-the-art coupled global circulation models.
Martyn P. Chipperfield and Slimane Bekki
Atmos. Chem. Phys., 24, 2783–2802, https://doi.org/10.5194/acp-24-2783-2024, https://doi.org/10.5194/acp-24-2783-2024, 2024
Short summary
Short summary
We give a personal perspective on recent issues related to the depletion of stratospheric ozone and some newly emerging challenges. We first provide a brief review of historic work on understanding the ozone layer and review ozone recovery from the effects of halogenated source gases and the Montreal Protocol. We then discuss the recent observations of ozone depletion from Australian fires in early 2020 and the Hunga Tonga–Hunga Ha'apai volcano in January 2022.
Sarah Albertin, Joël Savarino, Slimane Bekki, Albane Barbero, Roberto Grilli, Quentin Fournier, Irène Ventrillard, Nicolas Caillon, and Kathy Law
Atmos. Chem. Phys., 24, 1361–1388, https://doi.org/10.5194/acp-24-1361-2024, https://doi.org/10.5194/acp-24-1361-2024, 2024
Short summary
Short summary
This study reports the first simultaneous records of oxygen (Δ17O) and nitrogen (δ15N) isotopes in nitrogen dioxide (NO2) and nitrate (NO3−). These data are combined with atmospheric observations to explore sub-daily N reactive chemistry and quantify N fractionation effects in an Alpine winter city. The results highlight the necessity of using Δ17O and δ15N in both NO2 and NO3− to avoid biased estimations of NOx sources and fates from NO3− isotopic records in urban winter environments.
Meeta Cesler-Maloney, William Simpson, Jonas Kuhn, Jochen Stutz, Jennie Thomas, Tjarda Roberts, Deanna Huff, and Sol Cooperdock
EGUsphere, https://doi.org/10.5194/egusphere-2023-3082, https://doi.org/10.5194/egusphere-2023-3082, 2024
Preprint archived
Short summary
Short summary
We used a one-dimensional model to simulate how pollution in Fairbanks, Alaska, accumulates in shallow layers near the ground when temperature inversions are present. We find pollution accumulates in a 20 m to 50 m thick layer. The model agrees with observations of SO2 pollution using only home heating emissions sources, which shows that ground-based sources dominate sulfur pollution in downtown Fairbanks. Air residence times in downtown are only a few hours, limiting chemical transformations.
Herizo Narivelo, Paul David Hamer, Virginie Marécal, Luke Surl, Tjarda Roberts, Sophie Pelletier, Béatrice Josse, Jonathan Guth, Mickaël Bacles, Simon Warnach, Thomas Wagner, Stefano Corradini, Giuseppe Salerno, and Lorenzo Guerrieri
Atmos. Chem. Phys., 23, 10533–10561, https://doi.org/10.5194/acp-23-10533-2023, https://doi.org/10.5194/acp-23-10533-2023, 2023
Short summary
Short summary
Volcanic emissions emit large quantities of gases and primary aerosols that can play an important role in atmospheric chemistry. We present a study of the fate of volcanic bromine emissions from the eruption of Mount Etna around Christmas 2018. Using a numerical model and satellite observations, we analyse the impact of the volcanic plume and how it modifies the composition of the air over the whole Mediterranean basin, in particular on tropospheric ozone through the bromine-explosion cycle.
Cyril Caram, Sophie Szopa, Anne Cozic, Slimane Bekki, Carlos A. Cuevas, and Alfonso Saiz-Lopez
Geosci. Model Dev., 16, 4041–4062, https://doi.org/10.5194/gmd-16-4041-2023, https://doi.org/10.5194/gmd-16-4041-2023, 2023
Short summary
Short summary
We studied the role of halogenated compounds (containing chlorine, bromine and iodine), emitted by natural processes (mainly above the oceans), in the chemistry of the lower layers of the atmosphere. We introduced this relatively new chemistry in a three-dimensional climate–chemistry model and looked at how this chemistry will disrupt the ozone. We showed that the concentration of ozone decreases by 22 % worldwide and that of the atmospheric detergent, OH, by 8 %.
Virginie Marécal, Ronan Voisin-Plessis, Tjarda Jane Roberts, Alessandro Aiuppa, Herizo Narivelo, Paul David Hamer, Béatrice Josse, Jonathan Guth, Luke Surl, and Lisa Grellier
Geosci. Model Dev., 16, 2873–2898, https://doi.org/10.5194/gmd-16-2873-2023, https://doi.org/10.5194/gmd-16-2873-2023, 2023
Short summary
Short summary
We implemented a halogen volcanic chemistry scheme in a one-dimensional modelling framework preparing for further use in a three-dimensional global chemistry-transport model. The results of the simulations for an eruption of Mt Etna in 2008, including various sensitivity tests, show a good consistency with previous modelling studies.
