Articles | Volume 20, issue 12
https://doi.org/10.5194/acp-20-7459-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-7459-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Long-term brown carbon and smoke tracer observations in Bogotá, Colombia: association with medium-range transport of biomass burning plumes
Juan Manuel Rincón-Riveros
Civil and Environmental Engineering Department, Universidad de los Andes, Bogotá, Colombia
Maria Alejandra Rincón-Caro
Civil and Environmental Engineering Department, Universidad de los Andes, Bogotá, Colombia
Amy P. Sullivan
Department of Atmospheric Science, Colorado State University, Fort Collins, CO, USA
Juan Felipe Mendez-Espinosa
Civil and Environmental Engineering Department, Universidad de los Andes, Bogotá, Colombia
Luis Carlos Belalcazar
Universidad Nacional de Colombia, Bogotá, Colombia
Miguel Quirama Aguilar
Civil and Environmental Engineering Department, Universidad de los Andes, Bogotá, Colombia
Ricardo Morales Betancourt
CORRESPONDING AUTHOR
Civil and Environmental Engineering Department, Universidad de los Andes, Bogotá, Colombia
Related authors
No articles found.
Yingjie Shen, Rudra P. Pokhrel, Amy P. Sullivan, Ezra J. T. Levin, Lauren A. Garofalo, Delphine K. Farmer, Wade Permar, Lu Hu, Darin W. Toohey, Teresa Campos, Emily V. Fischer, and Shane M. Murphy
Atmos. Chem. Phys., 24, 12881–12901, https://doi.org/10.5194/acp-24-12881-2024, https://doi.org/10.5194/acp-24-12881-2024, 2024
Short summary
Short summary
The magnitude and evolution of brown carbon (BrC) absorption remain unclear, with uncertainty in climate models. Data from the WE-CAN airborne experiment show that model parameterizations overestimate the mass absorption cross section (MAC) of BrC. Observed decreases in BrC absorption with chemical markers are due to decreasing organic aerosol (OA) mass rather than a decreasing BrC MAC, which is currently implemented in models. Water-soluble BrC contributes 23 % of total absorption at 660 nm.
Lixu Jin, Wade Permar, Vanessa Selimovic, Damien Ketcherside, Robert J. Yokelson, Rebecca S. Hornbrook, Eric C. Apel, I-Ting Ku, Jeffrey L. Collett Jr., Amy P. Sullivan, Daniel A. Jaffe, Jeffrey R. Pierce, Alan Fried, Matthew M. Coggon, Georgios I. Gkatzelis, Carsten Warneke, Emily V. Fischer, and Lu Hu
Atmos. Chem. Phys., 23, 5969–5991, https://doi.org/10.5194/acp-23-5969-2023, https://doi.org/10.5194/acp-23-5969-2023, 2023
Short summary
Short summary
Air quality in the USA has been improving since 1970 due to anthropogenic emission reduction. Those gains have been partly offset by increased wildfire pollution in the western USA in the past 20 years. Still, we do not understand wildfire emissions well due to limited measurements. Here, we used a global transport model to evaluate and constrain current knowledge of wildfire emissions with recent observational constraints, showing the underestimation of wildfire emissions in the western USA.
Amy P. Sullivan, Rudra P. Pokhrel, Yingjie Shen, Shane M. Murphy, Darin W. Toohey, Teresa Campos, Jakob Lindaas, Emily V. Fischer, and Jeffrey L. Collett Jr.
Atmos. Chem. Phys., 22, 13389–13406, https://doi.org/10.5194/acp-22-13389-2022, https://doi.org/10.5194/acp-22-13389-2022, 2022
Short summary
Short summary
During the WE-CAN (Western Wildfire Experiment for Cloud Chemistry, Aerosol Absorption and Nitrogen) study, brown carbon (BrC) absorption was measured on the NSF/NCAR C-130 aircraft using a particle-into-liquid sampler and photoacoustic aerosol absorption spectrometer. Approximately 45 % of the BrC absorption in wildfires was observed to be due to water-soluble species. The ratio of BrC absorption to WSOC or ΔCO showed no clear dependence on fire dynamics or the time since emission over 9 h.
Linghan Zeng, Amy P. Sullivan, Rebecca A. Washenfelder, Jack Dibb, Eric Scheuer, Teresa L. Campos, Joseph M. Katich, Ezra Levin, Michael A. Robinson, and Rodney J. Weber
Atmos. Meas. Tech., 14, 6357–6378, https://doi.org/10.5194/amt-14-6357-2021, https://doi.org/10.5194/amt-14-6357-2021, 2021
Short summary
Short summary
Three online systems for measuring water-soluble brown carbon are compared. A mist chamber and two different particle-into-liquid samplers were deployed on separate research aircraft targeting wildfires and followed a similar detection method using a long-path liquid waveguide with a spectrometer to measure the light absorption from 300 to 700 nm. Detection limits, signal hysteresis and other sampling issues are compared, and further improvements of these liquid-based systems are provided.
Yang Wang, Guangjie Zheng, Michael P. Jensen, Daniel A. Knopf, Alexander Laskin, Alyssa A. Matthews, David Mechem, Fan Mei, Ryan Moffet, Arthur J. Sedlacek, John E. Shilling, Stephen Springston, Amy Sullivan, Jason Tomlinson, Daniel Veghte, Rodney Weber, Robert Wood, Maria A. Zawadowicz, and Jian Wang
Atmos. Chem. Phys., 21, 11079–11098, https://doi.org/10.5194/acp-21-11079-2021, https://doi.org/10.5194/acp-21-11079-2021, 2021
Short summary
Short summary
This paper reports the vertical profiles of trace gas and aerosol properties over the eastern North Atlantic, a region of persistent but diverse subtropical marine boundary layer (MBL) clouds. We examined the key processes that drive the cloud condensation nuclei (CCN) population and how it varies with season and synoptic conditions. This study helps improve the model representation of the aerosol processes in the remote MBL, reducing the simulated aerosol indirect effects.
Katherine B. Benedict, Yong Zhou, Barkley C. Sive, Anthony J. Prenni, Kristi A. Gebhart, Emily V. Fischer, Ashley Evanoski-Cole, Amy P. Sullivan, Sara Callahan, Bret A. Schichtel, Huiting Mao, Ying Zhou, and Jeffrey L. Collett Jr.
Atmos. Chem. Phys., 19, 499–521, https://doi.org/10.5194/acp-19-499-2019, https://doi.org/10.5194/acp-19-499-2019, 2019
Short summary
Short summary
Rocky Mountain National Park experiences high ozone concentrations that can exceed the National Ambient Air Quality Standard. As part of the FRAPPÉ field campaign, a suite of volatile organic compounds were measured to characterize the sources of ozone precursors that contribute to high ozone in the park. These measurements indicate emissions from the Front Range in Colorado tied to oil and gas operations, urban areas, and the stratosphere contribute to episodes of elevated ozone.
Theodora Nah, Yi Ji, David J. Tanner, Hongyu Guo, Amy P. Sullivan, Nga Lee Ng, Rodney J. Weber, and L. Gregory Huey
Atmos. Meas. Tech., 11, 5087–5104, https://doi.org/10.5194/amt-11-5087-2018, https://doi.org/10.5194/amt-11-5087-2018, 2018
Short summary
Short summary
The sources and atmospheric chemistry of gas-phase organic acids are currently poorly understood, due in part to the limited range of measurement techniques available. We evaluated the use of SF6− as a sensitive and selective chemical ionization reagent ion for real-time measurements of gas-phase organic acids at a rural site in Yorkville, Georgia. We found that ambient concentrations of organic acids ranged from a few ppt to several ppb, and are dependent on ambient temperature.
Theodora Nah, Hongyu Guo, Amy P. Sullivan, Yunle Chen, David J. Tanner, Athanasios Nenes, Armistead Russell, Nga Lee Ng, L. Gregory Huey, and Rodney J. Weber
Atmos. Chem. Phys., 18, 11471–11491, https://doi.org/10.5194/acp-18-11471-2018, https://doi.org/10.5194/acp-18-11471-2018, 2018
Short summary
Short summary
We present measurements from a field study conducted in an agriculturally intensive region in the southeastern US during the fall of 2016 to investigate how NH3 affects particle acidity and SOA formation via gas–particle partitioning of semi-volatile organic acids. For this study, higher NH3 concentrations relative to what has been measured in the region in previous studies had minor effects on PM1 organic acids and their influence on the overall organic aerosol and PM1 mass concentrations.
Amy P. Sullivan, Natasha Hodas, Barbara J. Turpin, Kate Skog, Frank N. Keutsch, Stefania Gilardoni, Marco Paglione, Matteo Rinaldi, Stefano Decesari, Maria Cristina Facchini, Laurent Poulain, Hartmut Herrmann, Alfred Wiedensohler, Eiko Nemitz, Marsailidh M. Twigg, and Jeffrey L. Collett Jr.
