Articles | Volume 20, issue 14
https://doi.org/10.5194/acp-20-9031-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-9031-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Non-target and suspect characterisation of organic contaminants in Arctic air – Part 2: Application of a new tool for identification and prioritisation of chemicals of emerging Arctic concern in air
Laura Röhler
CORRESPONDING AUTHOR
Faculty of Chemistry, Biotechnology and Food Sciences (KBM), Norwegian University of Life Sciences, Ås, Norway
Department of Environmental Chemistry, NILU – Norwegian Institute for Air Research, Kjeller, Norway
Martin Schlabach
Department of Environmental Chemistry, NILU – Norwegian Institute for Air Research, Kjeller, Norway
Peter Haglund
Department of Chemistry, University of Umeå, Umeå, Sweden
Knut Breivik
Department of Atmosphere and Climate, NILU – Norwegian Institute for Air Research, Kjeller, Norway
Department of Chemistry, University of Oslo, Oslo, Norway
Roland Kallenborn
Faculty of Chemistry, Biotechnology and Food Sciences (KBM), Norwegian University of Life Sciences, Ås, Norway
Pernilla Bohlin-Nizzetto
Department of Environmental Chemistry, NILU – Norwegian Institute for Air Research, Kjeller, Norway
Related authors
Laura Röhler, Pernilla Bohlin-Nizzetto, Pawel Rostkowski, Roland Kallenborn, and Martin Schlabach
Atmos. Chem. Phys., 21, 1697–1716, https://doi.org/10.5194/acp-21-1697-2021, https://doi.org/10.5194/acp-21-1697-2021, 2021
Short summary
Short summary
A novel non-destructive, sulfuric-acid-free clean-up method for high-volume air samples was developed and evaluated with organic chemicals covering a wide range of polarities (logP 2–11). This method, providing quantitative results of comparable quality to traditional methods, was combined with newly developed data treatment strategies for simultaneous suspect and non-target screening. The application to air samples from southern Norway revealed 90 new potential chemicals of emerging concern.
Thais Luarte, Victoria Antonieta Gómez-Aburto, Ignacio Poblete-Castro, Eduardo Castro-Nallar, Nicolás Hunneus, Marco Molina-Montenegro, Claudia Egas, Germán Azcune, Andrés Pérez-Parada, Rainier Lohmann, Pernilla Bohlin-Nizzetto, Jordi Dachs, Susan Bengtson-Nash, Gustavo Chiang, Karla Pozo, and Cristóbal Galbán-Malagón
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2023-25, https://doi.org/10.5194/acp-2023-25, 2023
Revised manuscript accepted for ACP
Short summary
Short summary
In the last 40 years different research groups have reported on the atmospheric concentrations of persistent organic pollutants in Antarctica. In the present work we make a compilation to understand the historical trends. We estimate the atmospheric half-life of each compound. Of all the compounds studied HCB was the only one that showed no clear trend, while the rest of the studied compounds showed a significant decrease over time. This is consistent with results for polar and sub-polar zones.
Stephen M. Platt, Øystein Hov, Torunn Berg, Knut Breivik, Sabine Eckhardt, Konstantinos Eleftheriadis, Nikolaos Evangeliou, Markus Fiebig, Rebecca Fisher, Georg Hansen, Hans-Christen Hansson, Jost Heintzenberg, Ove Hermansen, Dominic Heslin-Rees, Kim Holmén, Stephen Hudson, Roland Kallenborn, Radovan Krejci, Terje Krognes, Steinar Larssen, David Lowry, Cathrine Lund Myhre, Chris Lunder, Euan Nisbet, Pernilla B. Nizzetto, Ki-Tae Park, Christina A. Pedersen, Katrine Aspmo Pfaffhuber, Thomas Röckmann, Norbert Schmidbauer, Sverre Solberg, Andreas Stohl, Johan Ström, Tove Svendby, Peter Tunved, Kjersti Tørnkvist, Carina van der Veen, Stergios Vratolis, Young Jun Yoon, Karl Espen Yttri, Paul Zieger, Wenche Aas, and Kjetil Tørseth
Atmos. Chem. Phys., 22, 3321–3369, https://doi.org/10.5194/acp-22-3321-2022, https://doi.org/10.5194/acp-22-3321-2022, 2022
Short summary
Short summary
Here we detail the history of the Zeppelin Observatory, a unique global background site and one of only a few in the high Arctic. We present long-term time series of up to 30 years of atmospheric components and atmospheric transport phenomena. Many of these time series are important to our understanding of Arctic and global atmospheric composition change. Finally, we discuss the future of the Zeppelin Observatory and emerging areas of future research on the Arctic atmosphere.
Laura Röhler, Pernilla Bohlin-Nizzetto, Pawel Rostkowski, Roland Kallenborn, and Martin Schlabach
Atmos. Chem. Phys., 21, 1697–1716, https://doi.org/10.5194/acp-21-1697-2021, https://doi.org/10.5194/acp-21-1697-2021, 2021
Short summary
Short summary
A novel non-destructive, sulfuric-acid-free clean-up method for high-volume air samples was developed and evaluated with organic chemicals covering a wide range of polarities (logP 2–11). This method, providing quantitative results of comparable quality to traditional methods, was combined with newly developed data treatment strategies for simultaneous suspect and non-target screening. The application to air samples from southern Norway revealed 90 new potential chemicals of emerging concern.
Tatiana Drotikova, Aasim M. Ali, Anne Karine Halse, Helena C. Reinardy, and Roland Kallenborn
Atmos. Chem. Phys., 20, 9997–10014, https://doi.org/10.5194/acp-20-9997-2020, https://doi.org/10.5194/acp-20-9997-2020, 2020
Short summary
Short summary
Polycyclic aromatic hydrocarbons (PAHs) are not declining in Arctic air despite reductions in global emissions. We studied PAHs and oxy- and nitro-PAHs in gas and particulate phases of Arctic aerosol, collected in autumn 2018 in Longyearbyen, Svalbard. PAHs were found at comparable levels as at other background Scandinavian and European air sampling stations. Statistical analysis confirmed that a coal-fired power plant and vehicle and marine traffic are the main local contributors of PAHs.
Related subject area
Subject: Gases | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Measurement report: Molecular-level investigation of atmospheric cluster ions at the tropical high-altitude research station Chacaltaya (5240 m a.s.l.) in the Bolivian Andes
Observations of biogenic volatile organic compounds over a mixed temperate forest during the summer to autumn transition
Unexpectedly high concentrations of atmospheric mercury species in Lhasa, the largest city in the Tibetan Plateau
Real-time measurements of non-methane volatile organic compounds in the central Indo-Gangetic basin, Lucknow, India: source characterisation and their role in O3 and secondary organic aerosol formation
Measurement report: Production and loss of atmospheric formaldehyde at a suburban site of Shanghai in summertime
Measurement report: Volatile organic compound characteristics of the different land-use types in Shanghai: spatiotemporal variation, source apportionment and impact on secondary formations of ozone and aerosol
O3–precursor relationship over multiple patterns of timescale: a case study in Zibo, Shandong Province, China
High emission rates and strong temperature response make boreal wetlands a large source of isoprene and terpenes
Elucidate the formation mechanism of particulate nitrate based on direct radical observations in the Yangtze River Delta summer 2019
Pandemic restrictions in 2020 highlight the significance of non-road NOx sources in central London
Measurement report: Emission factors of NH3 and NHx for wildfires and agricultural fires in the United States
Experimental chemical budgets of OH, HO2, and RO2 radicals in rural air in western Germany during the JULIAC campaign 2019
Chemical and dynamical identification of emission outflows during the HALO campaign EMeRGe in Europe and Asia
Levels of persistent organic pollutants (POPs) in the Antarctic atmosphere over time (1980 to 2021) and estimation of their atmospheric half-lives.
Flaring efficiencies and NOx emission ratios measured for offshore oil and gas facilities in the North Sea
Measurement report: Long-range transport and the fate of dimethyl sulfide oxidation products in the free troposphere derived from observations at the high-altitude research station Chacaltaya (5240 m a.s.l.) in the Bolivian Andes
Snowpack nitrate photolysis drives the summertime atmospheric nitrous acid (HONO) budget in coastal Antarctica
Formaldehyde and hydroperoxide distribution around the Arabian Peninsula – evaluation of EMAC model results with ship-based measurements
Heterogeneity and chemical reactivity of the remote troposphere defined by aircraft measurements – corrected
Fundamental oxidation processes in the remote marine atmosphere investigated using the NO–NO2–O3 photostationary state
Emission factors and evolution of SO2 measured from biomass burning in wildfires and agricultural fires
Chemical identification of new particle formation and growth precursors through positive matrix factorization of ambient ion measurements
The unexpected high frequency of nocturnal surface ozone enhancement events over China: characteristics and mechanisms
Source apportionment of VOCs, IVOCs and SVOCs by positive matrix factorization in suburban Livermore, California
Measurement report: Intra- and interannual variability and source apportionment of volatile organic compounds during 2018–2020 in Zhengzhou, central China
Formation and impacts of nitryl chloride in Pearl River Delta
Multidecadal increases in global tropospheric ozone derived from ozonesonde and surface site observations: can models reproduce ozone trends?