Florent Tencé, Julien Jumelet, Marie Bouillon, David Cugnet, Slimane Bekki, Sarah Safieddine, Philippe Keckhut, and Alain Sarkissian
Atmos. Chem. Phys., 23, 431–451, https://doi.org/10.5194/acp-23-431-2023, https://doi.org/10.5194/acp-23-431-2023, 2023
Short summary
Short summary
Polar stratospheric clouds (PSCs) are critical precursors to stratospheric ozone depletion, and measurement-driven classifications remain a key to accurate cloud modelling. We present PSC lidar observations conducted at the French Antarctic station Dumont d'Urville between 2007 and 2020. This dataset is analyzed using typical PSC classification schemes. We present a PSC climatology along with a significant and slightly negative 14-year trend of PSC occurences of −4.6 PSC days per decade.
Davide Zanchettin, Claudia Timmreck, Myriam Khodri, Anja Schmidt, Matthew Toohey, Manabu Abe, Slimane Bekki, Jason Cole, Shih-Wei Fang, Wuhu Feng, Gabriele Hegerl, Ben Johnson, Nicolas Lebas, Allegra N. LeGrande, Graham W. Mann, Lauren Marshall, Landon Rieger, Alan Robock, Sara Rubinetti, Kostas Tsigaridis, and Helen Weierbach
Geosci. Model Dev., 15, 2265–2292, https://doi.org/10.5194/gmd-15-2265-2022, https://doi.org/10.5194/gmd-15-2265-2022, 2022
Short summary
Short summary
This paper provides metadata and first analyses of the volc-pinatubo-full experiment of CMIP6-VolMIP. Results from six Earth system models reveal significant differences in radiative flux anomalies that trace back to different implementations of volcanic forcing. Surface responses are in contrast overall consistent across models, reflecting the large spread due to internal variability. A second phase of VolMIP shall consider both aspects toward improved protocol for volc-pinatubo-full.
Sarah Albertin, Joël Savarino, Slimane Bekki, Albane Barbero, and Nicolas Caillon
Atmos. Chem. Phys., 21, 10477–10497, https://doi.org/10.5194/acp-21-10477-2021, https://doi.org/10.5194/acp-21-10477-2021, 2021
Short summary
Short summary
We report an efficient method to collect atmospheric NO2 adapted for multi-isotopic analysis and present the first NO2 triple oxygen and double nitrogen isotope measurements. Atmospheric samplings carried out in Grenoble, France, highlight the NO2 isotopic signature sensitivity to the local NOx emissions and chemical regimes. These preliminary results are very promising for using the combination of Δ17O and δ15N of NO2 as a probe of the atmospheric NOx emissions and chemistry.
Margot Clyne, Jean-Francois Lamarque, Michael J. Mills, Myriam Khodri, William Ball, Slimane Bekki, Sandip S. Dhomse, Nicolas Lebas, Graham Mann, Lauren Marshall, Ulrike Niemeier, Virginie Poulain, Alan Robock, Eugene Rozanov, Anja Schmidt, Andrea Stenke, Timofei Sukhodolov, Claudia Timmreck, Matthew Toohey, Fiona Tummon, Davide Zanchettin, Yunqian Zhu, and Owen B. Toon
Atmos. Chem. Phys., 21, 3317–3343, https://doi.org/10.5194/acp-21-3317-2021, https://doi.org/10.5194/acp-21-3317-2021, 2021
Short summary
Short summary
This study finds how and why five state-of-the-art global climate models with interactive stratospheric aerosols differ when simulating the aftermath of large volcanic injections as part of the Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP). We identify and explain the consequences of significant disparities in the underlying physics and chemistry currently in some of the models, which are problems likely not unique to the models participating in this study.