Atmos. Chem. Phys., 16, 8095–8108, https://doi.org/10.5194/acp-16-8095-2016, https://doi.org/10.5194/acp-16-8095-2016, 2016
Short summary
Short summary
This paper presents the results from our measurements and approach for the investigation of aqueous secondary organic aerosol (aqSOA) formation in the ambient atmosphere. When local aqSOA formation was observed, a correlation of water-soluble organic carbon with organic aerosol, aerosol liquid water, relative humidity, and aerosol nitrate was found. Key factors of local aqSOA production include air mass stagnation, formation of local nitrate overnight, and significant amounts of ammonia.
Sylvia C. Sullivan, Ricardo Morales Betancourt, Donifan Barahona, and Athanasios Nenes
Atmos. Chem. Phys., 16, 2611–2629, https://doi.org/10.5194/acp-16-2611-2016, https://doi.org/10.5194/acp-16-2611-2016, 2016
Short summary
Short summary
We use the adjoint model of a cirrus parameterization to quantify sources of crystal variability for various ice-nucleating spectra and output from CAM5.
The sensitivities can be directly linked to nucleation regime and
efficiency of various INP.
The lab-based spectrum calculates much higher INP efficiencies than field-based ones, owing to aerosol surface properties.
The sensitivity to temperature tends to be low, due to the compensating effects of temperature on INP spectrum parameters.
A. J. Prenni, D. E. Day, A. R. Evanoski-Cole, B. C. Sive, A. Hecobian, Y. Zhou, K. A. Gebhart, J. L. Hand, A. P. Sullivan, Y. Li, M. I. Schurman, Y. Desyaterik, W. C. Malm, J. L. Collett Jr., and B. A. Schichtel
Atmos. Chem. Phys., 16, 1401–1416, https://doi.org/10.5194/acp-16-1401-2016, https://doi.org/10.5194/acp-16-1401-2016, 2016
Short summary
Short summary
The Bakken formation contains billions of barrels of oil and gas trapped in rock and shale. Horizontal drilling and hydraulic fracturing methods have allowed for extraction of these resources, leading to exponential growth of oil production in the region. Along with this development has come an increase in associated emissions to the atmosphere. This paper describes a field study (BAQS) aimed at better understanding the impacts of these emissions on air quality in nearby federal lands.
R. Morales Betancourt and A. Nenes
Geosci. Model Dev., 7, 2345–2357, https://doi.org/10.5194/gmd-7-2345-2014, https://doi.org/10.5194/gmd-7-2345-2014, 2014
A. P. Sullivan, A. A. May, T. Lee, G. R. McMeeking, S. M. Kreidenweis, S. K. Akagi, R. J. Yokelson, S. P. Urbanski, and J. L. Collett Jr.
Atmos. Chem. Phys., 14, 10535–10545, https://doi.org/10.5194/acp-14-10535-2014, https://doi.org/10.5194/acp-14-10535-2014, 2014
R. Morales Betancourt and A. Nenes
Atmos. Chem. Phys., 14, 4809–4826, https://doi.org/10.5194/acp-14-4809-2014, https://doi.org/10.5194/acp-14-4809-2014, 2014
Related subject area
Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Significant role of biomass burning in heavy haze formation in Nanjing, a megacity in China: molecular-level insights from intensive PM2.5 sampling on winter hazy days
Widespread trace bromine and iodine in remote tropospheric non-sea-salt aerosols
Formation and chemical evolution of secondary organic aerosol in two different environments: a dual-chamber study
Technical note: Quantified organic aerosol subsaturated hygroscopicity by a simple optical scatter monitor system through field measurements
Measurement report: Oxidation potential of water-soluble aerosol components in the south and north of Beijing
Enhanced daytime secondary aerosol formation driven by gas–particle partitioning in downwind urban plumes
Understanding the mechanism and importance of brown carbon bleaching across the visible spectrum in biomass burning plumes from the WE-CAN campaign
Influence of terrestrial and marine air mass on the constituents and intermixing of bioaerosols over a coastal atmosphere
A multi-site passive approach to studying the emissions and evolution of smoke from prescribed fires
The annual cycle and sources of relevant aerosol precursor vapors in the central Arctic during the MOSAiC expedition
Opinion: How will advances in aerosol science inform our understanding of the health impacts of outdoor particulate pollution?
Measurement report: Intra-annual variability of black carbon and brown carbon and their interrelation with meteorological conditions over Gangtok, Sikkim
Long-range transport of air pollutants increases the concentration of hazardous components of PM2.5 in northern South America
Dominant influence of biomass combustion and cross-border transport on nitrogen-containing organic compound levels in the southeastern Tibetan Plateau
The Critical Role of Aqueous-Phase Processes in Aromatic-Derived Nitrogen-Containing Organic Aerosol Formation in Cities with Different Energy Consumption Patterns
Impacts of elevated anthropogenic emissions on physicochemical characteristics of black-carbon-containing particles over the Tibetan Plateau
Online characterization of primary and secondary emissions of particulate matter and acidic molecules from a modern fleet of city buses
Atmospheric evolution of environmentally persistent free radicals in the rural North China Plain: effects on water solubility and PM2.5 oxidative potential
Two distinct ship emission profiles for organic-sulfate source apportionment of PM in sulfur emission control areas
Automated compound speciation, cluster analysis, and quantification of organic vapors and aerosols using comprehensive two-dimensional gas chromatography and mass spectrometry
Measurement report: Occurrence of aminiums in PM2.5 during winter in China – aminium outbreak during polluted episodes and potential constraints
Bridging gas and aerosol properties between the northeastern US and Bermuda: analysis of eight transit flights
The behaviour of charged particles (ions) during new particle formation events in urban Leipzig, Germany
Sensitivity of aerosol and cloud properties to coupling strength of marine boundary layer clouds over the northwest Atlantic
Exploring the sources of light-absorbing carbonaceous aerosols by integrating observational and modeling results: insights from Northeast China
Characterization of atmospheric water-soluble brown carbon in the Athabasca Oil Sands Region, Canada
Measurement report: Characteristics of airborne black-carbon-containing particles during the 2021 summer COVID-19 lockdown in a typical Yangtze River Delta city, China
Aerosol optical properties within the atmospheric boundary layer predicted from ground-based observations compared to Raman lidar retrievals during RITA-2021
Hygroscopic growth and activation changed submicron aerosol composition and properties in the North China Plain
Measurement report: Formation of tropospheric brown carbon in a lifting air mass
Vertical variability of aerosol properties and trace gases over a remote marine region: a case study over Bermuda
Differences in aerosol and cloud properties along the central California coast when winds change from northerly to southerly
International airport emissions and their impact on local air quality: chemical speciation of ambient aerosols at Madrid–Barajas Airport during the AVIATOR campaign
The local ship speed reduction effect on black carbon emissions measured at a remote marine station
High-altitude aerosol chemical characterization and source identification: insights from the CALISHTO campaign
Measurement report: Impact of emission control measures on environmental persistent free radicals and reactive oxygen species – a short-term case study in Beijing
Characterizing water solubility of fresh and aged secondary organic aerosol in PM2.5 with the stable carbon isotope technique
Measurement report: Impact of cloud processes on secondary organic aerosols at a forested mountain site in southeastern China
Critical contribution of chemically diverse carbonyl molecules to the oxidative potential of atmospheric aerosols
Seasonal Investigation of Ultrafine Particle Composition in an Eastern Amazonian Rainforest
Measurement report: Vanadium-containing ship exhaust particles detected in and above the marine boundary layer in the remote atmosphere
Diverging trends in aerosol sulfate and nitrate measured in the remote North Atlantic in Barbados are attributed to clean air policies, African smoke, and anthropogenic emissions
Diverse sources and aging change the mixing state and ice nucleation properties of aerosol particles over the western Pacific and Southern Ocean
The water-insoluble organic carbon in PM2.5 of typical Chinese urban areas: light-absorbing properties, potential sources, radiative forcing effects, and a possible light-absorbing continuum
Measurement report: Size-resolved secondary organic aerosol formation modulated by aerosol water uptake in wintertime haze
Observations of high time-resolution and size-resolved aerosol chemical composition and microphyscis in the central Arctic: implications for climate-relevant particle properties
Brown carbon aerosol in rural Germany: sources, chemistry, and diurnal variations
In situ measurement of organic aerosol molecular markers in urban Hong Kong during a summer period: temporal variations and source apportionment
Technical note: Determining chemical composition of atmospheric single particles by a standard-free mass calibration algorithm
Different formation pathways of nitrogen-containing organic compounds in aerosols and fog water in northern China
Mingjie Kang, Mengying Bao, Wenhuai Song, Aduburexiati Abulimiti, Changliu Wu, Fang Cao, Sönke Szidat, and Yanlin Zhang
Atmos. Chem. Phys., 25, 73–91, https://doi.org/10.5194/acp-25-73-2025, https://doi.org/10.5194/acp-25-73-2025, 2025
Short summary
Short summary
Reports on molecular-level knowledge of high-temporal-resolution particulate matter ≤2.5 µm in diameter (PM2.5) on hazy days are limited. We investigated various PM2.5 species and their sources. The results show biomass burning (BB) was the main source of organic carbon. Moreover, BB enhanced fungal spore emissions and secondary aerosol formation. The contribution of non-fossil sources increased with increasing haze pollution, suggesting BB may be an important driver of haze events in winter.