What caused ozone pollution during the 2022 Shanghai lockdown? Insights from ground and satellite observations
Ammonium adduct chemical ionization to investigate anthropogenic oxygenated gas-phase organic compounds in urban air
Atmospheric biogenic volatile organic compounds in the Alaskan Arctic tundra: constraints from measurements at Toolik Field Station
Characteristics of Negative Cluster Ions in an Urban Environment
Are dense networks of low-cost nodes really useful for monitoring air pollution? A case study in Staffordshire
Technical note: Northern midlatitude baseline ozone – long-term changes and the COVID-19 impact
Quantifying the importance of vehicle ammonia emissions in an urban area of northeastern USA utilizing nitrogen isotopes
Seasonal variation in nitryl chloride and its relation to gas-phase precursors during the JULIAC campaign in Germany
Measurement Report: Atmospheric CH4 at regional stations of the Korea Meteorological Administration/Global Atmosphere Watch Programme: measurement, characteristics and long-term changes of its drivers
Radical chemistry in the Pearl River Delta: observations and modeling of OH and HO2 radicals in Shenzhen in 2018
Reconciling the total carbon budget for boreal forest wildfire emissions using airborne observations
Summer variability of the atmospheric NO2 : NO ratio at Dome C on the East Antarctic Plateau
Measurement report: Ambient volatile organic compound (VOC) pollution in urban Beijing: characteristics, sources, and implications for pollution control
Mass spectrometric measurements of ambient ions and estimation of gaseous sulfuric acid in the free troposphere and lowermost stratosphere during the CAFE-EU/BLUESKY campaign
Springtime nitrogen oxides and tropospheric ozone in Svalbard: results from the measurement station network
Measurement report: Observations of long-lived volatile organic compounds from the 2019–2020 Australian wildfires during the COALA campaign
Composition and reactivity of volatile organic compounds in the South Coast Air Basin and San Joaquin Valley of California
Analysis of regional CO2 contributions at the high Alpine observatory Jungfraujoch by means of atmospheric transport simulations and δ13C
Variations and sources of volatile organic compounds (VOCs) in urban region: insights from measurements on a tall tower
Tropical peat fire emissions: 2019 field measurements in Sumatra and Borneo and synthesis with previous studies
Sulfuric acid in the Amazon basin: measurements and evaluation of existing sulfuric acid proxies
Seasonal variation in oxygenated organic molecules in urban Beijing and their contribution to secondary organic aerosol
Oxygenated volatile organic compounds (VOCs) as significant but varied contributors to VOC emissions from vehicles
Qiaozhi Zha, Wei Huang, Diego Aliaga, Otso Peräkylä, Liine Heikkinen, Alkuin Maximilian Koenig, Cheng Wu, Joonas Enroth, Yvette Gramlich, Jing Cai, Samara Carbone, Armin Hansel, Tuukka Petäjä, Markku Kulmala, Douglas Worsnop, Victoria Sinclair, Radovan Krejci, Marcos Andrade, Claudia Mohr, and Federico Bianchi
Atmos. Chem. Phys., 23, 4559–4576, https://doi.org/10.5194/acp-23-4559-2023, https://doi.org/10.5194/acp-23-4559-2023, 2023
Short summary
Short summary
We investigate the chemical composition of atmospheric cluster ions from January to May 2018 at the high-altitude research station Chacaltaya (5240 m a.s.l.) in the Bolivian Andes. With state-of-the-art mass spectrometers and air mass history analysis, the measured cluster ions exhibited distinct diurnal and seasonal patterns, some of which contributed to new particle formation. Our study will improve the understanding of atmospheric ions and their role in high-altitude new particle formation.
Michael P. Vermeuel, Gordon A. Novak, Delaney B. Kilgour, Megan S. Claflin, Brian M. Lerner, Amy M. Trowbridge, Jonathan Thom, Patricia A. Cleary, Ankur R. Desai, and Timothy H. Bertram
Atmos. Chem. Phys., 23, 4123–4148, https://doi.org/10.5194/acp-23-4123-2023, https://doi.org/10.5194/acp-23-4123-2023, 2023
Short summary
Short summary
Reactive carbon species emitted from natural sources such as forests play an important role in the chemistry of the atmosphere. Predictions of these emissions are based on plant responses during the growing season and do not consider potential effects from seasonal changes. To address this, we made measurements of reactive carbon over a forest during the summer to autumn transition. We learned that observed concentrations and emissions for some key species are larger than model predictions.
Huiming Lin, Yindong Tong, Long Chen, Chenghao Yu, Zhaohan Chu, Qianru Zhang, Xiufeng Yin, Qianggong Zhang, Shichang Kang, Junfeng Liu, James Schauer, Benjamin de Foy, and Xuejun Wang
Atmos. Chem. Phys., 23, 3937–3953, https://doi.org/10.5194/acp-23-3937-2023, https://doi.org/10.5194/acp-23-3937-2023, 2023
Short summary
Short summary
Lhasa is the largest city in the Tibetan Plateau, and its atmospheric mercury concentrations represent the highest level of pollution in this region. Unexpectedly high concentrations of atmospheric mercury species were found. Combined with the trajectory analysis, the high atmospheric mercury concentrations may have originated from external long-range transport. Local sources, especially special mercury-related sources, are important factors influencing the variability of atmospheric mercury.
Vaishali Jain, Nidhi Tripathi, Sachchida N. Tripathi, Mansi Gupta, Lokesh K. Sahu, Vishnu Murari, Sreenivas Gaddamidi, Ashutosh K. Shukla, and Andre S. H. Prevot
Atmos. Chem. Phys., 23, 3383–3408, https://doi.org/10.5194/acp-23-3383-2023, https://doi.org/10.5194/acp-23-3383-2023, 2023
Short summary
Short summary
This research chemically characterises 173 different NMVOCs (non-methane volatile organic compounds) measured in real time for three seasons in the city of the central Indo-Gangetic basin of India, Lucknow. Receptor modelling is used to analyse probable sources of NMVOCs and their crucial role in forming ozone and secondary organic aerosols. It is observed that vehicular emissions and solid fuel combustion are the highest contributors to the emission of primary and secondary NMVOCs.
Yizhen Wu, Juntao Huo, Gan Yang, Yuwei Wang, Lihong Wang, Shijian Wu, Lei Yao, Qingyan Fu, and Lin Wang
Atmos. Chem. Phys., 23, 2997–3014, https://doi.org/10.5194/acp-23-2997-2023, https://doi.org/10.5194/acp-23-2997-2023, 2023
Short summary
Short summary
Based on a field campaign in a suburban area of Shanghai during summer 2021, we calculated formaldehyde (HCHO) production rates from 24 volatile organic compounds (VOCs). In addition, HCHO photolysis, reactions with OH radicals, and dry deposition were considered for the estimation of HCHO loss rates. Our results reveal the key precursors of HCHO and suggest that HCHO wet deposition may be an important loss term on cloudy and rainy days, which needs to be further investigated.
Yu Han, Tao Wang, Rui Li, Hongbo Fu, Yusen Duan, Song Gao, Liwu Zhang, and Jianmin Chen
Atmos. Chem. Phys., 23, 2877–2900, https://doi.org/10.5194/acp-23-2877-2023, https://doi.org/10.5194/acp-23-2877-2023, 2023
Short summary
Short summary
Limited knowledge is available on volatile organic compound (VOC) multi-site research of different land-use types at city level. This study performed a concurrent multi-site observation campaign on the three typical land-use types of Shanghai, East China. The results showed that concentrations, sources and ozone and secondary organic aerosol formation potentials of VOCs varied with the land-use types.
Zhensen Zheng, Kangwei Li, Bo Xu, Jianping Dou, Liming Li, Guotao Zhang, Shijie Li, Chunmei Geng, Wen Yang, Merched Azzi, and Zhipeng Bai
Atmos. Chem. Phys., 23, 2649–2665, https://doi.org/10.5194/acp-23-2649-2023, https://doi.org/10.5194/acp-23-2649-2023, 2023
Short summary
Short summary
Previous box model studies applied different timescales of observational datasets to identify the O3–precursor relationship, but there is a lack of comparison among these different timescales regarding the impact of O3 formation chemistry. Through a case study at Zibo in China, we find that the O3 formation regime showed overall consistency but non-negligible variability among various patterns of timescale. This would be complementary in developing more accurate O3 pollution control strategies.
Lejish Vettikkat, Pasi Miettinen, Angela Buchholz, Pekka Rantala, Hao Yu, Simon Schallhart, Tuukka Petäjä, Roger Seco, Elisa Männistö, Markku Kulmala, Eeva-Stiina Tuittila, Alex B. Guenther, and Siegfried Schobesberger
Atmos. Chem. Phys., 23, 2683–2698, https://doi.org/10.5194/acp-23-2683-2023, https://doi.org/10.5194/acp-23-2683-2023, 2023
Short summary
Short summary
Wetlands cover a substantial fraction of the land mass in the northern latitudes, from northern Europe to Siberia and Canada. Yet, their isoprene and terpene emissions remain understudied. Here, we used a state-of-the-art measurement technique to quantify ecosystem-scale emissions from a boreal wetland during an unusually warm spring/summer. We found that the emissions from this wetland were (a) higher and (b) even more strongly dependent on temperature than commonly thought.
Tianyu Zhai, Keding Lu, Haichao Wang, Shengrong Lou, Xiaorui Chen, Renzhi Hu, and Yuanhang Zhang
Atmos. Chem. Phys., 23, 2379–2391, https://doi.org/10.5194/acp-23-2379-2023, https://doi.org/10.5194/acp-23-2379-2023, 2023
Short summary
Short summary
Particulate nitrate is a growing issue in air pollution. Based on comprehensive field measurement, we show heavy nitrate pollution in eastern China in summer. OH reacting with NO2 at daytime dominates nitrate formation on clean days, while N2O5 hydrolysis largely enhances and become comparable with that of OH reacting with O2 on polluted days (67.2 % and 30.2 %). Model simulation indicates that VOC : NOx = 2 : 1 is effective in mitigating the O3 and nitrate pollution coordinately.
Samuel J. Cliff, Will Drysdale, James D. Lee, Carole Helfter, Eiko Nemitz, Stefan Metzger, and Janet F. Barlow
Atmos. Chem. Phys., 23, 2315–2330, https://doi.org/10.5194/acp-23-2315-2023, https://doi.org/10.5194/acp-23-2315-2023, 2023
Short summary
Short summary
Emissions of nitrogen oxides (NOx) to the atmosphere are an ongoing air quality issue. This study directly measures emissions of NOx and carbon dioxide from a tall tower in central London during the coronavirus pandemic. It was found that transport NOx emissions had reduced by >73 % since 2017 as a result of air quality policy and reduced congestion during coronavirus restrictions. During this period, central London was thought to be dominated by point-source heat and power generation emissions.
Laura Tomsche, Felix Piel, Tomas Mikoviny, Claus J. Nielsen, Hongyu Guo, Pedro Campuzano-Jost, Benjamin A. Nault, Melinda K. Schueneman, Jose L. Jimenez, Hannah Halliday, Glenn Diskin, Joshua P. DiGangi, John B. Nowak, Elizabeth B. Wiggins, Emily Gargulinski, Amber J. Soja, and Armin Wisthaler
Atmos. Chem. Phys., 23, 2331–2343, https://doi.org/10.5194/acp-23-2331-2023, https://doi.org/10.5194/acp-23-2331-2023, 2023
Short summary
Short summary
Ammonia (NH3) is an important trace gas in the atmosphere and fires are among the poorly investigated sources. During the 2019 Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) aircraft campaign, we measured gaseous NH3 and particulate ammonium (NH4+) in smoke plumes emitted from 6 wildfires in the Western US and 66 small agricultural fires in the Southeastern US. We herein present a comprehensive set of emission factors of NH3 and NHx, where NHx = NH3 + NH4+.
Changmin Cho, Hendrik Fuchs, Andreas Hofzumahaus, Frank Holland, William J. Bloss, Birger Bohn, Hans-Peter Dorn, Marvin Glowania, Thorsten Hohaus, Lu Liu, Paul S. Monks, Doreen Niether, Franz Rohrer, Roberto Sommariva, Zhaofeng Tan, Ralf Tillmann, Astrid Kiendler-Scharr, Andreas Wahner, and Anna Novelli
Atmos. Chem. Phys., 23, 2003–2033, https://doi.org/10.5194/acp-23-2003-2023, https://doi.org/10.5194/acp-23-2003-2023, 2023
Short summary
Short summary
With this study, we investigated the processes leading to the formation, destruction, and recycling of radicals for four seasons in a rural environment. Complete knowledge of their chemistry is needed if we are to predict the formation of secondary pollutants from primary emissions. The results highlight a still incomplete understanding of the paths leading to the formation of the OH radical, which has been observed in several other environments as well and needs to be further investigated.