Cited articles
Aiuppa, A., Bellomo, S., D'Alessandro, W., Federico, C., Ferm, M., and Valenza,
M.: Volcanic plume monitoring at Mount Etna by diffusive (passive) sampling,
J. Geophys. Res.-Atmos., 109, D21308,
https://doi.org/10.1029/2003JD004481, 2004. a
Aiuppa, A., Federico, C., Franco, A., Giudice, G., Gurrieri, S., Inguaggiato,
S., Liuzzo, M., McGonigle, A. J. S., and Valenza, M.: Emission of bromine and
iodine from Mount Etna volcano, Geochem. Geophy. Geosy., 6, Q08008,
https://doi.org/10.1029/2005gc000965, 2005. a, b
Aiuppa, A., Franco, A., von Glasow, R., Allen, A. G., D'Alessandro, W., Mather, T. A., Pyle, D. M., and Valenza, M.: The tropospheric processing of acidic gases and hydrogen sulphide in volcanic gas plumes as inferred from field and model investigations, Atmos. Chem. Phys., 7, 1441–1450, https://doi.org/10.5194/acp-7-1441-2007, 2007. a
Aiuppa, A., Giudice, G., Gurrieri, S., Liuzzo, M., Burton, M., Caltabiano, T.,
McGonigle, A. J. S., Salerno, G., Shinohara, H., and Valenza, M.: Total
volatile flux from Mount Etna, Geophys. Res. Lett., 35, L24302,
https://doi.org/10.1029/2008GL035871, 2008. a
Ammann, M., Cox, R. A., Crowley, J. N., Jenkin, M. E., Mellouki, A., Rossi, M. J., Troe, J., and Wallington, T. J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume VI – heterogeneous reactions with liquid substrates, Atmos. Chem. Phys., 13, 8045–8228, https://doi.org/10.5194/acp-13-8045-2013, 2013. a
Badia, A., Reeves, C. E., Baker, A. R., Saiz-Lopez, A., Volkamer, R., Koenig, T. K., Apel, E. C., Hornbrook, R. S., Carpenter, L. J., Andrews, S. J., Sherwen, T., and von Glasow, R.: Importance of reactive halogens in the tropical marine atmosphere: a regional modelling study using WRF-Chem, Atmos. Chem. Phys., 19, 3161–3189, https://doi.org/10.5194/acp-19-3161-2019, 2019. a
Bagnato, E., Aiuppa, A., Parello, F., Calabrese, S., D’Alessandro, W., T.A.,
M., McGonigle, A., Pyle, D., and Wängberg, I.: Degassing of gaseous
(elemental and reactive) and particulate mercury from Mount Etna volcano
(Southern Italy), Atmos. Environ., 41, 7377–7388,
https://doi.org/10.1016/j.atmosenv.2007.05.060, 2007. a
Bagnato, E., Tamburello, G., Avard, G., Martinez Cruz, M., Enrico, M., Fu, X.,
Sprovieri, M., and Sonke, J.: Mercury fluxes from volcanic and geothermal
sources: An update, Geological Society London Special Publications, 410, p. 263,
https://doi.org/10.1144/SP410.2, 2014. a
Bekki, S.: Oxidation of volcanic SO2: A sink for stratospheric OH and H2O,
Geophys. Res. Lett., 22, 913–916, https://doi.org/10.1029/95gl00534, 1995. a
Bobrowski, N. and Giuffrida, G.: Bromine monoxide / sulphur dioxide ratios in relation to volcanological observations at Mt. Etna 2006–2009, Solid Earth, 3, 433–445, https://doi.org/10.5194/se-3-433-2012, 2012. a
Bobrowski, N., Hönninger, G., Galle, B., and Platt, U.: Detection of
bromine monoxide in a volcanic plume, Nature, 423, 273–276,
https://doi.org/10.1038/nature01625, 2003. a
Bobrowski, N., von Glasow, R., Giuffrida, G. B., Tedesco, D., Aiuppa, A.,
Yalire, M., Arellano, S., Johansson, M., and Galle, B.: Gas emission strength
and evolution of the molar ratio of BrO SO2 in the plume of Nyiragongo in
comparison to Etna, J. Geophys. Res.-Atmos., 120,
277–291, https://doi.org/10.1002/2013jd021069, 2015. a
Bobrowski, N., Giuffrida, G. B., Arellano, S., Yalire, M., Liotta, M., Brusca,
L., Calabrese, S., Scaglione, S., Rüdiger, J., Castro, J. M., Galle, B.,
and Tedesco, D.: Plume composition and volatile flux of Nyamulagira volcano,
Democratic Republic of Congo, during birth and evolution of the lava lake,
2014–2015, B. Volcanol., 79, 90, https://doi.org/10.1007/s00445-017-1174-0,
2017. a
Brenna, H., Kutterolf, S., Mills, M. J., and Krüger, K.: The potential impacts of a sulfur- and halogen-rich supereruption such as Los Chocoyos on the atmosphere and climate, Atmos. Chem. Phys., 20, 6521–6539, https://doi.org/10.5194/acp-20-6521-2020, 2020. a, b
Buchholz, R. R., Emmons, L. K., Tilmes, S., and The CESM2 Development Team:
CESM2.1/CAM-chem Instantaneous Output for Boundary Conditions – Subset used:
20∘ N–45∘ N, 5∘ E–45∘ E 2018-12-21–2018-12-29,
https://doi.org/10.5065/NMP7-EP60, 2019. a
Burton, R. R., Woodhouse, M. J., Gadian, A. M., and Mobbs, S. D.: The Use of a
Numerical Weather Prediction Model to Simulate Near-Field Volcanic Plumes,