Gregory P. Schill, Karl D. Froyd, Daniel M. Murphy, Christina J. Williamson, Charles A. Brock, Tomás Sherwen, Mat J. Evans, Eric A. Ray, Eric C. Apel, Rebecca S. Hornbrook, Alan J. Hills, Jeff Peischl, Thomas B. Ryerson, Chelsea R. Thompson, Ilann Bourgeois, Donald R. Blake, Joshua P. DiGangi, and Glenn S. Diskin
Atmos. Chem. Phys., 25, 45–71, https://doi.org/10.5194/acp-25-45-2025, https://doi.org/10.5194/acp-25-45-2025, 2025
Short summary
Short summary
Using single-particle mass spectrometry, we show that trace concentrations of bromine and iodine are ubiquitous in remote tropospheric aerosol and suggest that aerosols are an important part of the global reactive iodine budget. Comparisons to a global climate model with detailed iodine chemistry are favorable in the background atmosphere; however, the model cannot replicate our measurements near the ocean surface, in biomass burning plumes, and in the stratosphere.
Andreas Aktypis, Dontavious J. Sippial, Christina N. Vasilakopoulou, Angeliki Matrali, Christos Kaltsonoudis, Andrea Simonati, Marco Paglione, Matteo Rinaldi, Stefano Decesari, and Spyros N. Pandis
Atmos. Chem. Phys., 24, 13769–13791, https://doi.org/10.5194/acp-24-13769-2024, https://doi.org/10.5194/acp-24-13769-2024, 2024
Short summary
Short summary
A dual-chamber system was deployed in two different environments (Po Valley, Italy, and Pertouli forest, Greece) to study the potential of ambient air directly injected into the chambers, to form secondary organic aerosol (SOA). In the Po Valley, the system reacts rapidly, forming large amounts of SOA, while in Pertouli the SOA formation chemistry appears to have been practically terminated before the beginning of most experiments, so there is little additional SOA formation potential left.
Jie Zhang, Tianyu Zhu, Alexandra Catena, Yaowei Li, Margaret J. Schwab, Pengfei Liu, Akua Asa-Awuku, and James Schwab
Atmos. Chem. Phys., 24, 13445–13456, https://doi.org/10.5194/acp-24-13445-2024, https://doi.org/10.5194/acp-24-13445-2024, 2024
Short summary
Short summary
This study shows the derived organic aerosol hygroscopicity under high-humidity conditions based on a simple optical scatter monitor system, including two nephelometric monitors (pDR-1500), when the aerosol chemical composition is already known.
Wei Yuan, Ru-Jin Huang, Chao Luo, Lu Yang, Wenjuan Cao, Jie Guo, and Huinan Yang
Atmos. Chem. Phys., 24, 13219–13230, https://doi.org/10.5194/acp-24-13219-2024, https://doi.org/10.5194/acp-24-13219-2024, 2024
Short summary
Short summary
We characterized water-soluble oxidative potential (OP) levels in wintertime PM2.5 in the south and north of Beijing. Our results show that the volume-normalized dithiothreitol (DTTv) in the north was comparable to that in the south, while the mass-normalized dithiothreitol (DTTm) in the north was almost twice that in the south. Traffic-related emissions and biomass burning were the main sources of DTTv in the south, and traffic-related emissions contributed the most to DTTv in the north.
Mingfu Cai, Chenshuo Ye, Bin Yuan, Shan Huang, E Zheng, Suxia Yang, Zelong Wang, Yi Lin, Tiange Li, Weiwei Hu, Wei Chen, Qicong Song, Wei Li, Yuwen Peng, Baoling Liang, Qibin Sun, Jun Zhao, Duohong Chen, Jiaren Sun, Zhiyong Yang, and Min Shao
Atmos. Chem. Phys., 24, 13065–13079, https://doi.org/10.5194/acp-24-13065-2024, https://doi.org/10.5194/acp-24-13065-2024, 2024
Short summary
Short summary
This study investigated the daytime secondary organic aerosol (SOA) formation in urban plumes. We observed a significant daytime SOA formation through gas–particle partitioning when the site was affected by urban plumes. A box model simulation indicated that urban pollutants (nitrogen oxide and volatile organic compounds) could enhance the oxidizing capacity, while the elevated volatile organic compounds were mainly responsible for promoting daytime SOA formation.
Yingjie Shen, Rudra P. Pokhrel, Amy P. Sullivan, Ezra J. T. Levin, Lauren A. Garofalo, Delphine K. Farmer, Wade Permar, Lu Hu, Darin W. Toohey, Teresa Campos, Emily V. Fischer, and Shane M. Murphy
Atmos. Chem. Phys., 24, 12881–12901, https://doi.org/10.5194/acp-24-12881-2024, https://doi.org/10.5194/acp-24-12881-2024, 2024
Short summary
Short summary
The magnitude and evolution of brown carbon (BrC) absorption remain unclear, with uncertainty in climate models. Data from the WE-CAN airborne experiment show that model parameterizations overestimate the mass absorption cross section (MAC) of BrC. Observed decreases in BrC absorption with chemical markers are due to decreasing organic aerosol (OA) mass rather than a decreasing BrC MAC, which is currently implemented in models. Water-soluble BrC contributes 23 % of total absorption at 660 nm.
Qun He, Zhaowen Wang, Houfeng Liu, Pengju Xu, Rongbao Duan, Caihong Xu, Jianmin Chen, and Min Wei
Atmos. Chem. Phys., 24, 12775–12792, https://doi.org/10.5194/acp-24-12775-2024, https://doi.org/10.5194/acp-24-12775-2024, 2024
Short summary
Short summary
Coastal environments provide an ideal setting for investigating the intermixing of terrestrial and marine aerosols. Terrestrial air mass constituted a larger number of microbes from anthropogenic and soil emissions, whereas saprophytic and gut microbes were predominant in marine samples. Mixed air masses indicated a fusion of marine and terrestrial aerosols, characterized by alterations in the ratio of pathogenic and saprophytic microbes when compared to either terrestrial or marine samples.
Rime El Asmar, Zongrun Li, David J. Tanner, Yongtao Hu, Susan O'Neill, L. Gregory Huey, M. Talat Odman, and Rodney J. Weber
Atmos. Chem. Phys., 24, 12749–12773, https://doi.org/10.5194/acp-24-12749-2024, https://doi.org/10.5194/acp-24-12749-2024, 2024
Short summary
Short summary
Prescribed burning is an important method for managing ecosystems and preventing wildfires. However, smoke from prescribed fires can have a significant impact on air quality. Here, using a network of fixed sites and sampling throughout an extended prescribed burning period in 2 different years, we characterize emissions and evolutions of up to 8 h of PM2.5 mass, black carbon (BC), and brown carbon (BrC) in smoke from burning of forested lands in the southeastern USA.
Matthew Boyer, Diego Aliaga, Lauriane L. J. Quéléver, Silvia Bucci, Hélène Angot, Lubna Dada, Benjamin Heutte, Lisa Beck, Marina Duetsch, Andreas Stohl, Ivo Beck, Tiia Laurila, Nina Sarnela, Roseline C. Thakur, Branka Miljevic, Markku Kulmala, Tuukka Petäjä, Mikko Sipilä, Julia Schmale, and Tuija Jokinen
Atmos. Chem. Phys., 24, 12595–12621, https://doi.org/10.5194/acp-24-12595-2024, https://doi.org/10.5194/acp-24-12595-2024, 2024
Short summary
Short summary
We analyze the seasonal cycle and sources of gases that are relevant for the formation of aerosol particles in the central Arctic. Since theses gases can form new particles, they can influence Arctic climate. We show that the sources of these gases are associated with changes in the Arctic environment during the year, especially with respect to sea ice. Therefore, the concentration of these gases will likely change in the future as the Arctic continues to warm.