Eric Förster, Harald Bönisch, Marco Neumaier, Florian Obersteiner, Andreas Zahn, Andreas Hilboll, Anna B. Kalisz Hedegaard, Nikos Daskalakis, Alexandros Panagiotis Poulidis, Mihalis Vrekoussis, Michael Lichtenstern, and Peter Braesicke
Atmos. Chem. Phys., 23, 1893–1918, https://doi.org/10.5194/acp-23-1893-2023, https://doi.org/10.5194/acp-23-1893-2023, 2023
Short summary
Short summary
The airborne megacity campaign EMeRGe provided an unprecedented amount of trace gas measurements. We combine measured volatile organic compounds (VOCs) with trajectory-modelled emission uptakes to identify potential source regions of pollution. We also characterise the chemical fingerprints (e.g. biomass burning and anthropogenic signatures) of the probed air masses to corroborate the contributing source regions. Our approach is the first large-scale study of VOCs originating from megacities.
Thais Luarte, Victoria Antonieta Gómez-Aburto, Ignacio Poblete-Castro, Eduardo Castro-Nallar, Nicolás Hunneus, Marco Molina-Montenegro, Claudia Egas, Germán Azcune, Andrés Pérez-Parada, Rainier Lohmann, Pernilla Bohlin-Nizzetto, Jordi Dachs, Susan Bengtson-Nash, Gustavo Chiang, Karla Pozo, and Cristóbal Galbán-Malagón
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2023-25, https://doi.org/10.5194/acp-2023-25, 2023
Revised manuscript accepted for ACP
Short summary
Short summary
In the last 40 years different research groups have reported on the atmospheric concentrations of persistent organic pollutants in Antarctica. In the present work we make a compilation to understand the historical trends. We estimate the atmospheric half-life of each compound. Of all the compounds studied HCB was the only one that showed no clear trend, while the rest of the studied compounds showed a significant decrease over time. This is consistent with results for polar and sub-polar zones.
Jacob T. Shaw, Amy Foulds, Shona Wilde, Patrick Barker, Freya A. Squires, James Lee, Ruth Purvis, Ralph Burton, Ioana Colfescu, Stephen Mobbs, Samuel Cliff, Stéphane J.-B. Bauguitte, Stuart Young, Stefan Schwietzke, and Grant Allen
Atmos. Chem. Phys., 23, 1491–1509, https://doi.org/10.5194/acp-23-1491-2023, https://doi.org/10.5194/acp-23-1491-2023, 2023
Short summary
Short summary
Flaring is used by the oil and gas sector to dispose of unwanted natural gas or for safety. However, few studies have assessed the efficiency with which the gas is combusted. We sampled flaring emissions from offshore facilities in the North Sea. Average measured flaring efficiencies were ~ 98 % but with a skewed distribution, including many flares of lower efficiency. NOx and ethane emissions were also measured. Inefficient flaring practices could be a target for mitigating carbon emissions.
Wiebke Scholz, Jiali Shen, Diego Aliaga, Cheng Wu, Samara Carbone, Isabel Moreno, Qiaozhi Zha, Wei Huang, Liine Heikkinen, Jean Luc Jaffrezo, Gaelle Uzu, Eva Partoll, Markus Leiminger, Fernando Velarde, Paolo Laj, Patrick Ginot, Paolo Artaxo, Alfred Wiedensohler, Markku Kulmala, Claudia Mohr, Marcos Andrade, Victoria Sinclair, Federico Bianchi, and Armin Hansel
Atmos. Chem. Phys., 23, 895–920, https://doi.org/10.5194/acp-23-895-2023, https://doi.org/10.5194/acp-23-895-2023, 2023
Short summary
Short summary
Dimethyl sulfide (DMS), emitted from the ocean, is the most abundant biogenic sulfur emission into the atmosphere. OH radicals, among others, can oxidize DMS to sulfuric and methanesulfonic acid, which are relevant for aerosol formation. We quantified DMS and nearly all DMS oxidation products with novel mass spectrometric instruments for gas and particle phase at the high mountain station Chacaltaya (5240 m a.s.l.) in the Bolivian Andes in free tropospheric air after long-range transport.
Amelia M. H. Bond, Markus M. Frey, Jan Kaiser, Jörg Kleffmann, Anna E. Jones, and Freya A. Squires
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-845, https://doi.org/10.5194/acp-2022-845, 2023
Revised manuscript accepted for ACP
Short summary
Short summary
Atmospheric nitrous acid (HONO) amount fractions measured at Halley Research Station, Antarctica, were found to be low. Vertical fluxes of HONO from the snow were also measured and agree with the estimated HONO production rate from photolysis of snow nitrate. In simple box model of HONO sources and sinks there was good agreement between the measured flux and amount fraction. HONO was found to be an important OH radical source at Halley.
Dirk Dienhart, Bettina Brendel, John N. Crowley, Philipp G. Eger, Hartwig Harder, Monica Martinez, Andrea Pozzer, Roland Rohloff, Jan Schuladen, Sebastian Tauer, David Walter, Jos Lelieveld, and Horst Fischer
Atmos. Chem. Phys., 23, 119–142, https://doi.org/10.5194/acp-23-119-2023, https://doi.org/10.5194/acp-23-119-2023, 2023
Short summary
Short summary
Formaldehyde and hydroperoxide measurements were performed in the marine boundary layer around the Arabian Peninsula and highlight the Suez Canal and Arabian (Persian) Gulf as a hotspot of photochemical air pollution. A comparison with the EMAC model shows that the formaldehyde results match within a factor of 2, while hydrogen peroxide was overestimated by more than a factor of 5, which revealed enhanced HOx (OH+HO2) radicals in the simulation and an underestimation of dry deposition velocites.
Hao Guo, Clare M. Flynn, Michael J. Prather, Sarah A. Strode, Stephen D. Steenrod, Louisa Emmons, Forrest Lacey, Jean-Francois Lamarque, Arlene M. Fiore, Gus Correa, Lee T. Murray, Glenn M. Wolfe, Jason M. St. Clair, Michelle Kim, John Crounse, Glenn Diskin, Joshua DiGangi, Bruce C. Daube, Roisin Commane, Kathryn McKain, Jeff Peischl, Thomas B. Ryerson, Chelsea Thompson, Thomas F. Hanisco, Donald Blake, Nicola J. Blake, Eric C. Apel, Rebecca S. Hornbrook, James W. Elkins, Eric J. Hintsa, Fred L. Moore, and Steven C. Wofsy
Atmos. Chem. Phys., 23, 99–117, https://doi.org/10.5194/acp-23-99-2023, https://doi.org/10.5194/acp-23-99-2023, 2023
Short summary
Short summary
We have prepared a unique and unusual result from the recent ATom aircraft mission: a measurement-based derivation of the production and loss rates of ozone and methane over the ocean basins. These are the key products of chemistry models used in assessments but have thus far lacked observational metrics. It also shows the scales of variability of atmospheric chemical rates and provides a major challenge to the atmospheric models.
Simone T. Andersen, Beth S. Nelson, Katie A. Read, Shalini Punjabi, Luis Neves, Matthew J. Rowlinson, James Hopkins, Tomás Sherwen, Lisa K. Whalley, James D. Lee, and Lucy J. Carpenter
Atmos. Chem. Phys., 22, 15747–15765, https://doi.org/10.5194/acp-22-15747-2022, https://doi.org/10.5194/acp-22-15747-2022, 2022
Short summary
Short summary
The cycling of NO and NO2 is important to understand to be able to predict O3 concentrations in the atmosphere. We have used long-term measurements from the Cape Verde Atmospheric Observatory together with model outputs to investigate the cycling of nitrogen oxide (NO) and nitrogen dioxide (NO2) in very clean marine air. This study shows that we understand the processes occurring in very clean air, but with small amounts of pollution in the air, known chemistry cannot explain what is observed.
Pamela S. Rickly, Hongyu Guo, Pedro Campuzano-Jost, Jose L. Jimenez, Glenn M. Wolfe, Ryan Bennett, Ilann Bourgeois, John D. Crounse, Jack E. Dibb, Joshua P. DiGangi, Glenn S. Diskin, Maximilian Dollner, Emily M. Gargulinski, Samuel R. Hall, Hannah S. Halliday, Thomas F. Hanisco, Reem A. Hannun, Jin Liao, Richard Moore, Benjamin A. Nault, John B. Nowak, Jeff Peischl, Claire E. Robinson, Thomas Ryerson, Kevin J. Sanchez, Manuel Schöberl, Amber J. Soja, Jason M. St. Clair, Kenneth L. Thornhill, Kirk Ullmann, Paul O. Wennberg, Bernadett Weinzierl, Elizabeth B. Wiggins, Edward L. Winstead, and Andrew W. Rollins
Atmos. Chem. Phys., 22, 15603–15620, https://doi.org/10.5194/acp-22-15603-2022, https://doi.org/10.5194/acp-22-15603-2022, 2022
Short summary
Short summary
Biomass burning sulfur dioxide (SO2) emission factors range from 0.27–1.1 g kg-1 C. Biomass burning SO2 can quickly form sulfate and organosulfur, but these pathways are dependent on liquid water content and pH. Hydroxymethanesulfonate (HMS) appears to be directly emitted from some fire sources but is not the sole contributor to the organosulfur signal. It is shown that HMS and organosulfur chemistry may be an important S(IV) reservoir with the fate dependent on the surrounding conditions.
Daniel John Katz, Aroob Abdelhamid, Harald Stark, Manjula R. Canagaratna, Douglas R. Worsnop, and Eleanor C. Browne
EGUsphere, https://doi.org/10.5194/egusphere-2022-1318, https://doi.org/10.5194/egusphere-2022-1318, 2022
Short summary
Short summary
Ambient ion chemical composition measurements provide insight into trace gases that are precursors for the formation and growth of new aerosol particles. We use a new data analysis approach to increase the chemical information from these measurements. We analyze results from an agricultural region – an understudied land use type that is ~41 % of global land use – and find that the composition of gases important for aerosol formation and growth differ significantly from those in other ecosystems.
Cheng He, Xiao Lu, Haolin Wang, Haichao Wang, Yan Li, Guowen He, Yuanping He, Yurun Wang, Youlang Zhang, Yiming Liu, Qi Fan, and Shaojia Fan
Atmos. Chem. Phys., 22, 15243–15261, https://doi.org/10.5194/acp-22-15243-2022, https://doi.org/10.5194/acp-22-15243-2022, 2022
Short summary
Short summary
We report that nocturnal ozone enhancement (NOE) events are observed at a high annual frequency of 41 % over 800 sites in China in 2014–2019 (about 50 % higher than that over Europe or the US). High daytime ozone provides a rich ozone source in the nighttime residual layer, determining the overall high frequency of NOE events in China, and enhanced atmospheric mixing then triggers NOE events by allowing the ozone-rich air in the residual layer to be mixed into the nighttime boundary layer.