Atmosphere, 11, 594, https://doi.org/10.3390/atmos11060594, 2020. a
Cadoux, A., Scaillet, B., Bekki, S., Oppenheimer, C., and Druitt, T. H.:
Stratospheric Ozone destruction by the Bronze-Age Minoan eruption (Santorini
Volcano, Greece), Sci. Rep.-UK, 5, 12243, https://doi.org/10.1038/srep12243, 2015. a
Carn, S., Clarisse, L., and Prata, A.: Multi-decadal satellite measurements of
global volcanic degassing, J. Volcanol. Geoth. Res.,
311, 99–134, https://doi.org/10.1016/j.jvolgeores.2016.01.002, 2016. a
Dinger, F., Bobrowski, N., Warnach, S., Bredemeyer, S., Hidalgo, S., Arellano, S., Galle, B., Platt, U., and Wagner, T.: Periodicity in the BrO SO2 molar ratios in the volcanic gas plume of Cotopaxi and its correlation with the Earth tides during the eruption in 2015, Solid Earth, 9, 247–266, https://doi.org/10.5194/se-9-247-2018, 2018. a, b
Dinger, F., Kleinbek, T., Dörner, S., Bobrowski, N., Platt, U., Wagner, T., Ibarra, M., and Espinoza, E.: SO2 and BrO emissions of Masaya volcano from 2014 to 2020, Atmos. Chem. Phys., 21, 9367–9404, https://doi.org/10.5194/acp-21-9367-2021, 2021. a, b
Egan, S. D., Stuefer, M., Webley, P. W., Lopez, T., Cahill, C. F., and Hirtl, M.: Modeling volcanic ash aggregation processes and related impacts on the April–May 2010 eruptions of Eyjafjallajökull volcano with WRF-Chem, Nat. Hazards Earth Syst. Sci., 20, 2721–2737, https://doi.org/10.5194/nhess-20-2721-2020, 2020. a
Emmons, L. K., Schwantes, R. H., Orlando, J. J., Tyndall, G., Kinnison, D.,
Lamarque, J.-F., Marsh, D., Mills, M. J., Tilmes, S., Bardeen, C., Buchholz,
R. R., Conley, A., Gettelman, A., Garcia, R., Simpson, I., Blake, D. R.,
Meinardi, S., and Pétron, G.: The Chemistry Mechanism in the Community Earth
System Model version 2 (CESM2), J. Adv. Model. Earth
Sy., 12, e2019MS001882, https://doi.org/10.1029/2019MS001882, 2020. a
Freitas, S. R., Longo, K. M., Alonso, M. F., Pirre, M., Marecal, V., Grell, G., Stockler, R., Mello, R. F., and Sánchez Gácita, M.: PREP-CHEM-SRC – 1.0: a preprocessor of trace gas and aerosol emission fields for regional and global atmospheric chemistry models, Geosci. Model Dev., 4, 419–433, https://doi.org/10.5194/gmd-4-419-2011, 2011. a
Galeazzo, T., Bekki, S., Martin, E., Savarino, J., and Arnold, S. R.: Photochemical box modelling of volcanic SO2 oxidation: isotopic constraints, Atmos. Chem. Phys., 18, 17909–17931, https://doi.org/10.5194/acp-18-17909-2018, 2018. a, b, c
General, S., Bobrowski, N., Pöhler, D., Weber, K., Fischer, C., and Platt, U.:
Airborne I-DOAS measurements at Mt. Etna: BrO and OClO evolution in
the plume, J. Volcanol. Geoth. Res.,
300, 175–186, https://doi.org/10.1016/j.jvolgeores.2014.05.012, 2015. a, b
Gerlach, T. M.: Volcanic sources of tropospheric ozone-depleting trace gases,
Geochem. Geophy. Geosy., 5, Q09007, https://doi.org/10.1029/2004gc000747, 2004. a
Gliß, J., Bobrowski, N., Vogel, L., Pöhler, D., and Platt, U.: OClO and BrO observations in the volcanic plume of Mt. Etna – implications on the chemistry of chlorine and bromine species in volcanic plumes, Atmos. Chem. Phys., 15, 5659–5681, https://doi.org/10.5194/acp-15-5659-2015, 2015. a, b, c, d
Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock,
W. C., and Eder, B.: Fully coupled “online” chemistry within the WRF
model, Atmos. Environ., 39, 6957–6975,
https://doi.org/10.1016/j.atmosenv.2005.04.027, 2005. a
Gutmann, A., Bobrowski, N., Roberts, T. J., Rüdiger, J., and Hoffmann, T.:
Advances in Bromine Speciation in Volcanic Plumes, Front. Earth
Sci., 6, 213, https://doi.org/10.3389/feart.2018.00213, 2018. a, b, c, d
Hirtl, M., Stuefer, M., Arnold, D., Grell, G., Maurer, C., Natali, S.,
Scherllin-Pirscher, B., and Webley, P.: The effects of simulating volcanic
aerosol radiative feedbacks with WRF-Chem during the Eyjafjallajökull
eruption, April and May 2010, Atmos. Environ., 198, 194–206,
https://doi.org/10.1016/j.atmosenv.2018.10.058, 2019. a
Hirtl, M., Scherllin-Pirscher, B., Stuefer, M., Arnold, D., Baro, R., Maurer, C., and Mulder, M. D.: Extension of the WRF-Chem volcanic emission preprocessor to integrate complex source terms and evaluation for different emission scenarios of the Grimsvötn 2011 eruption, Nat. Hazards Earth Syst. Sci., 20, 3099–3115, https://doi.org/10.5194/nhess-20-3099-2020, 2020. a, b
