Articles | Volume 20, issue 14
Atmos. Chem. Phys., 20, 9087–9100, 2020
https://doi.org/10.5194/acp-20-9087-2020
Atmos. Chem. Phys., 20, 9087–9100, 2020
https://doi.org/10.5194/acp-20-9087-2020

Research article 31 Jul 2020

Research article | 31 Jul 2020

Diffusional growth of cloud droplets in homogeneous isotropic turbulence: DNS, scaled-up DNS, and stochastic model

Lois Thomas et al.

Related authors

Impact of high and low vorticity turbulence on cloud environment mixing and cloud microphysics processes
Bipin Kumar, Rahul Ranjan, Man-Kong Yau, Sudarsan Bera, and Suryachadra A. Rao
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-101,https://doi.org/10.5194/acp-2021-101, 2021
Preprint under review for ACP
Short summary
Cloud droplet diffusional growth in homogeneous isotropic turbulence: bin microphysics versus Lagrangian super-droplet simulations
Wojciech W. Grabowski and Lois Thomas
Atmos. Chem. Phys., 21, 4059–4077, https://doi.org/10.5194/acp-21-4059-2021,https://doi.org/10.5194/acp-21-4059-2021, 2021
Short summary
Separating physical impacts from natural variability using piggybacking technique
Wojciech W. Grabowski
Adv. Geosci., 49, 105–111, https://doi.org/10.5194/adgeo-49-105-2019,https://doi.org/10.5194/adgeo-49-105-2019, 2019
Short summary
Convective environment in pre-monsoon and monsoon conditions over the Indian subcontinent: the impact of surface forcing
Lois Thomas, Neelam Malap, Wojciech W. Grabowski, Kundan Dani, and Thara V. Prabha
Atmos. Chem. Phys., 18, 7473–7488, https://doi.org/10.5194/acp-18-7473-2018,https://doi.org/10.5194/acp-18-7473-2018, 2018
Short summary
Lagrangian condensation microphysics with Twomey CCN activation
Wojciech W. Grabowski, Piotr Dziekan, and Hanna Pawlowska
Geosci. Model Dev., 11, 103–120, https://doi.org/10.5194/gmd-11-103-2018,https://doi.org/10.5194/gmd-11-103-2018, 2018
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
The temperature dependence of ice-nucleating particle concentrations affects the radiative properties of tropical convective cloud systems
Rachel E. Hawker, Annette K. Miltenberger, Jonathan M. Wilkinson, Adrian A. Hill, Ben J. Shipway, Zhiqiang Cui, Richard J. Cotton, Ken S. Carslaw, Paul R. Field, and Benjamin J. Murray
Atmos. Chem. Phys., 21, 5439–5461, https://doi.org/10.5194/acp-21-5439-2021,https://doi.org/10.5194/acp-21-5439-2021, 2021
Short summary
The behavior of high-CAPE (convective available potential energy) summer convection in large-domain large-eddy simulations with ICON
Harald Rybka, Ulrike Burkhardt, Martin Köhler, Ioanna Arka, Luca Bugliaro, Ulrich Görsdorf, Ákos Horváth, Catrin I. Meyer, Jens Reichardt, Axel Seifert, and Johan Strandgren
Atmos. Chem. Phys., 21, 4285–4318, https://doi.org/10.5194/acp-21-4285-2021,https://doi.org/10.5194/acp-21-4285-2021, 2021
Short summary
Cloud droplet diffusional growth in homogeneous isotropic turbulence: bin microphysics versus Lagrangian super-droplet simulations
Wojciech W. Grabowski and Lois Thomas
Atmos. Chem. Phys., 21, 4059–4077, https://doi.org/10.5194/acp-21-4059-2021,https://doi.org/10.5194/acp-21-4059-2021, 2021
Short summary
The importance of Aitken mode aerosol particles for cloud sustenance in the summertime high Arctic – a simulation study supported by observational data
Ines Bulatovic, Adele L. Igel, Caroline Leck, Jost Heintzenberg, Ilona Riipinen, and Annica M. L. Ekman
Atmos. Chem. Phys., 21, 3871–3897, https://doi.org/10.5194/acp-21-3871-2021,https://doi.org/10.5194/acp-21-3871-2021, 2021
Short summary
Sensitivity of mixed-phase moderately deep convective clouds to parameterizations of ice formation – an ensemble perspective
Annette K. Miltenberger and Paul R. Field
Atmos. Chem. Phys., 21, 3627–3642, https://doi.org/10.5194/acp-21-3627-2021,https://doi.org/10.5194/acp-21-3627-2021, 2021
Short summary

Cited articles

Abade, G. C., Grabowski, W. W., and Pawlowska, H.: Broadening of cloud droplet spectra through eddy hopping: Turbulent entraining parcel simulations, J. Atmos. Sci., 75, 3365–3379, 2018. a
Brenguier, J.-L. and Chaumat, L.: Droplet spectra broadening in cumulus clouds. Part I: Broadening in adiabatic cores, J. Atmos. Sci., 58, 628–641, 2001. a
Eaton, J. K. and Fessler, J.: Preferential concentration of particles by turbulence, Int. J. Multiphas. Flow, 20, 169–209, 1994. a, b
Grabowski, W. W.: Comparison of Eulerian bin and Lagrangian particle-based schemes in simulations of Pi Chamber dynamics and microphysics, J. Atmos. Sci., 77, 1151–1165, https://doi.org/10.1175/JAS-D-19-0216.1. 2020. a, b, c
Grabowski, W. W. and Abade, G. C.: Broadening of cloud droplet spectra through eddy hopping: Turbulent adiabatic parcel simulations, J. Atmos. Sci., 74, 1485–1493, 2017. a, b, c, d, e, f, g, h
Download
Short summary
This work presents an extension of a classical small-scale modeling approach, direct numerical simulation (DNS), to large computational volumes, tens and hundreds of meters on the side. Diffusional growth of cloud droplets is more significantly affected by large scales of turbulent motions because vertical velocity perturbations associated with those scales result in larger and longer-lasting supersaturation perturbations that affect the spread of the droplet spectrum.
Altmetrics
Final-revised paper
Preprint