Rebecca A. Wernis, Nathan M. Kreisberg, Robert J. Weber, Greg T. Drozd, and Allen H. Goldstein
Atmos. Chem. Phys., 22, 14987–15019, https://doi.org/10.5194/acp-22-14987-2022, https://doi.org/10.5194/acp-22-14987-2022, 2022
Short summary
Short summary
We measured volatile and intermediate-volatility gases and semivolatile gas- and particle-phase compounds in the atmosphere during an 11 d period in a Bay Area suburb. We separated compounds based on variability in time to arrive at 13 distinct sources. Some compounds emitted from plants are found in greater quantities as fragrance compounds in consumer products. The wide volatility range of these measurements enables the construction of more complete source profiles.
Shijie Yu, Shenbo Wang, Ruixin Xu, Dong Zhang, Meng Zhang, Fangcheng Su, Xuan Lu, Xiao Li, Ruiqin Zhang, and Lingling Wang
Atmos. Chem. Phys., 22, 14859–14878, https://doi.org/10.5194/acp-22-14859-2022, https://doi.org/10.5194/acp-22-14859-2022, 2022
Short summary
Short summary
In this study, the hourly data of 57 VOC species were collected during 2018–2020 at an urban site in Zhengzhou, China. The research of concentrations, source apportionment, and atmospheric environmental implications clearly elucidated the differences in major reactants observed in different seasons and years. Therefore, the control strategy should focus on key species and sources among interannual and seasonal variations. The results can provide references to develop control strategies.
Haichao Wang, Bin Yuan, E Zheng, Xiaoxiao Zhang, Jie Wang, Keding Lu, Chenshuo Ye, Lei Yang, Shan Huang, Weiwei Hu, Suxia Yang, Yuwen Peng, Jipeng Qi, Sihang Wang, Xianjun He, Yubin Chen, Tiange Li, Wenjie Wang, Yibo Huangfu, Xiaobing Li, Mingfu Cai, Xuemei Wang, and Min Shao
Atmos. Chem. Phys., 22, 14837–14858, https://doi.org/10.5194/acp-22-14837-2022, https://doi.org/10.5194/acp-22-14837-2022, 2022
Short summary
Short summary
We present intensive field measurement of ClNO2 in the Pearl River Delta in 2019. Large variation in the level, formation, and atmospheric impacts of ClNO2 was found in different air masses. ClNO2 formation was limited by the particulate chloride (Cl−) and aerosol surface area. Our results reveal that Cl− originated from various anthropogenic emissions rather than sea sources and show minor contribution to the O3 pollution and photochemistry.
Amy Christiansen, Loretta J. Mickley, Junhua Liu, Luke D. Oman, and Lu Hu
Atmos. Chem. Phys., 22, 14751–14782, https://doi.org/10.5194/acp-22-14751-2022, https://doi.org/10.5194/acp-22-14751-2022, 2022
Short summary
Short summary
Understanding tropospheric ozone trends is crucial for accurate predictions of future air quality and climate, but drivers of trends are not well understood. We analyze global tropospheric ozone trends since 1980 using ozonesonde and surface measurements, and we evaluate two models for their ability to reproduce trends. We find observational evidence of increasing tropospheric ozone, but models underestimate these increases. This hinders our ability to estimate ozone radiative forcing.
Yue Tan and Tao Wang
Atmos. Chem. Phys., 22, 14455–14466, https://doi.org/10.5194/acp-22-14455-2022, https://doi.org/10.5194/acp-22-14455-2022, 2022
Short summary
Short summary
We present a timely analysis of the effects of the recent lockdown in Shanghai on ground-level ozone (O3). Despite a huge reduction in human activity, O3 concentrations frequently exceeded the O3 air quality standard during the 2-month lockdown, implying that future emission reductions similar to those that occurred during the lockdown will not be sufficient to eliminate O3 pollution in many urban areas without the imposition of additional VOC controls or substantial decreases in NOx emissions.
Peeyush Khare, Jordan E. Krechmer, Jo E. Machesky, Tori Hass-Mitchell, Cong Cao, Junqi Wang, Francesca Majluf, Felipe Lopez-Hilfiker, Sonja Malek, Will Wang, Karl Seltzer, Havala O. T. Pye, Roisin Commane, Brian C. McDonald, Ricardo Toledo-Crow, John E. Mak, and Drew R. Gentner
Atmos. Chem. Phys., 22, 14377–14399, https://doi.org/10.5194/acp-22-14377-2022, https://doi.org/10.5194/acp-22-14377-2022, 2022
Short summary
Short summary
Ammonium adduct chemical ionization is used to examine the atmospheric abundances of oxygenated volatile organic compounds associated with emissions from volatile chemical products, which are now key contributors of reactive precursors to ozone and secondary organic aerosols in urban areas. The application of this valuable measurement approach in densely populated New York City enables the evaluation of emissions inventories and thus the role these oxygenated compounds play in urban air quality.
Vanessa Selimovic, Damien Ketcherside, Sreelekha Chaliyakunnel, Catherine Wielgasz, Wade Permar, Hélène Angot, Dylan B. Millet, Alan Fried, Detlev Helmig, and Lu Hu
Atmos. Chem. Phys., 22, 14037–14058, https://doi.org/10.5194/acp-22-14037-2022, https://doi.org/10.5194/acp-22-14037-2022, 2022
Short summary
Short summary
Arctic warming has led to an increase in plants that emit gases in response to stress, but how these gases affect regional chemistry is largely unknown due to lack of observational data. Here we present the most comprehensive gas-phase measurements for this area to date and compare them to predictions from a global transport model. We report 78 gas-phase species and investigate their importance to atmospheric chemistry in the area, with broader implications for similar plant types.
Rujing Yin, Xiaoxiao Li, Chao Yan, Runlong Cai, Ying Zhou, Juha Kangasluoma, Nina Sarnela, Janne Lampilahti, Tuukka Petäjä, Veli-Matti Kerminen, Federico Bianchi, Markku Kulmala, and Jingkun Jiang
EGUsphere, https://doi.org/10.5194/egusphere-2022-1108, https://doi.org/10.5194/egusphere-2022-1108, 2022
Short summary
Short summary
The negative cluster ions with specific compositions are measured and quantified through the in-situ measurement of an atmospheric pressure interface high-resolution time-of-flight mass spectrometer and a neutral cluster and air ion spectrometer in urban Beijing. The governing factors of atmospheric negative cluster ion concentration and composition at polluted urban sites are revealed and the fate of two representative ions in the urban atmosphere is characterized.
Louise Bøge Frederickson, Ruta Sidaraviciute, Johan Albrecht Schmidt, Ole Hertel, and Matthew Stanley Johnson
Atmos. Chem. Phys., 22, 13949–13965, https://doi.org/10.5194/acp-22-13949-2022, https://doi.org/10.5194/acp-22-13949-2022, 2022
Short summary
Short summary
Low-cost sensors see additional pollution that is not seen with traditional regional air quality monitoring stations. This additional local pollution is sufficient to cause exceedance of the World Health Organization exposure thresholds. Analysis shows that a significant amount of the NO2 pollution we observe is local, mainly due to road traffic. This article demonstrates how networks of nodes containing low-cost pollution sensors can powerfully extend existing monitoring programmes.
David D. Parrish, Richard G. Derwent, Ian C. Faloona, and Charles A. Mims
Atmos. Chem. Phys., 22, 13423–13430, https://doi.org/10.5194/acp-22-13423-2022, https://doi.org/10.5194/acp-22-13423-2022, 2022
Short summary
Short summary
Accounting for the continuing long-term decrease of pollution ozone and the large 2020 Arctic stratospheric ozone depletion event improves estimates of background ozone changes caused by COVID-19-related emission reductions; they are smaller than reported earlier. Cooperative, international emission control efforts aimed at maximizing the ongoing decrease in hemisphere-wide background ozone may be the most effective approach to improving ozone pollution in northern midlatitude countries.
Wendell W. Walters, Madeline Karod, Emma Willcocks, Bok H. Baek, Danielle E. Blum, and Meredith G. Hastings
Atmos. Chem. Phys., 22, 13431–13448, https://doi.org/10.5194/acp-22-13431-2022, https://doi.org/10.5194/acp-22-13431-2022, 2022
Short summary
Short summary
Atmospheric ammonia and its products are a significant source of urban haze and nitrogen deposition. We have investigated the seasonal source contributions to a mid-sized city in the northeastern US megalopolis utilizing geospatial statistical analysis and novel isotopic constraints, which indicate that vehicle emissions were significant components of the urban-reduced nitrogen budget. Reducing vehicle ammonia emissions should be considered to improve ecosystems and human health.
Zhaofeng Tan, Hendrik Fuchs, Andreas Hofzumahaus, William J. Bloss, Birger Bohn, Changmin Cho, Thorsten Hohaus, Frank Holland, Chandrakiran Lakshmisha, Lu Liu, Paul S. Monks, Anna Novelli, Doreen Niether, Franz Rohrer, Ralf Tillmann, Thalassa S. E. Valkenburg, Vaishali Vardhan, Astrid Kiendler-Scharr, Andreas Wahner, and Roberto Sommariva
Atmos. Chem. Phys., 22, 13137–13152, https://doi.org/10.5194/acp-22-13137-2022, https://doi.org/10.5194/acp-22-13137-2022, 2022
Short summary
Short summary
During the 2019 JULIAC campaign, ClNO2 was measured at a rural site in Germany in different seasons. The highest ClNO2 level was 1.6 ppbv in September. ClNO2 production was more sensitive to the availability of NO2 than O3. The average ClNO2 production efficiency was up to 18 % in February and September and down to 3 % in December. These numbers are at the high end of the values reported in the literature, indicating the importance of ClNO2 chemistry in rural environments in midwestern Europe.
Haeyoung Lee, Won-Ick Seo, Shanlan Li, Soojeong Lee, Samuel Kenea, and Sangwon Joo
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-600, https://doi.org/10.5194/acp-2022-600, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
We introduce 3 monitoring Korea Meteorological Administration (KMA) stations with monitoring system and measurement uncertainty. We also analyzed the regional characteristics of CH4 at each KMA station. We also compared the CH4 levels measured at KMA stations with those measured at other Asia stations. From the long-term records of CH4 and δ13CH4 at AMY, we confirmed that the source of CH4xs changed from the past (2006 to 2010) to recent (2016 to 2020) years in East Asia.