Hörmann, C., Sihler, H., Bobrowski, N., Beirle, S., Penning de Vries, M., Platt, U., and Wagner, T.: Systematic investigation of bromine monoxide in volcanic plumes from space by using the GOME-2 instrument, Atmos. Chem. Phys., 13, 4749–4781, https://doi.org/10.5194/acp-13-4749-2013, 2013. a, b
Kelly, P. J., Kern, C., Roberts, T. J., Lopez, T., Werner, C., and Aiuppa, A.:
Rapid chemical evolution of tropospheric volcanic emissions from Redoubt
Volcano, Alaska, based on observations of ozone and halogen-containing gases,
J. Volcanol. Geoth. Res., 259, 317–333,
https://doi.org/10.1016/j.jvolgeores.2012.04.023, 2013. a, b, c, d, e
Klobas, J. E., Wilmouth, D. M., Weisenstein, D. K., Anderson, J. G., and
Salawitch, R. J.: Ozone depletion following future volcanic eruptions,
Geophys. Res. Lett., 44, 7490–7499, https://doi.org/10.1002/2017GL073972,
2017. a
Kutterolf, S., Hansteen, T., Appel, K., Freundt, A., Krg̈er, K., Pérez, W.,
and Wehrmann, H.: Combined bromine and chlorine release from large explosive
volcanic eruptions: A threat to stratospheric ozone?, Geology, 41, 707–710,
https://doi.org/10.1130/G34044.1, 2013. a
Lachatre, M., Mailler, S., Menut, L., Turquety, S., Sellitto, P., Guermazi, H., Salerno, G., Caltabiano, T., and Carboni, E.: New strategies for vertical transport in chemistry transport models: application to the case of the Mount Etna eruption on 18 March 2012 with CHIMERE v2017r4, Geosci. Model Dev., 13, 5707–5723, https://doi.org/10.5194/gmd-13-5707-2020, 2020. a
Lurton, T., Jégou, F., Berthet, G., Renard, J.-B., Clarisse, L., Schmidt, A., Brogniez, C., and Roberts, T. J.: Model simulations of the chemical and aerosol microphysical evolution of the Sarychev Peak 2009 eruption cloud compared to in situ and satellite observations, Atmos. Chem. Phys., 18, 3223–3247, https://doi.org/10.5194/acp-18-3223-2018, 2018. a, b
Marelle, L., Thomas, J. L., Ahmed, S., Tuite, K., Stutz, J., Dommergue, A.,
Simpson, W. R., Frey, M. M., and Baladima, F.: Implementation and impacts of
surface and blowing snow sources of Arctic bromine activation within WRF-Chem
4.1.1, J. Adv. Model. Earth Sy., 13, e2020MS002391,
https://doi.org/10.1029/2020MS002391, 2021. a
Martin, R. S., Ilyinskaya, E., and Oppenheimer, C.: The enigma of reactive
nitrogen in volcanic emissions, Geochim. Cosmochim. Ac., 95, 93–105,
https://doi.org/10.1016/j.gca.2012.07.027, 2012. a, b, c, d
Maters, E. C., Delmelle, P., Rossi, M. J., and Ayris, P. M.: Reactive Uptake of
Sulfur Dioxide and Ozone on Volcanic Glass and Ash at Ambient Temperature,
J. Geophys. Res.-Atmos., 122, 10,077–10,088,
https://doi.org/10.1002/2017JD026993, 2017. a
Mather, T., Allen, A., Davison, B., Pyle, D., Oppenheimer, C., and McGonigle,
A.: Nitric acid from volcanoes, Earth Planet. Sci. Lett., 218, 17–30, https://doi.org/10.1016/S0012-821X(03)00640-X, 2004a. a, b
Mather, T. A.: Volcanoes and the environment: Lessons for understanding Earth's
past and future from studies of present-day volcanic emissions, J.
Volcanol. Geoth. Res., 304, 160–179,
https://doi.org/10.1016/j.jvolgeores.2015.08.016, 2015. a
Mather, T. A., Pyle, D. M., and Allen, A. G.: Volcanic source for fixed
nitrogen in the early Earth's atmosphere, Geology, 32, 905–908,
https://doi.org/10.1130/G20679.1, 2004b. a
Millard, G. A., Mather, T. A., Pyle, D. M., Rose, W. I., and Thornton, B.:
Halogen emissions from a small volcanic eruption: Modeling the peak
concentrations, dispersion, and volcanically induced ozone loss in the
stratosphere, Geophys. Res. Lett., 33, L19815, https://doi.org/10.1029/2006GL026959,
2006. a
Ming, A., Winton, V. H. L., Keeble, J., Abraham, N. L., Dalvi, M. C.,
Griffiths, P., Caillon, N., Jones, A. E., Mulvaney, R., Savarino, J., Frey,
M. M., and Yang, X.: Stratospheric Ozone Changes From Explosive Tropical
Volcanoes: Modeling and Ice Core Constraints, J. Geophys. Res.-Atmos., 125, e2019JD032290, https://doi.org/10.1029/2019JD032290,
2020. a
National Centers for Environmental Prediction, National Weather Service,
NOAA, and U.S. Department of Commerce: NCEP FNL Operational Model Global
Tropospheric Analyses, continuing from July 1999,
https://doi.org/10.5065/D6M043C6, 2000. a
Oppenheimer, C., Kyle, P., Eisele, F., Crawford, J., Huey, G., Tanner, D., Kim,
S., Mauldin, L., Blake, D., Beyersdorf, A., Buhr, M., and Davis, D.:
Atmospheric chemistry of an Antarctic volcanic plume, J. Geophys.