Imad El Haddad, Danielle Vienneau, Kaspar R. Daellenbach, Robin Modini, Jay G. Slowik, Abhishek Upadhyay, Petros N. Vasilakos, David Bell, Kees de Hoogh, and Andre S. H. Prevot
Atmos. Chem. Phys., 24, 11981–12011, https://doi.org/10.5194/acp-24-11981-2024, https://doi.org/10.5194/acp-24-11981-2024, 2024
Short summary
Short summary
This opinion paper explores how advances in aerosol science inform our understanding of the health impacts of outdoor particulate pollution. We advocate for a shift in the way we target PM pollution, focusing on the most harmful anthropogenic emissions. We highlight key observations, modelling developments, and emission measurements needed to achieve this shift.
Pramod Kumar, Khushboo Sharma, Ankita Malu, Rajeev Rajak, Aparna Gupta, Bidyutjyoti Baruah, Shailesh Yadav, Thupstan Angchuk, Jayant Sharma, Rakesh Kumar Ranjan, Anil Kumar Misra, and Nishchal Wanjari
Atmos. Chem. Phys., 24, 11585–11601, https://doi.org/10.5194/acp-24-11585-2024, https://doi.org/10.5194/acp-24-11585-2024, 2024
Short summary
Short summary
This work monitors and assesses air pollution, especially black and brown carbon, its controlling factor, and its effect on the environment of Sikkim Himalayan region. The huge urban sprawl in recent decades has led to regional human-induced air pollution in the region. Black carbon was highest in April 2021 and March 2022, exceeding the WHO limit. The monsoon season causes huge rainfall over the region, which reduces the pollutants by scavenging (rainout and washout).
Maria P. Velásquez-García, K. Santiago Hernández, James A. Vergara-Correa, Richard J. Pope, Miriam Gómez-Marín, and Angela M. Rendón
Atmos. Chem. Phys., 24, 11497–11520, https://doi.org/10.5194/acp-24-11497-2024, https://doi.org/10.5194/acp-24-11497-2024, 2024
Short summary
Short summary
In the Aburrá Valley, northern South America, local emissions determine air quality conditions. However, we found that external sources, such as regional fires, Saharan dust, and volcanic emissions, increase particulate concentrations and worsen chemical composition by introducing elements like heavy metals. Dry winds and source variability contribute to seasonal influences on these events. This study assesses the air quality risks posed by such events, which can affect broad regions worldwide.
Meng Wang, Qiyuan Wang, Steven Sai Hang Ho, Jie Tian, Yong Zhang, Shun-cheng Lee, and Junji Cao
Atmos. Chem. Phys., 24, 11175–11189, https://doi.org/10.5194/acp-24-11175-2024, https://doi.org/10.5194/acp-24-11175-2024, 2024
Short summary
Short summary
We studied nitrogen-containing organic compounds (NOCs) in particulate matter <2.5 µm particles on the southeastern Tibetan Plateau. We found that biomass burning and transboundary transport are the main sources of NOCs in the high-altitude area. Understanding these aerosol sources informs how they add to regional and potentially global climate changes. Our findings could help shape effective environmental policies to enhance air quality and address climate impacts in this sensitive region.
Yi-Jia Ma, Yu Xu, Ting Yang, Lin Gui, Hong-Wei Xiao, Hao Xiao, and Hua-Yun Xiao
EGUsphere, https://doi.org/10.5194/egusphere-2024-2602, https://doi.org/10.5194/egusphere-2024-2602, 2024
Short summary
Short summary
The abundance, potential precursors, and main formation mechanisms of NOCs in PM2.5 during winter were compared among cities with different energy consumption. We found that the aerosol NOC pollution during winter is closely associated with the intensity of precursor emissions and the efficiency of aqueous-phase processes in converting these emissions into NOCs. The overall results highlight the importance of emission reduction strategies in controlling aerosol NOCs pollution during winter.
Jinbo Wang, Jiaping Wang, Yuxuan Zhang, Tengyu Liu, Xuguang Chi, Xin Huang, Dafeng Ge, Shiyi Lai, Caijun Zhu, Lei Wang, Qiaozhi Zha, Ximeng Qi, Wei Nie, Congbin Fu, and Aijun Ding
Atmos. Chem. Phys., 24, 11063–11080, https://doi.org/10.5194/acp-24-11063-2024, https://doi.org/10.5194/acp-24-11063-2024, 2024
Short summary
Short summary
In this study, we found large spatial discrepancies in the physical and chemical properties of black carbon over the Tibetan Plateau (TP). Elevated anthropogenic emissions from low-altitude regions can significantly change the mass concentration, mixing state and chemical composition of black-carbon-containing aerosol in the TP region, further altering its light absorption ability. Our study emphasizes the vulnerability of remote plateau regions to intense anthropogenic influences.
Liyuan Zhou, Qianyun Liu, Christian M. Salvador, Michael Le Breton, Mattias Hallquist, Jian Zhen Yu, Chak K. Chan, and Åsa M. Hallquist
Atmos. Chem. Phys., 24, 11045–11061, https://doi.org/10.5194/acp-24-11045-2024, https://doi.org/10.5194/acp-24-11045-2024, 2024
Short summary
Short summary
Our research on city bus emissions reveals that alternative fuels (compressed natural gas and biofuels) reduce fresh particle emissions compared to diesel. However, all fuels lead to secondary air pollution. Aiming at guiding better environmental policies, we studied 76 buses using advanced emission measurement techniques. This work sheds light on the complex effects of bus fuels on urban air quality, emphasizing the need for comprehensive evaluations of future transportation technologies.
Xu Yang, Fobang Liu, Shuqi Yang, Yuling Yang, Yanan Wang, Jingjing Li, Mingyu Zhao, Zhao Wang, Kai Wang, Chi He, and Haijie Tong
Atmos. Chem. Phys., 24, 11029–11043, https://doi.org/10.5194/acp-24-11029-2024, https://doi.org/10.5194/acp-24-11029-2024, 2024
Short summary
Short summary
A study in the rural North China Plain showed environmentally persistent free radicals (EPFRs) in atmospheric particulate matter (PM), with a notable water-soluble fraction likely from atmospheric oxidation during transport. Significant positive correlations between EPFRs and the water-soluble oxidative potential of PM2.5 were found, primarily attributable to the water-soluble fractions of EPFRs. These findings emphasize understanding EPFRs' atmospheric evolution for climate and health impacts.
Kirsten N. Fossum, Chunshui Lin, Niall O'Sullivan, Lu Lei, Stig Hellebust, Darius Ceburnis, Aqeel Afzal, Anja Tremper, David Green, Srishti Jain, Steigvilė Byčenkienė, Colin O'Dowd, John Wenger, and Jurgita Ovadnevaite
Atmos. Chem. Phys., 24, 10815–10831, https://doi.org/10.5194/acp-24-10815-2024, https://doi.org/10.5194/acp-24-10815-2024, 2024
Short summary
Short summary
The chemical composition and sources of submicron aerosol in the Dublin Port area were investigated over a month-long campaign. Two distinct types of ship emissions were identified and characterised: sulfate-rich plumes from the use of heavy fuel oil with scrubbers and organic-rich plumes from the use of low-sulfur fuels. The latter were more frequent, emitting double the particle number and having a typical V / Ni ratio for ship emission.
Xiao He, Xuan Zheng, Shuwen Guo, Lewei Zeng, Ting Chen, Bohan Yang, Shupei Xiao, Qiongqiong Wang, Zhiyuan Li, Yan You, Shaojun Zhang, and Ye Wu
Atmos. Chem. Phys., 24, 10655–10666, https://doi.org/10.5194/acp-24-10655-2024, https://doi.org/10.5194/acp-24-10655-2024, 2024
Short summary
Short summary
This study introduces an innovative method for identifying and quantifying complex organic vapors and aerosols. By combining advanced analytical techniques and new algorithms, we categorized thousands of compounds from heavy-duty diesel vehicles and ambient air and highlighted specific tracers for emission sources. The innovative approach enhances peak identification, reduces quantification uncertainties, and offers new insights for air quality management and atmospheric chemistry.
Yu Xu, Tang Liu, Yi-Jia Ma, Qi-Bin Sun, Hong-Wei Xiao, Hao Xiao, Hua-Yun Xiao, and Cong-Qiang Liu
Atmos. Chem. Phys., 24, 10531–10542, https://doi.org/10.5194/acp-24-10531-2024, https://doi.org/10.5194/acp-24-10531-2024, 2024
Short summary
Short summary
This study investigates the characteristics of aminiums and ammonium in PM2.5 on clean and polluted winter days in 11 Chinese cities, highlighting the possibility of the competitive uptake of ammonia versus amines on acidic aerosols or the displacement of aminiums by ammonia under high-ammonia conditions. The overall results deepen the understanding of the spatiotemporal differences in aminium characteristics and formation in China.