Xinping Yang, Keding Lu, Xuefei Ma, Yue Gao, Zhaofeng Tan, Haichao Wang, Xiaorui Chen, Xin Li, Xiaofeng Huang, Lingyan He, Mengxue Tang, Bo Zhu, Shiyi Chen, Huabin Dong, Limin Zeng, and Yuanhang Zhang
Atmos. Chem. Phys., 22, 12525–12542, https://doi.org/10.5194/acp-22-12525-2022, https://doi.org/10.5194/acp-22-12525-2022, 2022
Short summary
Short summary
We present the OH and HO2 radical observations at the Shenzhen site (Pearl River Delta, China) in the autumn of 2018. The diurnal maxima were 4.5 × 106 cm−3 for OH and 4.2 × 108 cm−3 for HO2 (including an estimated interference of 23 %–28 % from RO2 radicals during the daytime). The OH underestimation was identified again, and it was attributable to the missing OH sources. HO2 heterogeneous uptake, ROx sources and sinks, and the atmospheric oxidation capacity were evaluated as well.
Katherine L. Hayden, Shao-Meng Li, John Liggio, Michael J. Wheeler, Jeremy J. B. Wentzell, Amy Leithead, Peter Brickell, Richard L. Mittermeier, Zachary Oldham, Cristian M. Mihele, Ralf M. Staebler, Samar G. Moussa, Andrea Darlington, Mengistu Wolde, Daniel Thompson, Jack Chen, Debora Griffin, Ellen Eckert, Jenna C. Ditto, Megan He, and Drew R. Gentner
Atmos. Chem. Phys., 22, 12493–12523, https://doi.org/10.5194/acp-22-12493-2022, https://doi.org/10.5194/acp-22-12493-2022, 2022
Short summary
Short summary
In this study, airborne measurements provided the most detailed characterization, to date, of boreal forest wildfire emissions. Measurements showed a large diversity of air pollutants expanding the volatility range typically reported. A large portion of organic species was unidentified, likely comprised of complex organic compounds. Aircraft-derived emissions improve wildfire chemical speciation and can support reliable model predictions of pollution from boreal forest wildfires.
Albane Barbero, Roberto Grilli, Markus M. Frey, Camille Blouzon, Detlev Helmig, Nicolas Caillon, and Joël Savarino
Atmos. Chem. Phys., 22, 12025–12054, https://doi.org/10.5194/acp-22-12025-2022, https://doi.org/10.5194/acp-22-12025-2022, 2022
Short summary
Short summary
The high reactivity of the summer Antarctic boundary layer results in part from the emissions of nitrogen oxides produced during photo-denitrification of the snowpack, but its underlying mechanisms are not yet fully understood. The results of this study suggest that more NO2 is produced from the snowpack early in the photolytic season, possibly due to stronger UV irradiance caused by a smaller solar zenith angle near the solstice.
Lulu Cui, Di Wu, Shuxiao Wang, Qingcheng Xu, Ruolan Hu, and Jiming Hao
Atmos. Chem. Phys., 22, 11931–11944, https://doi.org/10.5194/acp-22-11931-2022, https://doi.org/10.5194/acp-22-11931-2022, 2022
Short summary
Short summary
A 1-year campaign was conducted to characterize VOCs at a Beijing urban site during different episodes. VOCs from fuel evaporation and diesel exhaust, particularly toluene, xylenes, trans-2-butene, acrolein, methyl methacrylate, vinyl acetate, 1-butene, and 1-hexene, were the main contributors. VOCs from diesel exhaust as well as coal and biomass combustion were found to be the dominant contributors for SOAFP, particularly the VOC species toluene, 1-hexene, xylenes, ethylbenzene, and styrene.
Marcel Zauner-Wieczorek, Martin Heinritzi, Manuel Granzin, Timo Keber, Andreas Kürten, Katharina Kaiser, Johannes Schneider, and Joachim Curtius
Atmos. Chem. Phys., 22, 11781–11794, https://doi.org/10.5194/acp-22-11781-2022, https://doi.org/10.5194/acp-22-11781-2022, 2022
Short summary
Short summary
We present measurements of ambient ions in the free troposphere and lower stratosphere over Europe in spring 2020. We observed nitrate and hydrogen sulfate, amongst others. From their ratio, the number concentrations of gaseous sulfuric acid were inferred. Nitrate increased towards the stratosphere, whilst sulfuric acid was slightly decreased there. The average values for sulfuric acid were 1.9 to 7.8 × 105 cm-3. Protonated pyridine was identified in an altitude range of 4.6 to 8.5 km.
Alena Dekhtyareva, Mark Hermanson, Anna Nikulina, Ove Hermansen, Tove Svendby, Kim Holmén, and Rune Grand Graversen
Atmos. Chem. Phys., 22, 11631–11656, https://doi.org/10.5194/acp-22-11631-2022, https://doi.org/10.5194/acp-22-11631-2022, 2022
Short summary
Short summary
Despite decades of industrial activity in Svalbard, there is no continuous air pollution monitoring in the region’s settlements except Ny-Ålesund. The NOx and O3 observations from the three-station network have been compared for the first time in this study. It has been shown how the large-scale weather regimes control the synoptic meteorological conditions and determine the atmospheric long-range transport pathways and efficiency of local air pollution dispersion.
Asher P. Mouat, Clare Paton-Walsh, Jack B. Simmons, Jhonathan Ramirez-Gamboa, David W. T. Griffith, and Jennifer Kaiser
Atmos. Chem. Phys., 22, 11033–11047, https://doi.org/10.5194/acp-22-11033-2022, https://doi.org/10.5194/acp-22-11033-2022, 2022
Short summary
Short summary
We examine emissions of volatile organic compounds from 2020 wildfires in forested regions of Australia (AU). We find that biomass burning in temperate regions of the US and AU emit similar species in similar proportion, both in natural and lab settings. This suggests studies of wildfires in one region may be used to help improve air quality models in other parts of the world. We observe time series of ozone and nitrogen dioxide. Last, we look at which compounds contribute most to OH reactivity.
Shang Liu, Barbara Barletta, Rebecca S. Hornbrook, Alan Fried, Jeff Peischl, Simone Meinardi, Matthew Coggon, Aaron Lamplugh, Jessica B. Gilman, Georgios I. Gkatzelis, Carsten Warneke, Eric C. Apel, Alan J. Hills, Ilann Bourgeois, James Walega, Petter Weibring, Dirk Richter, Toshihiro Kuwayama, Michael FitzGibbon, and Donald Blake
Atmos. Chem. Phys., 22, 10937–10954, https://doi.org/10.5194/acp-22-10937-2022, https://doi.org/10.5194/acp-22-10937-2022, 2022
Short summary
Short summary
California’s ozone persistently exceeds the air quality standards. We studied the spatial distribution of volatile organic compounds (VOCs) that produce ozone over the most polluted regions in California using aircraft measurements. We find that the oxygenated VOCs have the highest ozone formation potential. Spatially, biogenic VOCs are important during high ozone episodes in the South Coast Air Basin, while dairy emissions may be critical for ozone production in San Joaquin Valley.
Simone M. Pieber, Béla Tuzson, Stephan Henne, Ute Karstens, Christoph Gerbig, Frank-Thomas Koch, Dominik Brunner, Martin Steinbacher, and Lukas Emmenegger
Atmos. Chem. Phys., 22, 10721–10749, https://doi.org/10.5194/acp-22-10721-2022, https://doi.org/10.5194/acp-22-10721-2022, 2022
Short summary
Short summary
Understanding regional greenhouse gas emissions into the atmosphere is a prerequisite to mitigate climate change. In this study, we investigated the regional contributions of carbon dioxide (CO2) at the location of the high Alpine observatory Jungfraujoch (JFJ, Switzerland, 3580 m a.s.l.). To this purpose, we combined receptor-oriented atmospheric transport simulations for CO2 concentration in the period 2009–2017 with stable carbon isotope (δ13C–CO2) information.
Xiao-Bing Li, Bin Yuan, Sihang Wang, Chunlin Wang, Jing Lan, Zhijie Liu, Yongxin Song, Xianjun He, Yibo Huangfu, Chenglei Pei, Peng Cheng, Suxia Yang, Jipeng Qi, Caihong Wu, Shan Huang, Yingchang You, Ming Chang, Huadan Zheng, Wenda Yang, Xuemei Wang, and Min Shao
Atmos. Chem. Phys., 22, 10567–10587, https://doi.org/10.5194/acp-22-10567-2022, https://doi.org/10.5194/acp-22-10567-2022, 2022
Short summary
Short summary
High-time-resolution measurements of volatile organic compounds (VOCs) were made using an online mass spectrometer at a 600 m tall tower in urban region. Compositions, temporal variations, and sources of VOCs were quantitatively investigated in this study. We find that VOC measurements in urban regions aloft could better characterize source characteristics of anthropogenic emissions. Our results could provide important implications in making future strategies for control of VOCs.
Robert J. Yokelson, Bambang H. Saharjo, Chelsea E. Stockwell, Erianto I. Putra, Thilina Jayarathne, Acep Akbar, Israr Albar, Donald R. Blake, Laura L. B. Graham, Agus Kurniawan, Simone Meinardi, Diah Ningrum, Ati D. Nurhayati, Asmadi Saad, Niken Sakuntaladewi, Eko Setianto, Isobel J. Simpson, Elizabeth A. Stone, Sigit Sutikno, Andri Thomas, Kevin C. Ryan, and Mark A. Cochrane
Atmos. Chem. Phys., 22, 10173–10194, https://doi.org/10.5194/acp-22-10173-2022, https://doi.org/10.5194/acp-22-10173-2022, 2022
Short summary
Short summary
Fire plus non-fire GHG emissions associated with draining peatlands are the largest per area of any land use change considered by the IPCC. To characterize average and variability for tropical peat fire emissions, highly mobile smoke sampling teams were deployed across four Indonesian provinces to explore an extended interannual, climatic, and spatial range. Large adjustments to IPCC-recommended emissions are suggested. Lab data bolster an extensive emissions database for tropical peat fires.
Deanna C. Myers, Saewung Kim, Steven Sjostedt, Alex B. Guenther, Roger Seco, Oscar Vega Bustillos, Julio Tota, Rodrigo A. F. Souza, and James N. Smith
Atmos. Chem. Phys., 22, 10061–10076, https://doi.org/10.5194/acp-22-10061-2022, https://doi.org/10.5194/acp-22-10061-2022, 2022
Short summary
Short summary
We present the first measurements of gas-phase sulfuric acid from the Amazon basin and evaluate the efficacy of existing sulfuric acid parameterizations in this understudied region. Sulfuric acid is produced during the daytime and nighttime, though current proxies underestimate nighttime production. These results illustrate the need for better parameterizations of sulfuric acid and its precursors that are informed by measurements across a broad range of locations.