Res.-Atmos., 115, D04303, https://doi.org/10.1029/2009jd011910, 2010. a
Oppenheimer, C., Scaillet, B., and Martin, R. S.: Sulfur Degassing From
Volcanoes: Source Conditions, Surveillance, Plume Chemistry and Earth System
Impacts, Reviews in Mineralogy and Geochemistry, 73, 363–421,
https://doi.org/10.2138/rmg.2011.73.13, 2011. a
Prata, A. J., Carn, S. A., Stohl, A., and Kerkmann, J.: Long range transport and fate of a stratospheric volcanic cloud from Soufrière Hills volcano, Montserrat, Atmos. Chem. Phys., 7, 5093–5103, https://doi.org/10.5194/acp-7-5093-2007, 2007. a
Pyle, D. and Mather, T.: Halogens in igneous processes and their fluxes to the
atmosphere and oceans from volcanic activity: A review, Chem. Geol.,
263, 110–121, https://doi.org/10.1016/j.chemgeo.2008.11.013, 2009. a
Pyle, D. M. and Mather, T. A.: The importance of volcanic emissions for the
global atmospheric mercury cycle, Atmos. Environ., 37, 5115–5124,
https://doi.org/10.1016/j.atmosenv.2003.07.011, 2003. a
Rizza, U., Brega, E., Caccamo, M. T., Castorina, G., Morichetti, M., Munaò,
G., Passerini, G., and Magazù, S.: Analysis of the ETNA 2015 Eruption Using
WRF–Chem Model and Satellite Observations, Atmosphere, 11, 1168,
https://doi.org/10.3390/atmos11111168, 2020. a
Roberts, T.: Ozone Depletion in Tropospheric Volcanic Plumes: From Halogen-Poor
to Halogen-Rich Emissions, Geosciences, 8, 68,
https://doi.org/10.3390/geosciences8020068, 2018. a, b
Roberts, T., Vignelles, D., Liuzzo, M., Giudice, G., Aiuppa, A., Coltelli, M.,
Salerno, G., Chartier, M., Couté, B., Berthet, G., Lurton, T., Dulac, F.,
and Renard, J.-B.: The primary volcanic aerosol emission from Mt Etna:
Size-resolved particles with SO2 and role in plume reactive halogen
chemistry, Geochim. Cosmochim. Ac., 222, 74–93,
https://doi.org/10.1016/j.gca.2017.09.040, 2018. a, b, c, d, e, f
Roberts, T., Dayma, G., and Oppenheimer, C.: Reaction Rates Control
High-Temperature Chemistry of Volcanic Gases in Air, Front. Earth
Sci., 7, 154, https://doi.org/10.3389/feart.2019.00154, 2019. a, b, c, d
Roberts, T. J., Braban, C. F., Martin, R. S., Oppenheimer, C., Adams, J. W.,
Cox, R. A., Jones, R. L., and Griffiths, P. T.: Modelling reactive halogen
formation and ozone depletion in volcanic plumes, Chem. Geol., 263,
151–163, https://doi.org/10.1016/j.chemgeo.2008.11.012, 2009. a, b, c
Roberts, T. J., Martin, R. S., and Jourdain, L.: Reactive bromine chemistry in Mount Etna's volcanic plume: the influence of total Br, high-temperature processing, aerosol loading and plume–air mixing, Atmos. Chem. Phys., 14, 11201–11219, https://doi.org/10.5194/acp-14-11201-2014, 2014. a, b, c, d, e
Rose, W. I., Millard, G. A., Mather, T. A., Hunton, D. E., Anderson, B.,
Oppenheimer, C., Thornton, B. F., Gerlach, T. M., Viggiano, A. A., Kondo, Y.,
Miller, T. M., and Ballenthin, J. O.: Atmospheric chemistry of a 33–34 hour
old volcanic cloud from Hekla Volcano (Iceland): Insights from direct
sampling and the application of chemical box modeling, J. Geophys.