Cassidy Soloff, Taiwo Ajayi, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Marta A. Fenn, Richard A. Ferrare, Francesca Gallo, Johnathan W. Hair, Miguel Ricardo A. Hilario, Simon Kirschler, Richard H. Moore, Taylor J. Shingler, Michael A. Shook, Kenneth L. Thornhill, Christiane Voigt, Edward L. Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 24, 10385–10408, https://doi.org/10.5194/acp-24-10385-2024, https://doi.org/10.5194/acp-24-10385-2024, 2024
Short summary
Short summary
Using aircraft measurements over the northwestern Atlantic between the US East Coast and Bermuda and trajectory modeling of continental outflow, we identify trace gas and particle properties that exhibit gradients with offshore distance and quantify these changes with high-resolution measurements of concentrations and particle chemistry, size, and scattering properties. This work furthers our understanding of the complex interactions between continental and marine environments.
Alex Rowell, James Brean, David C. S. Beddows, Zongbo Shi, Avinash Kumar, Matti Rissanen, Miikka Dal Maso, Peter Mettke, Kay Weinhold, Maik Merkel, and Roy M. Harrison
Atmos. Chem. Phys., 24, 10349–10361, https://doi.org/10.5194/acp-24-10349-2024, https://doi.org/10.5194/acp-24-10349-2024, 2024
Short summary
Short summary
Ions enhance the formation and growth rates of new particles, affecting the Earth's radiation budget. Despite these effects, there is little published data exploring the sources of ions in the urban environment and their role in new particle formation (NPF). Here we show that natural ion sources dominate in urban environments, while traffic is a secondary source. Ions contribute up to 12.7 % of the formation rate of particles, indicating that they are important for forming urban PM.
Kira Zeider, Kayla McCauley, Sanja Dmitrovic, Leong Wai Siu, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Simon Kirschler, John B. Nowak, Michael A. Shook, Kenneth L. Thornhill, Christiane Voigt, Edward L. Winstead, Luke D. Ziemba, Paquita Zuidema, and Armin Sorooshian
EGUsphere, https://doi.org/10.5194/egusphere-2024-2743, https://doi.org/10.5194/egusphere-2024-2743, 2024
Short summary
Short summary
In-situ aircraft data collected over the northwest Atlantic Ocean are utilized to compare aerosol conditions and turbulence between near-surface and below cloud base altitudes for different regimes of coupling strength between those two levels, along with how cloud microphysical properties vary across those regimes. Stronger coupling yields more homogenous aerosol structure vertically along with higher cloud drop concentrations and sea salt influence in clouds.
Yuan Cheng, Xu-bing Cao, Sheng-qiang Zhu, Zhi-qing Zhang, Jiu-meng Liu, Hong-liang Zhang, Qiang Zhang, and Ke-bin He
Atmos. Chem. Phys., 24, 9869–9883, https://doi.org/10.5194/acp-24-9869-2024, https://doi.org/10.5194/acp-24-9869-2024, 2024
Short summary
Short summary
The agreement between observational and modeling results is essential for the development of efficient air pollution control strategies. Here we constrained the modeling results of carbonaceous aerosols by field observation in Northeast China, a historically overlooked but recently targeted region of national clean-air actions. Our study suggested that the simulation of agricultural fire emissions and secondary organic aerosols remains challenging.
Dane Blanchard, Mark Gordon, Duc Huy Dang, Paul Andrew Makar, and Julian Aherne
EGUsphere, https://doi.org/10.5194/egusphere-2024-2584, https://doi.org/10.5194/egusphere-2024-2584, 2024
Short summary
Short summary
This study offers the first known evaluation of water-soluble brown carbon aerosols in the Athabasca Oil Sands Region (AOSR), Canada. Fluorescence spectroscopy analysis of aerosol samples from five regional sites (summer 2021) found that oil sands operations were a measurable source of brown carbon. Industrial aerosol emissions may impact atmospheric reaction chemistry and albedo. These findings demonstrate that fluorescence spectroscopy can be applied to monitor brown carbon in the ASOR.
Yuan Dai, Junfeng Wang, Houjun Wang, Shijie Cui, Yunjiang Zhang, Haiwei Li, Yun Wu, Ming Wang, Eleonora Aruffo, and Xinlei Ge
Atmos. Chem. Phys., 24, 9733–9748, https://doi.org/10.5194/acp-24-9733-2024, https://doi.org/10.5194/acp-24-9733-2024, 2024
Short summary
Short summary
Short-term strict emission control can improve air quality, but its effectiveness needs assessment. During the 2021 summer COVID-19 lockdown in Yangzhou, we found that PM2.5 levels did not decrease despite reduced primary emissions. Aged black-carbon particles increased substantially due to higher O3 levels and transported pollutants. High humidity and low wind also played key roles. The results highlight the importance of a regionally balanced control strategy for future air quality management.
Xinya Liu, Diego Alves Gouveia, Bas Henzing, Arnoud Apituley, Arjan Hensen, Danielle van Dinther, Rujin Huang, and Ulrike Dusek
Atmos. Chem. Phys., 24, 9597–9614, https://doi.org/10.5194/acp-24-9597-2024, https://doi.org/10.5194/acp-24-9597-2024, 2024
Short summary
Short summary
The vertical distribution of aerosol optical properties is important for their effect on climate. This is usually measured by lidar, which has limitations, most notably the assumption of a lidar ratio. Our study shows that routine surface-level aerosol measurements are able to predict this lidar ratio reasonably well within the lower layers of the atmosphere and thus provide a relatively simple and cost-effective method to improve lidar measurements.
Weiqi Xu, Ye Kuang, Wanyun Xu, Zhiqiang Zhang, Biao Luo, Xiaoyi Zhang, Jiangchuang Tao, Hongqin Qiao, Li Liu, and Yele Sun
Atmos. Chem. Phys., 24, 9387–9399, https://doi.org/10.5194/acp-24-9387-2024, https://doi.org/10.5194/acp-24-9387-2024, 2024
Short summary
Short summary
We deployed an advanced aerosol–fog sampling system at a rural site in the North China Plain to investigate impacts of aerosol hygroscopic growth and activation on the physicochemical properties of submicron aerosols. Observed results highlighted remarkably different aqueous processing of primary and secondary submicron aerosol components under distinct ambient relative humidity (RH) conditions and that RH levels significantly impact aerosol sampling through the aerosol swelling effect.
Can Wu, Xiaodi Liu, Ke Zhang, Si Zhang, Cong Cao, Jianjun Li, Rui Li, Fan Zhang, and Gehui Wang
Atmos. Chem. Phys., 24, 9263–9275, https://doi.org/10.5194/acp-24-9263-2024, https://doi.org/10.5194/acp-24-9263-2024, 2024
Short summary
Short summary
Brown carbon (BrC) is prevalent in the troposphere and can efficiently absorb solar and terrestrial radiation. Our observations show that the enhanced light absorption of BrC relative to black carbon at the tropopause can be attributed to the formation of nitrogen-containing organic compounds through the aqueous-phase reactions of carbonyls with ammonium.
Taiwo Ajayi, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Marta A. Fenn, Richard A. Ferrare, Johnathan W. Hair, Miguel Ricardo A. Hilario, Chris A. Hostetler, Simon Kirschler, Richard H. Moore, Taylor J. Shingler, Michael A. Shook, Cassidy Soloff, Kenneth L. Thornhill, Christiane Voigt, Edward L. Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 24, 9197–9218, https://doi.org/10.5194/acp-24-9197-2024, https://doi.org/10.5194/acp-24-9197-2024, 2024
Short summary
Short summary
This study uses airborne data to examine vertical profiles of trace gases, aerosol particles, and meteorological variables over a remote marine area (Bermuda). Results show distinct differences based on both air mass source region (North America, Ocean, Caribbean/North Africa) and altitude for a given air mass type. This work highlights the sensitivity of remote marine areas to long-range transport and the importance of considering the vertical dependence of trace gas and aerosol properties.
Kira Zeider, Grace Betito, Anthony Bucholtz, Peng Xian, Annette Walker, and Armin Sorooshian
Atmos. Chem. Phys., 24, 9059–9083, https://doi.org/10.5194/acp-24-9059-2024, https://doi.org/10.5194/acp-24-9059-2024, 2024
Short summary
Short summary
The predominant wind direction along the California coast (northerly) reverses several times during the summer (to southerly). The effects of these wind reversals on aerosol and cloud characteristics are not well understood. Using data from multiple datasets we found that southerly flow periods had enhanced signatures of anthropogenic emissions due to shipping and continental sources, and clouds had more but smaller droplets.