Yishuo Guo, Chao Yan, Yuliang Liu, Xiaohui Qiao, Feixue Zheng, Ying Zhang, Ying Zhou, Chang Li, Xiaolong Fan, Zhuohui Lin, Zemin Feng, Yusheng Zhang, Penggang Zheng, Linhui Tian, Wei Nie, Zhe Wang, Dandan Huang, Kaspar R. Daellenbach, Lei Yao, Lubna Dada, Federico Bianchi, Jingkun Jiang, Yongchun Liu, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 22, 10077–10097, https://doi.org/10.5194/acp-22-10077-2022, https://doi.org/10.5194/acp-22-10077-2022, 2022
Short summary
Short summary
Gaseous oxygenated organic molecules (OOMs) are able to form atmospheric aerosols, which will impact on human health and climate change. Here, we find that OOMs in urban Beijing are dominated by anthropogenic sources, i.e. aromatic (29 %–41 %) and aliphatic (26 %–41 %) OOMs. They are also the main contributors to the condensational growth of secondary organic aerosols (SOAs). Therefore, the restriction on anthropogenic VOCs is crucial for the reduction of SOAs and haze formation.
Sihang Wang, Bin Yuan, Caihong Wu, Chaomin Wang, Tiange Li, Xianjun He, Yibo Huangfu, Jipeng Qi, Xiao-Bing Li, Qing'e Sha, Manni Zhu, Shengrong Lou, Hongli Wang, Thomas Karl, Martin Graus, Zibing Yuan, and Min Shao
Atmos. Chem. Phys., 22, 9703–9720, https://doi.org/10.5194/acp-22-9703-2022, https://doi.org/10.5194/acp-22-9703-2022, 2022
Short summary
Short summary
Volatile organic compound (VOC) emissions from vehicles are measured using online mass spectrometers. Differences between gasoline and diesel vehicles are observed with higher emission factors of most oxygenated VOCs (OVOCs) and heavier aromatics from diesel vehicles. A higher aromatics / toluene ratio could provide good indicators to distinguish emissions from both vehicle types. We show that OVOCs account for significant contributions to VOC emissions from vehicles, especially diesel vehicles.
Cited articles
Alam, M. S., Delgado-Saborit, J. M., Stark, C., and Harrison, R. M.: Investigating PAH relative reactivity using congener profiles, quinone measurements and back trajectories, Atmos. Chem. Phys., 14, 2467–2477, https://doi.org/10.5194/acp-14-2467-2014, 2014.
AMAP: Arctic Pollution 2009, Arctic Monitoring and Assessment Programme,
Oslo, Norway, 1–83, 2009.
AMAP: AMAP Assessment 2016: Chemicals of Emerging Arctic Concern., Arctic
Monitoring and Assessment Programme (AMAP), Oslo, Norway, xvi + 353 pp., 2017.
AMAP: Arctic Monitoring and Assessment Programme – an Arctic Council Working
Group, available at: https://www.amap.no/ (last access: 7 February 2020), 2019.
Bahm, K. and Khalil, M. A. K.: A new model of tropospheric hydroxyl radical
concentrations, Chemosphere, 54, 143–166, https://doi.org/10.1016/j.chemosphere.2003.08.006, 2004.
Barrie, L. A., Gregor, D., Hargrave, B., Lake, R., Muir, D., Shearer, R.,
Tracey, B., and Bidleman, T.: Arctic contaminants: sources, occurrence and
pathways, Sci. Total Environ., 122, 1–74,
https://doi.org/10.1016/0048-9697(92)90245-N, 1992.
Bendig, P., Hägele, F., and Vetter, W.: Widespread occurrence of
polyhalogenated compounds in fat from kitchen hoods,
Anal. Bioanal. Chem., 405, 7485–7496, https://doi.org/10.1007/s00216-013-7194-5, 2013.
Beyer, A., Wania, F., Gouin, T., Mackay, D., and Matthies, M.: Temperature
Dependence of the Characteristic Travel Distance, Environ. Sci. Technol., 37, 766–771, https://doi.org/10.1021/es025717w, 2003.
Bidleman, T. F., Brorström-Lundén, E., Hansson, K., Laudon, H.,
Nygren, O., and Tysklind, M.: Atmospheric Transport and Deposition of
Bromoanisoles Along a Temperate to Arctic Gradient,
Environ. Sci. Technol., 51, 10974–10982, https://doi.org/10.1021/acs.est.7b03218, 2017a.
Bidleman, T. F., Laudon, H., Nygren, O., Svanberg, S., and Tysklind, M.:
Chlorinated pesticides and natural brominated anisoles in air at three
northern Baltic stations, Environ. Pollut., 225, 381–389, https://doi.org/10.1016/j.envpol.2017.02.064, 2017b.
Brown, T. N. and Wania, F.: Screening chemicals for the potential to be
persistent organic pollutants: A case study of Arctic contaminants,
Environ. Sci. Technol., 42, 5202–5209, https://doi.org/10.1021/es8004514,
2008.
ChemAxon: JChem for Excel Add-In V 19.25.0.559., available at: https://chemaxon.com/, last access: 19 December 2019.
Coscollà, C., Castillo, M., Pastor, A., and Yusà, V.: Determination
of 40 currently used pesticides in airborne particulate matter (PM 10) by
microwave-assisted extraction and gas chromatography coupled to triple
quadrupole mass spectrometry, Anal. Chim. Acta, 693, 72–81, https://doi.org/10.1016/j.aca.2011.03.017, 2011.
Czech, H., Miersch, T., Orasche, J., Abbaszade, G., Sippula, O., Tissari,
J., Michalke, B., Schnelle-Kreis, J., Streibel, T., Jokiniemi, J., and
Zimmermann, R.: Chemical composition and speciation of particulate organic
matter from modern residential small-scale wood combustion appliances,
Sci. Total Environ., 612, 636–648, https://doi.org/10.1016/j.scitotenv.2017.08.263, 2018.
Czub, G., Wania, F., and McLachlan, M. S.: Combining Long-Range Transport
and Bioaccumulation Considerations to Identify Potential Arctic
Contaminants, Environ. Sci. Technol., 42, 3704–3709, https://doi.org/10.1021/es7028679, 2008.
Drotikova, T., Ali, A. M., Halse, A. K., Reinardy, H. C., and Kallenborn, R.: Polycyclic aromatic hydrocarbons (PAHs), oxy- and nitro-PAHs in ambient air of Arctic town Longyearbyen, Svalbard, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-142, in review, 2020.
ECHA: Mapping the chemical universe to address substances of concern –
Integrated Regulatory Strategy Annual Report 2019, ECHA, Finland, 1–59,
2019a.
ECHA: ECHA substance information 3-iodo-2-propynyl butylcarbamate, available at:
https://echa.europa.eu/substance-information/-/substanceinfo/100.054.188 (last access: 7 February 2020), 2019b.
ECHA: ECHA substance information Caffeine, available at:
https://echa.europa.eu/substance-information/-/substanceinfo/100.000.329
(last access: 7 February 2020), 2019c.
ECHA: ECHA substance information Dichlofluanid, available at:
https://echa.europa.eu/substance-information/-/substanceinfo/100.012.835
(last access: 7 February 2020), 2019d.
ECHA: ECHA substance information Benzenesulfonamide, available at:
https://echa.europa.eu/substance-information/-/substanceinfo/100.002.398
(last access: 7 February 2020), 2019e.
ECHA: ECHA substance information Nitrapyrin, available at:
https://echa.europa.eu/substance-information/-/substanceinfo/100.016.076
(last access: 7 February 2020), 2019f.
ECHA: ECHA substance information Dichlorobenil, available at:
https://echa.europa.eu/substance-information/-/substanceinfo/100.013.443
(last access: 7 February 2020), 2019g.
ECHA: ECHA substance information 2-Methylanthraquinone, available at:
https://echa.europa.eu/substance-information/-/substanceinfo/100.001.399
(last access: 7 February 2020), 2019h.
ECHA: ECHA substance information Tris(2-chloro-1-methylethyl) phosphate, available at:
https://echa.europa.eu/substance-information/-/substanceinfo/100.033.766
(last access: 7 February 2020), 2019i.
Elix, J. A., Whitton, A. A., and Sagent, M. V.: Recent Progress in the
Chemistry of Lichen Substances, in: Progress in the Chemistry of Organic
Natural Products, edited by: Herz, W., Grisebach, H., and Kirby, G. W.,
Springer-Verlag, Vienna, Austria, 103–234, 1984.
EMEP: The co-operative programme for monitoring and evaluation of the
long-range transmission of air pollutants in Europe (inofficially “European
Monitoring and Evaluation Programme” = EMEP) is a scientifically based and
policy driven programme under the Convention on Long-range Transboundary Air
Pollution (CLRTAP) for international co-operation to solve transboundary air
pollution problems, available at:
http://www.emep.int (last access: 7 February 2020), 2019.
European Parliament: Regulation (EC) No. 1907/2006 of the European Parliament
and of the Council, 18 December 2006, concerning the Registration,
Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing
a European Chemicals Agency, amending Directive 1999/45/EC and repealing
Council Regulation (EEC) No. 793/93 and Commission Regulation (EC) No. 1488/94
as well as Council Directive 76/769/EEC and Commission Directives
91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC. The European Parliament and
the Council of the European Union, 2018.
Fiedler, H., Kallenborn, R., de Boer, J., and Sydnes Leiv, K.: The Stockholm Convention: A Tool for the Global Regulation of Persistent Organic Pollutants, Chemistry International, 41, 4–11, https://doi.org/10.1515/ci-2019-0202, 2019.
Führer, U. and Ballschmiter, K.: Bromochloromethoxybenzenes in the
Marine Troposphere of the Atlantic Ocean:? A Group of Organohalogens with
Mixed Biogenic and Anthropogenic Origin, Environ. Sci. Technol., 32, 2208–2215, https://doi.org/10.1021/es970922a, 1998.
Genualdi, S., Harner, T., Cheng, Y., MacLeod, M., Hansen, K. M., van Egmond,
R., Shoeib, M., and Lee, S. C.: Global Distribution of Linear and Cyclic
Volatile Methyl Siloxanes in Air, Environ. Sci. Technol., 45,
3349–3354, https://doi.org/10.1021/es200301j, 2011.
GovCanada: Chemicals of high priority, Batch 8 of the Challenge:
Tetrachloroveratrole, available at:
https://www.canada.ca/en/health-canada/services/chemical-substances/challenge/batch-8/tetrachloroveratrole.html
(last access: 7 February 2020), 2019.
Grazulevicius, J. V., Strohriegl, P., Pielichowski, J., and Pielichowski,
K.: Carbazole-containing polymers: synthesis, properties and applications,
Prog. Polym. Sci., 28, 1297–1353, https://doi.org/10.1016/S0079-6700(03)00036-4, 2003.
Gubala, C. P., Landers, D. H., Monetti, M., Heit, M., Wade, T., Lasorsa, B.,
and Allen-Gil, S.: The rates of accumulation and chronologies of
atmospherically derived pollutants in Arctic Alaska, USA, Sci. Total Environ., 160–161, 347–361, https://doi.org/10.1016/0048-9697(95)04368-B, 1995.