Res., 111, D20206, https://doi.org/10.1029/2005jd006872, 2006. a, b, c
Rüdiger, J., Bobrowski, N., Liotta, M., and Hoffmann, T.: Development and
application of a sampling method for the determination of reactive halogen
species in volcanic gas emissions, Anal. Bioanal. Chem.,
409, 5975–5985, https://doi.org/10.1007/s00216-017-0525-1, 2017. a
Rüdiger, J., Gutmann, A., Bobrowski, N., Liotta, M., de Moor, J. M., Sander, R., Dinger, F., Tirpitz, J.-L., Ibarra, M., Saballos, A., Martínez, M., Mendoza, E., Ferrufino, A., Stix, J., Valdés, J., Castro, J. M., and Hoffmann, T.: Halogen activation in the plume of Masaya volcano: field observations and box model investigations, Atmos. Chem. Phys., 21, 3371–3393, https://doi.org/10.5194/acp-21-3371-2021, 2021. a, b, c, d
Saiz-Lopez, A., Sitkiewicz, S. P., Roca-Sanjuán, D., Oliva-Enrich, J. M.,
Dávalos, J. Z., Notario, R., Jiskra, M., Xu, Y., Wang, F., Thackray,
C. P., Sunderland, E. M., Jacob, D. J., Travnikov, O., Cuevas, C. A.,
Acuña, A. U., Rivero, D., Plane, J. M. C., Kinnison, D. E., and Sonke,
J. E.: Photoreduction of gaseous oxidized mercury changes global atmospheric
mercury speciation, transport and deposition, Nat. Commun., 9, 4796,
https://doi.org/10.1038/s41467-018-07075-3, 2018. a
Saiz-Lopez, A., Acuña, A. U., Trabelsi, T., Carmona-García, J., Dávalos,
J. Z., Rivero, D., Cuevas, C. A., Kinnison, D. E., Sitkiewicz, S. P.,
Roca-Sanjuán, D., and Francisco, J. S.: Gas-Phase Photolysis of Hg(I)
Radical Species: A New Atmospheric Mercury Reduction Process, J.
Am. Chem. Soc., 141, 8698–8702, https://doi.org/10.1021/jacs.9b02890, 2019. a, b, c
Salerno, G., Burton, M., Oppenheimer, C., Caltabiano, T., Randazzo, D., Bruno,
N., and Longo, V.: Three-years of SO2 flux measurements of Mt. Etna
using an automated UV scanner array: Comparison with conventional traverses
and uncertainties in flux retrieval, Journal of Volcanology and Geothermal
Research, 183, 76–83, https://doi.org/10.1016/j.jvolgeores.2009.02.013, 2009. a
Seigneur, C. and Lohman, K.: Effect of bromine chemistry on the atmospheric
mercury cycle, J. Geophys. Res.-Atmos., 113, D23309,
https://doi.org/10.1029/2008JD010262, 2008. a
Seigneur, C., Vijayaraghavan, K., and Lohman, K.: Atmospheric mercury
chemistry: Sensitivity of global model simulations to chemical reactions,
J. Geophys. Res., 111, D22306, https://doi.org/10.1029/2005jd006780,
2006. a
Seo, S., Richter, A., Blechschmidt, A.-M., Bougoudis, I., and Burrows, J. P.: First high-resolution BrO column retrievals from TROPOMI, Atmos. Meas. Tech., 12, 2913–2932, https://doi.org/10.5194/amt-12-2913-2019, 2019. a
Staunton-Sykes, J., Aubry, T. J., Shin, Y. M., Weber, J., Marshall, L. R., Luke Abraham, N., Archibald, A., and Schmidt, A.: Co-emission of volcanic sulfur and halogens amplifies volcanic effective radiative forcing, Atmos. Chem. Phys., 21, 9009–9029, https://doi.org/10.5194/acp-21-9009-2021, 2021. a
Stuefer, M., Freitas, S. R., Grell, G., Webley, P., Peckham, S., McKeen, S. A., and Egan, S. D.: Inclusion of ash and SO2 emissions from volcanic eruptions in WRF-Chem: development and some applications, Geosci. Model Dev., 6, 457–468, https://doi.org/10.5194/gmd-6-457-2013, 2013. a
Surl, L.: Modelling the atmospheric chemistry of volcanic plumes, PhD thesis,
University of East Anglia, available at:
https://ueaeprints.uea.ac.uk/id/eprint/59407/ (last access: 12 August 2021), 2016. a
Surl, L.: WRF-Chem Volcano, Github [software], available at: https://github.com/LukeSurl/WCV (last access: 12 August 2021),
2020. a
Surl, L.: WRF-Chem Volcano output – Etna Summer 2012, Zenodo [data set],
https://doi.org/10.5281/zenodo.4415788, 2021. a
Theys, N., Van Roozendael, M., Dils, B., Hendrick, F., Hao, N., and
De Mazière, M.: First satellite detection of volcanic bromine monoxide
emission after the Kasatochi eruption, Geophys. Res. Lett., 36, L03809,
https://doi.org/10.1029/2008GL036552, 2009. a
Theys, N., De Smedt, I., Van Roozendael, M., Froidevaux, L., Clarisse, L., and
Hendrick, F.: First satellite detection of volcanic OClO after the eruption
of Puyehue-Cordón Caulle, Geophys. Res. Lett., 41, 667–672,
https://doi.org/10.1002/2013GL058416, 2014. a
Vance, A., McGonigle, A. J. S., Aiuppa, A., Stith, J. L., Turnbull, K., and von
Glasow, R.: Ozone depletion in tropospheric volcanic plumes, Geophys.