Saleh Alzahrani, Doğuşhan Kılıç, Michael Flynn, Paul I. Williams, and James Allan
Atmos. Chem. Phys., 24, 9045–9058, https://doi.org/10.5194/acp-24-9045-2024, https://doi.org/10.5194/acp-24-9045-2024, 2024
Short summary
Short summary
This paper investigates emissions from aviation activities at an international airport to evaluate their impact on local air quality. The study provides detailed insights into the chemical composition of aerosols and key pollutants in the airport environment. Source apportionment analysis using positive matrix factorisation (PMF) identified three significant sources: less oxidised oxygenated organic aerosol, alkane organic aerosol, and more oxidised oxygenated organic aerosol.
Mikko Heikkilä, Krista Luoma, Timo Mäkelä, and Tiia Grönholm
Atmos. Chem. Phys., 24, 8927–8941, https://doi.org/10.5194/acp-24-8927-2024, https://doi.org/10.5194/acp-24-8927-2024, 2024
Short summary
Short summary
Black carbon (BC) concentration was measured from 211 ship exhaust gas plumes at a remote marine station. Emission factors of BC were calculated in grams per kilogram of fuel. Ships with an exhaust gas cleaning system (EGCS) were found to have median BC emissions per fuel consumed 5 times lower than ships without an EGCS. However, this might be because of non-EGCS ships running at low engine loads rather than the EGCS itself. A local speed restriction would increase BC emissions of ships.
Olga Zografou, Maria Gini, Prodromos Fetfatzis, Konstantinos Granakis, Romanos Foskinis, Manousos Ioannis Manousakas, Fotios Tsopelas, Evangelia Diapouli, Eleni Dovrou, Christina N. Vasilakopoulou, Alexandros Papayannis, Spyros N. Pandis, Athanasios Nenes, and Konstantinos Eleftheriadis
Atmos. Chem. Phys., 24, 8911–8926, https://doi.org/10.5194/acp-24-8911-2024, https://doi.org/10.5194/acp-24-8911-2024, 2024
Short summary
Short summary
Characterization of PM1 and positive matrix factorization (PMF) source apportionment of organic and inorganic fractions were conducted at the high-altitude station (HAC)2. Cloud presence reduced PM1, affecting sulfate more than organics. Free-troposphere (FT) conditions showed more black carbon (eBC) than planetary boundary layer (PBL) conditions.
Yuanyuan Qin, Xinghua Zhang, Wei Huang, Juanjuan Qin, Xiaoyu Hu, Yuxuan Cao, Tianyi Zhao, Yang Zhang, Jihua Tan, Ziyin Zhang, Xinming Wang, and Zhenzhen Wang
Atmos. Chem. Phys., 24, 8737–8750, https://doi.org/10.5194/acp-24-8737-2024, https://doi.org/10.5194/acp-24-8737-2024, 2024
Short summary
Short summary
Environmental persistent free radicals (EPFRs) and reactive oxygen species (ROSs) play an active role in the atmosphere. Despite control measures having effectively reduced their emissions, reductions were less than in PM2.5. Emission control measures performed well in achieving Parade Blue, but reducing the impact of the atmosphere on human health remains challenging. Thus, there is a need to reassess emission control measures to better address the challenges posed by EPFRs and ROSs.
Fenghua Wei, Xing Peng, Liming Cao, Mengxue Tang, Ning Feng, Xiaofeng Huang, and Lingyan He
Atmos. Chem. Phys., 24, 8507–8518, https://doi.org/10.5194/acp-24-8507-2024, https://doi.org/10.5194/acp-24-8507-2024, 2024
Short summary
Short summary
The water solubility of secondary organic aerosols (SOAs) is a crucial factor in determining their hygroscopicity and climatic impact. Stable carbon isotope and mass spectrometry techniques were combined to assess the water solubility of SOAs with different aging degrees in a coastal megacity in China. This work revealed a much higher water-soluble fraction of aged SOA compared to fresh SOA, indicating that the aging degree of SOA has considerable impacts on its water solubility.
Zijun Zhang, Weiqi Xu, Yi Zhang, Wei Zhou, Xiangyu Xu, Aodong Du, Yinzhou Zhang, Hongqin Qiao, Ye Kuang, Xiaole Pan, Zifa Wang, Xueling Cheng, Lanzhong Liu, Qingyan Fu, Douglas R. Worsnop, Jie Li, and Yele Sun
Atmos. Chem. Phys., 24, 8473–8488, https://doi.org/10.5194/acp-24-8473-2024, https://doi.org/10.5194/acp-24-8473-2024, 2024
Short summary
Short summary
We investigated aerosol composition and sources and the interaction between secondary organic aerosol (SOA) and clouds at a regional mountain site in southeastern China. Clouds efficiently scavenge more oxidized SOA; however, cloud evaporation leads to the production of less oxidized SOA. The unexpectedly high presence of nitrate in aerosol particles indicates that nitrate formed in polluted areas has undergone interactions with clouds, significantly influencing the regional background site.
Feifei Li, Shanshan Tang, Jitao Lv, Shiyang Yu, Xu Sun, Dong Cao, Yawei Wang, and Guibin Jiang
Atmos. Chem. Phys., 24, 8397–8411, https://doi.org/10.5194/acp-24-8397-2024, https://doi.org/10.5194/acp-24-8397-2024, 2024
Short summary
Short summary
Targeted derivatization and non-targeted analysis with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) were used to reveal the molecular composition of carbonyl molecules in PM2.5, and the important role of carbonyls in increasing the oxidative potential of organic aerosol was found in real samples.
Adam E. Thomas, Hayley S. Glicker, Alex B. Guenther, Roger Seco, Oscar Vega Bustillos, Julio Tota, Rodrigo A. F. Souza, and James N. Smith
EGUsphere, https://doi.org/10.5194/egusphere-2024-2230, https://doi.org/10.5194/egusphere-2024-2230, 2024
Short summary
Short summary
We present measurements of the composition of ultrafine particles collected from the eastern Amazon, a relatively understudied region that is subjected to increasing human influence. We find that while isoprene chemistry is likely significant to ultrafine particle growth throughout the year, compounds related to other sources such as biological spore emissions and biomass burning exhibit striking seasonal differences, implying an extensive variation in regional ultrafine particle sources.
Maya Abou-Ghanem, Daniel M. Murphy, Gregory P. Schill, Michael J. Lawler, and Karl D. Froyd
Atmos. Chem. Phys., 24, 8263–8275, https://doi.org/10.5194/acp-24-8263-2024, https://doi.org/10.5194/acp-24-8263-2024, 2024
Short summary
Short summary
Using particle analysis by laser mass spectrometry, we examine vanadium-containing ship exhaust particles measured on NASA's DC-8 during the Atmospheric Tomography Mission (ATom). Our results reveal ship exhaust particles are sufficiently widespread in the marine atmosphere and experience atmospheric aging. Finally, we use laboratory calibrations to determine the vanadium, sulfate, and organic single-particle mass fractions of vanadium-containing ship exhaust particles.
Cassandra J. Gaston, Joseph M. Prospero, Kristen Foley, Havala O. T. Pye, Lillian Custals, Edmund Blades, Peter Sealy, and James A. Christie
Atmos. Chem. Phys., 24, 8049–8066, https://doi.org/10.5194/acp-24-8049-2024, https://doi.org/10.5194/acp-24-8049-2024, 2024
Short summary
Short summary
To understand how changing emissions have impacted aerosols in remote regions, we measured nitrate and sulfate in Barbados and compared them to model predictions from EPA’s Air QUAlity TimE Series (EQUATES). Nitrate was stable, except for spikes in 2008 and 2010 due to transported smoke. Sulfate decreased in the 1990s due to reductions in sulfur dioxide (SO2) in the US and Europe; then it increased in the 2000s, likely due to anthropogenic emissions from Africa.
Jiao Xue, Tian Zhang, Keyhong Park, Jinpei Yan, Young Jun Yoon, Jiyeon Park, and Bingbing Wang
Atmos. Chem. Phys., 24, 7731–7754, https://doi.org/10.5194/acp-24-7731-2024, https://doi.org/10.5194/acp-24-7731-2024, 2024
Short summary
Short summary
Ice formation by particles is an important way of making mixed-phase and ice clouds. We found that particles collected in the marine atmosphere exhibit diverse ice nucleation abilities and mixing states. Sea salt mixed-sulfate particles were enriched in ice-nucleating particles. Selective aging on sea salt particles made particle populations more externally mixed. Characterizations of particles and their mixing state are needed for a better understanding of aerosol–cloud interactions.