Hansen, B. G., Munn, S. J., Pakalin, S., Heidorn, C. J. A., Allanou, R., Scheer S., Pellegrini, G., Vegro, S., De Bruijn, J., Luotamo, M., Vormann, K., Loonen, H., Berthault, F., and Praderio, L.: EUR 19757 EN – European Union Risk Assessment Report 4-Choro-o-cresol, Office for Official Publications of the European Communities, Luxembourg, 2002.
Health Council of the Netherlands: Committee on Updating of
Occupational Exposure Limits. o-, m-, p-Terphenyl (mixture); Health-based
Reassessment of Administrative Occupational Exposure Limits. Health Council
of the Netherlands, The Hague, the Netherlands, 2002.
Herrero, P., Borrull, F., Pocurull, E., and Marcé, R. M.: An overview of
analytical methods and occurrence of benzotriazoles, benzothiazoles and
benzenesulfonamides in the environment, TrAC-Trend. Anal. Chem.,
62, 46–55, https://doi.org/10.1016/j.trac.2014.06.017, 2014.
Hilton, D. C., Jones, R. S., and Sjödin, A.: A method for rapid,
non-targeted screening for environmental contaminants in household dust,
J. Chromatogr. A, 1217, 6851–6856, https://doi.org/10.1016/j.chroma.2010.08.039,
2010.
Hoferkamp, L., Hermanson, M. H., and Muir, D. C. G.: Current use pesticides
in Arctic media; 2000–2007, Sci. Total Environ., 408,
2985–2994, https://doi.org/10.1016/j.scitotenv.2009.11.038,
2010.
Howard, P. H. and Muir, D. C. G.: Identifying New Persistent and
Bioaccumulative Organics Among Chemicals in Commerce, Environ. Sci. Technol., 44, 2277–2285, https://doi.org/10.1021/es903383a, 2010.
Hung, H., Kallenborn, R., Breivik, K., Su, Y., Brorström-Lundén, E.,
Olafsdottir, K., Thorlacius, J. M., Leppänen, S., Bossi, R., Skov, H.,
Manø, S., Patton, G. W., Stern, G., Sverko, E., and Fellin, P.:
Atmospheric monitoring of organic pollutants in the Arctic under the Arctic
Monitoring and Assessment Programme (AMAP): 1993–2006, Sci. Total Environ., 408, 2854–2873, https://doi.org/10.1016/j.scitotenv.2009.10.044, 2010.
Ireland/UK: European Union Risk Assessment Report
tris(2-chloro-1-methylethyl) phosphate. Office for Official Publications of
the European Communities, Luxembourg, 2008.
Kallenborn, R., Breivik, K., Eckhardt, S., Lunder, C. R., Manø, S., Schlabach, M., and Stohl, A.: Long-term monitoring of persistent organic pollutants (POPs) at the Norwegian Troll station in Dronning Maud Land, Antarctica, Atmos. Chem. Phys., 13, 6983–6992, https://doi.org/10.5194/acp-13-6983-2013, 2013.
Kallenborn, R., Brorström-Lundén, E., Reiersen, L.-O., and Wilson,
S.: Pharmaceuticals and personal care products (PPCPs) in Arctic
environments: indicator contaminants for assessing local and remote
anthropogenic sources in a pristine ecosystem in change, Environ.
Sci. Pollut. R., 25, 33001–33013, https://doi.org/10.1007/s11356-017-9726-6,
2018.
Karavalakis, G., Fontaras, G., Ampatzoglou, D., Kousoulidou, M., Stournas,
S., Samaras, Z., and Bakeas, E.: Effects of low concentration biodiesel
blends application on modern passenger cars. Part 3: Impact on PAH,
nitro-PAH, and oxy-PAH emissions, Environ. Pollut., 158, 1584–1594,
https://doi.org/10.1016/j.envpol.2009.12.017, 2010.
Kirchner, M., Jakobi, G., Körner, W., Levy, W., Moche,
W., Niedermoser, B., Schaub, M., Ries, L., Weiss, P., Antritter, F.,
Fischer, N., Henkelmann, B., and Schramm, K.-W.: Ambient Air Levels of
Organochlorine Pesticides at Three High Alpine Monitoring Stations: Trends
and Dependencies on Geographical Origin, Aerosol Air Qual. Res.,
16, 738–751, https://doi.org/10.4209/aaqr.2015.04.0213, 2016.
Koziol, A. S. and Pudykiewicz, J. A.: Global-scale environmental transport
of persistent organic pollutants, Chemosphere, 45, 1181–1200, https://doi.org/10.1016/S0045-6535(01)00004-2, 2001.
Labmonk: Labmonk: Synthesis of 2,4,6-tribromoaniline from aniline, available at:
https://labmonk.com/synthesis-of-2-4-6-tribromoaniline-from-aniline
(last access: 7 February 2020), 2019.
Lebedev, A. T., Mazur, D. M., Polyakova, O. V., Kosyakov, D. S.,
Kozhevnikov, A. Y., Latkin, T. B., Andreeva Yu, I., and Artaev, V. B.: Semi
volatile organic compounds in the snow of Russian Arctic islands:
Archipelago Novaya Zemlya, Environ. Pollut., 239, 416–427, https://doi.org/10.1016/j.envpol.2018.03.009, 2018.
Leng, G. and Gries, W.: New specific and sensitive biomonitoring methods
for chemicals of emerging health relevance, Int. J. Hyg.
Envir. Heal., 220, 113–122, https://doi.org/10.1016/j.ijheh.2016.09.014, 2017.
Lui, K. H., Bandowe, B. A., Tian, L., Chan, C. S., Cao, J. J., Ning, Z.,
Lee, S. C., and Ho, K. F.: Cancer risk from polycyclic aromatic compounds in
fine particulate matter generated from household coal combustion in Xuanwei,
China, Chemosphere, 169, 660–668, https://doi.org/10.1016/j.chemosphere.2016.11.112, 2017.
Macdonald, R. W., Barrie, L. A., Bidleman, T. F., Diamond, M. L., Gregor, D.
J., Semkin, R. G., Strachan, W. M. J., Li, Y. F., Wania, F., Alaee, M.,
Alexeeva, L. B., Backus, S. M., Bailey, R., Bewers, J. M., Gobeil, C.,
Halsall, C. J., Harner, T., Hoff, J. T., Jantunen, L. M. M., Lockhart, W.
L., Mackay, D., Muir, D. C. G., Pudykiewicz, J., Reimer, K. J., Smith, J.
N., Stern, G. A., Schroeder, W. H., Wagemann, R., and Yunker, M. B.:
Contaminants in the Canadian Arctic: 5 years of progress in understanding
sources, occurrence and pathways, Sci. Total Environ., 254,
93–234, https://doi.org/10.1016/S0048-9697(00)00434-4, 2000.
Macdonald, R. W., Harner, T., and Fyfe, J.: Recent climate change in the
Arctic and its impact on contaminant pathways and interpretation of temporal
trend data, Sci. Total Environ., 342, 5–86, https://doi.org/10.1016/j.scitotenv.2004.12.059, 2005.
MacLeod, M., Riley, W. J., and McKone, T. E.: Assessing the Influence of
Climate Variability on Atmospheric Concentrations of Polychlorinated
Biphenyls Using a Global-Scale Mass Balance Model (BETR-Global),
Environ. Sci. Technol., 39, 6749–6756, https://doi.org/10.1021/es048426r,
2005.
Mazur, D. M., Zenkevich, I. G., Artaev, V. B., Polyakova, O. V., and
Lebedev, A. T.: Regression algorithm for calculating second-dimension
retention indices in comprehensive two-dimensional gas chromatography,
J. Chromatogr. A, 1569, 178–185, https://doi.org/10.1016/j.chroma.2018.07.038, 2018.
Meng, J.: Production of dacthal from xylene. Copyright © 2019 American Chemical Society (ACS). All Rights Reserved., Patent CN102432470A, Peop. Rep. China, 2012.
Messing, P. G., Farenhorst, A., Waite, D. T., and Sproull, J. F.: Air
concentrations of currently used herbicides and legacy compounds in the
Canadian prairies, subarctic, and arctic, J. Environ. Sci. Heal. B, 49, 338–343, https://doi.org/10.1080/03601234.2014.882163, 2014.
MetFrag: MetFrag webtool, available at: https://msbi.ipb-halle.de/MetFragBeta/ (last access: 7 February 2020), 2019.
Moltó, J., Font, R., and Conesa, J. A.: Study of the Organic Compounds
Produced in the Pyrolysis and Combustion of Used Polyester Fabrics, Energ. Fuel., 20, 1951–1958, https://doi.org/10.1021/ef060205e, 2006.
Moltó, J., Font, R., Gálvez, A., and Conesa, J. A.: Pyrolysis and
combustion of electronic wastes, J. Anal. Appl.
Pyrol., 84, 68–78, https://doi.org/10.1016/j.jaap.2008.10.023, 2009.
Muir, D. C. G. and Howard, P. H.: Are there other persistent organic
pollutants? A challenge for environmental chemists, Environ. Sci. Technol., 40, 7157–7166, https://doi.org/10.1021/es061677a, 2006.
Naccarato, A., Gionfriddo, E., Sindona, G., and Tagarelli, A.: Simultaneous
determination of benzothiazoles, benzotriazoles and benzosulfonamides by
solid phase microextraction-gas chromatography-triple quadrupole mass
spectrometry in environmental aqueous matrices and human urine, J. Chromatogr. A, 1338, 164–173, https://doi.org/10.1016/j.chroma.2014.02.089, 2014.
Nizzetto, P. B. and Aas, W.: Monitoring of environmental contaminants in
air and precipitation. Annual report 2015, NILU, Kjeller, Norway, M-579,
1–98, 2016.
Nizzetto, P. B., Aas, W., and Warner, N.: Monitoring of environmental
contaminants in air and precipitation. Annual report 2017, NILU, Kjeller,
Norway M-1062, 1–142, 2018.
NORMAN network: List of emergin substances, latest update February 2016, available at:
https://www.norman-network.com/sites/default/files/files/Emerging_substances_list_Feb_16/NORMAN list_2016_FINAL.XLSX (last access:
7 February 2020), 2016.
Oulton, S.: Scientific working group for the analysis of seized drugs, available at:
http://swgdrug.org/ms.htm (last access: 7 February 2020), 2019.
PerkinElmerInformatics: ChemOffice19: ChemDraw for Excel V 19.0., available at: https://www.perkinelmer.com (last access: 4 February 2020), 2019.
Reppas-Chrysovitsinos, E., Sobek, A., and MacLeod, M.: Screening-level
exposure-based prioritization to identify potential POPs, vPvBs and
planetary boundary threats among Arctic contaminants, Emerging Contaminants,
3, 85–94, https://doi.org/10.1016/j.emcon.2017.06.001, 2017.