Res. Lett., 37, L22802, https://doi.org/10.1029/2010GL044997, 2010. a, b
Voigt, C., Jessberger, P., Jurkat, T., Kaufmann, S., Baumann, R., Schlager, H.,
Bobrowski, N., Giuffrida, G., and Salerno, G.: Evolution of CO2, SO2,
HCl, and HNO3 in the volcanic plumes from Etna, Geophys. Res.
Lett., 41, 2196–2203, https://doi.org/10.1002/2013gl058974, 2014. a, b, c
von Glasow, R., Bobrowski, N., and Kern, C.: The effects of volcanic eruptions
on atmospheric chemistry, Chem. Geol., 263, 131–142,
https://doi.org/10.1016/j.chemgeo.2008.08.020, 2009. a
Wade, D. C., Vidal, C. M., Abraham, N. L., Dhomse, S., Griffiths, P. T.,
Keeble, J., Mann, G., Marshall, L., Schmidt, A., and Archibald, A. T.:
Reconciling the climate and ozone response to the 1257 CE Mount Samalas
eruption, P. Natl. Acad. Sci. USA, 117,
26651–26659, https://doi.org/10.1073/pnas.1919807117, 2020. a
Warnach, S., Bobrowski, N., Hidalgo, S., Arellano, S., Sihler, H., Dinger, F.,
Lübcke, P., Battaglia, J., Steele, A., Galle, B., Platt, U., and Wagner,
T.: Variation of the BrO/SO2 Molar Ratio in the Plume of Tungurahua
Volcano Between 2007 and 2017 and Its Relationship to Volcanic Activity,
Front. Earth Sci., 7, p. 132, https://doi.org/10.3389/feart.2019.00132, 2019. a, b
Weigelt, A., Ebinghaus, R., Pirrone, N., Bieser, J., Bödewadt, J., Esposito, G., Slemr, F., van Velthoven, P. F. J., Zahn, A., and Ziereis, H.: Tropospheric mercury vertical profiles between 500 and 10 000 m in central Europe, Atmos. Chem. Phys., 16, 4135–4146, https://doi.org/10.5194/acp-16-4135-2016, 2016a. a, b, c
Weigelt, A., Slemr, F., Ebinghaus, R., Pirrone, N., Bieser, J., Bödewadt, J., Esposito, G., and van Velthoven, P. F. J.: Mercury emissions of a coal-fired power plant in Germany, Atmos. Chem. Phys., 16, 13653–13668, https://doi.org/10.5194/acp-16-13653-2016, 2016b. a
Wennberg, P.: Atmospheric chemistry – Bromine explosion, Nature, 397, 299,
https://doi.org/10.1038/16805, 1999. a
Wild, O., Zhu, X., and Prather, M. J.: Fast-J: Accurate Simulation of In- and
Below-Cloud Photolysis in Tropospheric Chemical Models, J.
Atmos. Chem., 37, 245–282, https://doi.org/10.1023/a:1006415919030, 2000. a
Witt, M. L. I., Mather, T. A., Pyle, D. M., Aiuppa, A., Bagnato, E., and
Tsanev, V. I.: Mercury and halogen emissions from Masaya and Telica
volcanoes, Nicaragua, J. Geophys. Res.-Sol. Ea., 113, B06203,
https://doi.org/10.1029/2007JB005401, 2008. a
Wittmer, J., Bobrowski, N., Liotta, M., Giuffrida, G., Calabrese, S., and U.,
P.: Active alkaline traps to determine acidic-gas ratios in volcanic plumes:
sampling technique and analytical Methods, Geochem. Geophys. Geosys., 15, 2797–2820,
https://doi.org/10.1002/2013GC005133, 2014. a, b, c, d
Zaveri, R. A. and Peters, L. K.: A new lumped structure photochemical mechanism
for large-scale applications, J. Geophys. Res.-Atmos.,
104, 30387–30415, https://doi.org/10.1029/1999JD900876, 1999.
a
Zaveri, R. A., Easter, R. C., Fast, J. D., and Peters, L. K.: Model for
Simulating Aerosol Interactions and Chemistry (MOSAIC), J. Geophys. Res.-Atmos., 113, D13204, https://doi.org/10.1029/2007JD008782, 2008. a
Short summary
Many different chemical reactions happen when the gases from a volcano mix with air, but what effects do they have? We present aircraft measurements which show that there is less ozone within the plume of Etna than outside it. We have also made a computer model of this chemistry. This model can reproduce the effects seen when halogens (bromine and chlorine) are included in the volcanic emissions.
We look closely at the simulation to discover how complicated halogen reactions cause ozone loss.
Many different chemical reactions happen when the gases from a volcano mix with air, but what...
Altmetrics
Final-revised paper
Preprint