Yangzhi Mo, Jun Li, Guangcai Zhong, Sanyuan Zhu, Shizhen Zhao, Jiao Tang, Hongxing Jiang, Zhineng Cheng, Chongguo Tian, Yingjun Chen, and Gan Zhang
Atmos. Chem. Phys., 24, 7755–7772, https://doi.org/10.5194/acp-24-7755-2024, https://doi.org/10.5194/acp-24-7755-2024, 2024
Short summary
Short summary
In this study, we found that biomass burning (31.0 %) and coal combustion (31.1 %) were the dominant sources of water-insoluble organic carbon in China, with coal combustion sources exhibiting the strongest light-absorbing capacity. Additionally, we propose a light-absorbing carbonaceous continuum, revealing that components enriched with fossil sources tend to have stronger light-absorbing capacity, higher aromaticity, higher molecular weights, and greater recalcitrance in the atmosphere.
Jing Duan, Ru-Jin Huang, Ying Wang, Wei Xu, Haobin Zhong, Chunshui Lin, Wei Huang, Yifang Gu, Jurgita Ovadnevaite, Darius Ceburnis, and Colin O'Dowd
Atmos. Chem. Phys., 24, 7687–7698, https://doi.org/10.5194/acp-24-7687-2024, https://doi.org/10.5194/acp-24-7687-2024, 2024
Short summary
Short summary
The chemical composition of atmospheric particles has shown significant changes in recent years. We investigated the potential effects of changes in inorganics on aerosol water uptake and, thus, secondary organic aerosol formation in wintertime haze based on the size-resolved measurements of non-refractory fine particulate matter (NR-PM2.5) in Xi’an, northwestern China. We highlight the key role of aerosol water as a medium to link inorganics and organics in their multiphase processes.
Benjamin Heutte, Nora Bergner, Hélène Angot, Jakob B. Pernov, Lubna Dada, Jessica A. Mirrielees, Ivo Beck, Andrea Baccarini, Matthew Boyer, Jessie M. Creamean, Kaspar R. Daellenbach, Imad El Haddad, Markus M. Frey, Silvia Henning, Tiaa Laurila, Vaios Moschos, Tuukka Petäjä, Kerri A. Pratt, Lauriane L. J. Quéléver, Matthew D. Shupe, Paul Zieger, Tuija Jokinen, and Julia Schmale
EGUsphere, https://doi.org/10.5194/egusphere-2024-1912, https://doi.org/10.5194/egusphere-2024-1912, 2024
Short summary
Short summary
Limited aerosol measurements in the central Arctic hinder our understanding of aerosol-climate interactions in the region. Our year-long observations of aerosol physicochemical properties during the MOSAiC expedition reveal strong seasonal variations in aerosol chemical composition, where the short-term variability is heavily affected by storms in the Arctic. Locally wind-generated particles are shown to be an important source of cloud seeds, especially in autumn.
Feng Jiang, Harald Saathoff, Junwei Song, Hengheng Zhang, Linyu Gao, and Thomas Leisner
EGUsphere, https://doi.org/10.5194/egusphere-2024-1848, https://doi.org/10.5194/egusphere-2024-1848, 2024
Short summary
Short summary
The chemical composition of brown carbon in the particle and gas phase were determined by mass spectrometry. BrC in the gas phase was mainly controlled by secondary formation and particle-to-gas partitioning. BrC in the particle phase was mainly from secondary formation. This work helps to get a better understanding of diurnal variations and the sources of brown carbon aerosol at rural location in central Europe.
Hongyong Li, Xiaopu Lyu, Likun Xue, Yunxi Huo, Dawen Yao, Haoxian Lu, and Hai Guo
Atmos. Chem. Phys., 24, 7085–7100, https://doi.org/10.5194/acp-24-7085-2024, https://doi.org/10.5194/acp-24-7085-2024, 2024
Short summary
Short summary
Organic aerosol is ubiquitous in the atmosphere and largely explains the gap between current levels of fine particulate matter in many cities and the World Health Organization guideline values. This study highlights the dominant contributions of cooking emissions to organic aerosol when marine air prevailed in Hong Kong, which were occasionally overwhelmed by aromatics-derived secondary organic aerosol in continental ouflows.
Shao Shi, Jinghao Zhai, Xin Yang, Yechun Ruan, Yuanlong Huang, Xujian Chen, Antai Zhang, Jianhuai Ye, Guomao Zheng, Baohua Cai, Yaling Zeng, Yixiang Wang, Chunbo Xing, Yujie Zhang, Tzung-May Fu, Lei Zhu, Huizhong Shen, and Chen Wang
Atmos. Chem. Phys., 24, 7001–7012, https://doi.org/10.5194/acp-24-7001-2024, https://doi.org/10.5194/acp-24-7001-2024, 2024
Short summary
Short summary
The determination of ions in the mass spectra of individual particles remains uncertain. We have developed a standard-free mass calibration algorithm applicable to more than 98 % of ambient particles. With our algorithm, ions with ~ 0.05 Th mass difference could be determined. Therefore, many more atmospheric species could be determined and involved in the source apportionment of aerosols, the study of chemical reaction mechanisms, and the analysis of single-particle mixing states.
Wei Sun, Xiaodong Hu, Yuzhen Fu, Guohua Zhang, Yujiao Zhu, Xinfeng Wang, Caiqing Yan, Likun Xue, He Meng, Bin Jiang, Yuhong Liao, Xinming Wang, Ping'an Peng, and Xinhui Bi
Atmos. Chem. Phys., 24, 6987–6999, https://doi.org/10.5194/acp-24-6987-2024, https://doi.org/10.5194/acp-24-6987-2024, 2024
Short summary
Short summary
The formation pathways of nitrogen-containing compounds (NOCs) in the atmosphere remain unclear. We investigated the composition of aerosols and fog water by state-of-the-art mass spectrometry and compared the formation pathways of NOCs. We found that NOCs in aerosols were mainly formed through nitration reaction, while ammonia addition played a more important role in fog water. The results deepen our understanding of the processes of organic particulate pollution.
Cited articles
Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S.,
Karl, T., Crounse, J. D., and Wennberg, P. O.: Emission factors for open and
domestic biomass burning for use in atmospheric models, Atmos. Chem. Phys.,
11, 4039–4072, https://doi.org/10.5194/acp-11-4039-2011, 2011. a
Andreae, M. O. and Gelencsér, A.: Black carbon or brown carbon? The nature of
light-absorbing carbonaceous aerosols, Atmos. Chem. Phys., 6, 3131–3148,
https://doi.org/10.5194/acp-6-3131-2006, 2006. a
Aurell, J. and Gullett, B. K.: Emission Factors from Aerial and Ground
Measurements of Field and Laboratory Forest Burns in the Southeastern U.S.:
PM2.5, Black and Brown Carbon, VOC, and PCDD/PCDF, Environ. Sci.