Röhler, L., Bohlin-Nizzetto, P., Rostkowski, P., Kallenborn, R., and Schlabach, M.: Non-target and suspect characterisation of organic contaminants in ambient air, Part I: Combining a novel sample clean-up method with comprehensive two-dimensional gas chromatography, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-263, in review, 2020.
Ruttkies, C., Schymanski, E. L., Wolf, S., Hollender, J., and Neumann, S.: MetFrag relaunched: incorporating strategies beyond in silico fragmentation, J. Cheminformatics, 8, 1–16, https://doi.org/10.1186/s13321-016-0115-9, 2016.
Salamova, A., Hermanson, M. H., and Hites, R. A.: Organophosphate and
Halogenated Flame Retardants in Atmospheric Particles from a European Arctic
Site, Environ. Sci. Technol., 48, 6133–6140, https://doi.org/10.1021/es500911d, 2014.
Samokhin, A., Sotnezova, K., Lashin, V., and Revelsky, I.: Evaluation of
mass spectral library search algorithms implemented in commercial software,
J. Mass Spectrom., 50, 820–825, https://doi.org/10.1002/jms.3591, 2015.
Schenker, U., Scheringer, M., and Hungerbühler, K.: Including
degradation products of persistent organic pollutants in a global
multi-media box model, Environ. Sci. Pollut. R. –
International, 14, 145–152, https://doi.org/10.1065/espr2007.03.398, 2007.
Schymanski, E. L., Singer, H. P., Slobodnik, J., Ipolyi, I. M., Oswald, P.,
Krauss, M., Schulze, T., Haglund, P., Letzel, T., Grosse, S., Thomaidis, N.
S., Bletsou, A., Zwiener, C., Ibanez, M., Portoles, T., de Boer, R., Reid,
M. J., Onghena, M., Kunkel, U., Schulz, W., Guillon, A., Noyon, N., Leroy,
G., Bados, P., Bogialli, S., Stipanicev, D., Rostkowski, P., and Hollender,
J.: Non-target screening with high-resolution mass spectrometry: critical
review using a collaborative trial on water analysis, Anal. Bioanal. Chem.,
407, 6237–6255, https://doi.org/10.1007/s00216-015-8681-7, 2015.
Singh, D. K., Kawamura, K., Yanase, A., and Barrie, L. A.: Distributions of
Polycyclic Aromatic Hydrocarbons, Aromatic Ketones, Carboxylic Acids, and
Trace Metals in Arctic Aerosols: Long-Range Atmospheric Transport,
Photochemical Degradation/Production at Polar Sunrise, Environ. Sci. Technol., 51, 8992–9004, https://doi.org/10.1021/acs.est.7b01644, 2017.
Stefanye, D.: Bluing of steel surfaces. Copyright © 2019 American Chemical Society (ACS). All Rights Reserved., Patent US3677829A, 1972.
Stiborova, M.: Nitroaromatic compounds: Environmental pollutants with
carcinogenic potential for humans, Chem. Listy, 96, 784–791, 2002.
Su, Y., Hung, H., Blanchard, P., Patton, G. W., Kallenborn, R., Konoplev,
A., Fellin, P., Li, H., Geen, C., Stern, G., Rosenberg, B., and Barrie, L.
A.: A circumpolar perspective of atmospheric organochlorine pesticides
(OCPs): Results from six Arctic monitoring stations in 2000–2003,
Atmos. Environ., 42, 4682–4698, https://doi.org/10.1016/j.atmosenv.2008.01.054, 2008.
Sühring, R., Diamond, M. L., Scheringer, M., Wong, F., Pućko, M.,
Stern, G., Burt, A., Hung, H., Fellin, P., Li, H., and Jantunen, L. M.:
Organophosphate Esters in Canadian Arctic Air: Occurrence, Levels and
Trends, Environ. Sci. Technol., 50, 7409–7415, https://doi.org/10.1021/acs.est.6b00365, 2016.
UNECE: The 1998 Aarhus Protocol on Persistent Organic Pollutants (POPs), available at:
https://www.unece.org/env/lrtap/pops_h1.html
(last access: 7 February 2020), 1998.
UNEP: The global monitoring plan for persistent organic pollutants (POPs), available at:
http://chm.pops.int/Implementation/GlobalMonitoringPlan/Overview/tabid/83/Default.aspx
(last access: 4 February 2020), 2009a.
UNEP: Stockholm Convention on Persistent Organic Pollutants (POPs), available at:
http://www.pops.int/TheConvention/Overview/TextoftheConvention/tabid/2232/Default.aspx
(last access: 4 February 2020), 2009b.
U.S. EPA: US EPA 738-F-05-007 R.E.D. Chloroneb, available at: https://www3.epa.gov/pesticides/chem_search/reg_actions/reregistration/fs_PC-027301_1-Sep-05.pdf (last access: 7 February 2020), 2005.
U.S. EPA: Estimation Programs Interface Suite™ for
Microsoft® Windows, v 4.11. United States Environmental Protection Agency, Washington, D.C., USA, 2019.
Veenaas, C. and Haglund, P.: A retention index system for comprehensive
two-dimensional gas chromatography using polyethylene glycols, J. Chromatogr.
A, 1536, 67–74, https://doi.org/10.1016/j.chroma.2017.08.062, 2018.
Vetter, W., Schlabach, M., and Kallenborn, R.: Evidence for the presence of
natural halogenated hydrocarbons in southern Norwegian and polar air,
Fresen. Environ. Bull., 11, 170–175, 2002.
Vetter, W., Rosenfelder, N., Kraan, S., and Hiebl, J.: Structure and origin
of the natural halogenated monoterpene MHC-1 and its concentrations in
marine mammals and fish, Chemosphere, 73, 7–13, https://doi.org/10.1016/j.chemosphere.2008.06.020, 2008.
Vicente, E. D., Vicente, A. M., Musa Bandowe, B. A., and Alves, C. A.:
Particulate phase emission of parent polycyclic aromatic hydrocarbons (PAHs)
and their derivatives (alkyl-PAHs, oxygenated-PAHs, azaarenes and nitrated
PAHs) from manually and automatically fired combustion appliances, Air
Qual. Atmos. Heal., 9, 653–668, https://doi.org/10.1007/s11869-015-0364-1,
2016.
Vorkamp, K. and Rigét, F. F.: A review of new and current-use
contaminants in the Arctic environment: Evidence of long-range transport and
indications of bioaccumulation, Chemosphere, 111, 379–395, https://doi.org/10.1016/j.chemosphere.2014.04.019, 2014.
Wang, L.: CAS Marks Multiple Milestones, Chem. Eng. News, 93,
1, 2015.
Wang, Z., Li, K., Lambert, P., and Yang, C.: Identification,
characterization and quantitation of pyrogenic polycylic aromatic
hydrocarbons and other organic compounds in tire fire products, J. Chromatogr. A, 1139, 14–26, https://doi.org/10.1016/j.chroma.2006.10.085, 2007.
Wania, F., Breivik, K., Persson, N. J., and McLachlan, M. S.: CoZMo-POP 2 –
A fugacity-based dynamic multi-compartmental mass balance model of the fate
of persistent organic pollutants, Environ. Model. Softw., 21,
868–884, https://doi.org/10.1016/j.envsoft.2005.04.003, 2006.
Watanabe, M., Nakata, C., Wu, W., Kawamoto, K., and Noma, Y.:
Characterization of semi-volatile organic compounds emitted during heating
of nitrogen-containing plastics at low temperature, Chemosphere, 68,
2063–2072, https://doi.org/10.1016/j.chemosphere.2007.02.022,
2007.
Webster, E., Mackay, D., and Wania, F.: Evaluating environmental
persistence, Environ. Toxicol. Chem., 17, 2148–2158, https://doi.org/10.1002/etc.5620171104, 1998.
Weyer, V., Blettner, M., Cholmakow-Bodechtel, C., and Heudorf, U.: Chemical
accident at Hoechst AG Frankfurt/Main, Germany, 1993: a 15 year follow-up
analysis of mortality, Eur. J. Epidemiol., 29, 73–76, https://doi.org/10.1007/s10654-013-9870-3, 2014.
WOC: 2,2,4-Trichloroacetophenone Properties, available at: https://www.worldofchemicals.com/chemicals/chemical-properties/224-trichloroacetophenone.html
(last access: 7 February 2020), 2019.
Woodward, E. E., Kolpin, D. W., Zheng, W., Holm, N. L., Meppelink, S. M.,
Terrio, P. J., and Hladik, M. L.: Fate and transport of nitrapyrin in
agroecosystems: Occurrence in agricultural soils, subsurface drains, and
receiving streams in the Midwestern US, Sci. Total Environ.,
650, 2830–2841, https://doi.org/10.1016/j.scitotenv.2018.09.387, 2019.
Xiao, H., Shen, L., Su, Y., Barresi, E., DeJong, M., Hung, H., Lei, Y.-D.,
Wania, F., Reiner, E. J., Sverko, E., and Kang, S.-C.: Atmospheric
concentrations of halogenated flame retardants at two remote locations: The
Canadian High Arctic and the Tibetan Plateau, Environ. Pollut., 161,
154–161, https://doi.org/10.1016/j.envpol.2011.09.041, 2012.
Zawadzka, K., Bernat, P., Felczak, A., and Lisowska, K.: Carbazole
hydroxylation by the filamentous fungi of the Cunninghamella species,
Environ. Sci. Pollut. R. –
International, 22, 19658–19666, https://doi.org/10.1007/s11356-015-5146-7, 2015.
Zhang, X., Brown, T. N., Wania, F., Heimstad, E. S., and Goss, K.-U.:
Assessment of chemical screening outcomes based on different partitioning
property estimation methods, Environ. Int., 36, 514–520,
https://doi.org/10.1016/j.envint.2010.03.010, 2010.
Zhao, X., Chaudhry, S. T., and Mei, J.: Chapter Five – Heterocyclic Building Blocks for Organic Semiconductors, Adv. Heterocycl. Chem., 121, 133-171, https://doi.org/10.1016/bs.aihch.2016.04.009, 2017.
Zhong, G., Xie, Z., Cai, M., Möller, A., Sturm, R., Tang, J., Zhang, G.,
He, J., and Ebinghaus, R.: Distribution and Air–Sea Exchange of Current-Use
Pesticides (CUPs) from East Asia to the High Arctic Ocean, Environ. Sci. Technol., 46, 259–267, https://doi.org/10.1021/es202655k, 2012.
Short summary
A new clean-up method for the SUS and NTS of organic contaminants was applied to high-volume Arctic air samples. A large number of known and new potential organic chemicals of emerging Arctic concern were identified and prioritised with GC×GC-LRMS; 60 % of the identified contaminants (not yet detected in Arctic samples) do not meet currently accepted criteria for LRATP into polar environments. Without our empirical confirmation, they would not be considered potential Arctic contaminants.
A new clean-up method for the SUS and NTS of organic contaminants was applied to high-volume...
Altmetrics
Final-revised paper
Preprint