Technol., 47, 8443–8452, https://doi.org/10.1021/es402101k, 2013. a
Birch, M. E. and Cary, R. A.: Elemental Carbon-Based Method for Monitoring
Occupational Exposures to Particulate Diesel Exhaust, Aerosol Sci. Tech.,
25, 221–241, https://doi.org/10.1080/02786829608965393, 1996. a
Bond, T. C., Streets, D. G., Yarber, K. F., Nelson, S. M., Woo, J.-H., and
Klimont, Z.: A technology-based global inventory of black and organic carbon
emissions from combustion, J. Geophys. Res.-Atmos., 109, D14203,
https://doi.org/10.1029/2003JD003697,
2004. a
Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T.,
DeAngelo, B. J., Flanner, M. G., Ghan, S., Kärcher, B., Koch, D.,
Kinne, S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz,
M., Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K.,
Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U.,
Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and Zender,
C. S.: Bounding the role of black carbon in the climate system: A scientific
assessment, J. Geophys. Res.-Atmos., 118, 5380–5552,
https://doi.org/10.1002/jgrd.50171, 2013. a
Carslaw, D. C. and Ropkins, K.: Openair – An R package for air quality data
analysis, Environ. Model. Softw., 27/28, 52–61,
https://doi.org/10.1016/j.envsoft.2011.09.008, 2012. a
Chen, S., Russell, L., Cappa, C., Zhang, X., Kleeman, M., Kumar, A., Liu, D.,
and Ramanathan, V.: Comparing black and brown carbon absorption from AERONET
and surface measurements at wintertime Fresno, Atmos. Environ., 199,
164–176, https://doi.org/10.1016/j.atmosenv.2018.11.032,
2018. a
Cottle, P., Strawbridge, K., and McKendry, I.: Long-range transport of
Siberian wildfire smoke to British Columbia: Lidar observations and air
quality impacts, Atmos. Environ., 90, 71–77,
https://doi.org/10.1016/j.atmosenv.2014.03.005, 2014. a
Crutzen, P. J. and Andreae, M. O.: Biomass Burning in the Tropics : Impact on
Atmospheric Chemistry and Biogeochemical Cycles, Science, 250, 1669–1678,
https://doi.org/10.1126/science.250.4988.1669, 1991. a
Cubison, M. J., Ortega, A. M., Hayes, P. L., Farmer, D. K., Day, D., Lechner,
M. J., Brune, W. H., Apel, E., Diskin, G. S., Fisher, J. A., Fuelberg, H. E.,
Hecobian, A., Knapp, D. J., Mikoviny, T., Riemer, D., Sachse, G. W.,
Sessions, W., Weber, R. J., Weinheimer, A. J., Wisthaler, A., and Jimenez,
J. L.: Effects of aging on organic aerosol from open biomass burning smoke in
aircraft and laboratory studies, Atmos. Chem. Phys., 11, 12049–12064,
https://doi.org/10.5194/acp-11-12049-2011, 2011. a
de Oliveira Alves, N., Brito, J., Caumo, S., Arana, A., de Souza Hacon, S.,
Artaxo, P., Hillamo, R., Teinilä, K., de Medeiros, S. R. B., and
de Castro Vasconcellos, P.: Biomass burning in the Amazon region: Aerosol
source apportionment and associated health risk assessment, Atmos. Environ.,
120, 277–285, https://doi.org/10.1016/j.atmosenv.2015.08.059, 2015. a
Donnelly, A. A., Broderick, B. M., and Misstear, B. D.: The effect of
long-range air mass transport pathways on PM10 and NO2 concentrations at
urban and rural background sites in Ireland: Quantification using clustering
techniques, J. Environ. Sci. Heal. Pt A, 50, 647–658,
https://doi.org/10.1080/10934529.2015.1011955,
2015. a, b
Draxler, R. and Hess, G.: An Overview of the HYSPLIT_4 Modelling System for
Trajectories, Dispersion, and Deposition, Aust. Meteorol. Mag., 47,
295–308, 1998. a
Drinovec, L., Močnik, G., Zotter, P., Prévôt, A. S. H., Ruckstuhl, C.,
Coz, E., Rupakheti, M., Sciare, J., Müller, T., Wiedensohler, A., and
Hansen, A. D. A.: The “dual-spot” Aethalometer: An improved measurement
of aerosol black carbon with real-time loading compensation,
Atmos. Meas. Tech., 8, 1965–1979, https://doi.org/10.5194/amt-8-1965-2015,
2015. a, b
Forster, C., Wandinger, U., Wotawa, G., James, P., Mattis, I., Althausen, D.,
Simmonds, P., O'Doherty, S., Jennings, S. G., Kleefeld, C., Schneider, J.,
Trickl, T., Kreipl, S., Jäger, H., and Stohl, A.: Transport of boreal
forest fire emissions from Canada to Europe, J. Geophys. Res., 106,
22887–22906, https://doi.org/10.1029/2001JD900115, 2001. a
Garcia-Hurtado, E., Pey, J., Borrás, E., Sánchez, P., Vera, T.,
Carratalá, A., Alastuey, A., Querol, X., and Vallejo, V. R.:
Atmospheric PM and volatile organic compounds released from Mediterranean
shrubland wildfires, Atmos. Environ., 89, 85–92,
https://doi.org/10.1016/j.atmosenv.2014.02.016, 2014. a
Gonçalves, C., Figueiredo, B. R., Alves, C. A., Cardoso, A. A., Da
Silva, R., Kanzawa, S. H., and Vicente, A. M.: Chemical characterisation of
total suspended particulate matter from a remote area in Amazonia, Atmos.
Res., 182, 102–113, https://doi.org/10.1016/J.ATMOSRES.2016.07.027,
2016. a
Haikerwal, A., Akram, M., Del Monaco, A., Smith, K., Sim, M. R., Meyer, M.,
Tonkin, A. M., Abramson, M. J., and Dennekamp, M.: Impact of Fine
Particulate Matter (PM2.5) Exposure During Wildfires on Cardiovascular Health
Outcomes., J. Am. Heart Assoc., 4, e001653, https://doi.org/10.1161/JAHA.114.001653, 2015. a
Hamburger, T., Matisāns, M., Tunved, P., Ström, J., Calderon, S.,
Hoffmann, P., Hochschild, G., Gross, J., Schmeissner, T., Wiedensohler, A.,
and Krejci, R.: Long-term in situ observations of biomass burning aerosol at
a high altitude station in Venezuela: Sources, impacts and interannual
variability, Atmos. Chem. Phys., 13, 9837–9853,
https://doi.org/10.5194/acp-13-9837-2013, 2013. a
Harrison, R. M., Beddows, D. C., Jones, A. M., Calvo, A., Alves, C., and Pio,
C.: An evaluation of some issues regarding the use of Aethalometers to
measure woodsmoke concentrations, Atmos. Environ., 80, 540–548,
https://doi.org/10.1016/j.atmosenv.2013.08.026, 2013. a, b
Hecobian, A., Zhang, X., Zheng, M., Frank, N., Edgerton, E. S., and Weber,
R. J.: Water-Soluble Organic Aerosol material and the light-absorption
characteristics of aqueous extracts measured over the Southeastern United
States, Atmos. Chem. Phys., 10, 5965–5977, https://doi.org/10.5194/acp-10-5965-2010,
2010. a, b, c
Hennigan, C. J., Sullivan, A. P., Collett Jr., J. L., and Robinson, A. L.:
Levoglucosan stability in biomass burning particles exposed to hydroxyl
radicals, Geophys. Res. Lett., 37, L09806, https://doi.org/10.1029/2010GL043088, 2010. a, b
Hernandez, A. J., Morales-Rincon, L. A., W., D., Mallia, D., Lin, J., and
Jimenez, R.: Transboundary transport of biomass burning aerosols and
photochemical pollution in the Orinoco River Basin, Atmos. Environ., 205, 1–8, https://doi.org/10.1016/j.atmosenv.2019.01.051,
2019. a
Janhäll, S., Andreae, M. O., and Pöschl, U.: Biomass burning aerosol
emissions from vegetation fires: particle number and mass emission factors
and size distributions, Atmos. Chem. Phys., 10, 1427–1439,
https://doi.org/10.5194/acp-10-1427-2010, 2010. a
Jeong, C., Hopke, P., Kim, E., and Lee, D.: The comparison between
thermal-optical transmittance Elemental Carbon and Aethalometer Black Carbon
measured at multiple monitoring sites, Atmos. Environ., 38, 5193–5204,
https://doi.org/10.1016/j.atmosenv.2004.02.065, 2004. a
Justice, C. O., Giglio, L., Korontzi, S., Owens, J., Morisette, J. T., Roy, D.,
Descloitres, J., Alleaume, S., Petitcolin, F., and Kaufman, Y.: The MODIS
fire products, Remote Sens. Environ., 83, 244–262,
https://doi.org/10.1016/S0034-4257(02)00076-7, 2002. a
Kirchstetter, T. W., Novakov, T., and Hobbs, P. V.: Evidence that the spectral
dependence of light absorption by aerosols is affected by organic carbon,
J. Geophys. Res., 109, D21208, https://doi.org/10.1029/2004JD004999,
2004. a, b, c
Koch, D., Bond, T. C., Streets, D., Unger, N., and van der Werf, G. R.: Global
impacts of aerosols from particular source regions and sectors, J. Geophys.
Res., 112, D02205, https://doi.org/10.1029/2005JD007024, 2007. a
Kollanus, V., Tiittanen, P., Niemi, J. V., and Lanki, T.: Effects of
long-range transported air pollution from vegetation fires on daily mortality
and hospital admissions in the Helsinki metropolitan area, Finland, Environ.
Res., 151, 351–358, https://doi.org/10.1016/J.ENVRES.2016.08.003,
2016. a
Lack, D. A. and Langridge, J. M.: On the attribution of black and brown carbon
light absorption using the Ångström exponent, Atmos. Chem. Phys., 13,
10535–10543, https://doi.org/10.5194/acp-13-10535-2013, 2013. a, b, c
Lack, D. A., Bahreini, R., Langridge, J. M., Gilman, J. B., and Middlebrook,
A. M.: Brown carbon absorption linked to organic mass tracers in biomass
burning particles, Atmos. Chem. Phys., 13, 2415–2422,
https://doi.org/10.5194/acp-13-2415-2013, 2013. a, b
Laskin, A., Laskin, J., and Nizkorodov, S. A.: Chemistry of Atmospheric Brown
Carbon, Chem. Rev., 115, 4335–4382, https://doi.org/10.1021/cr5006167, 2015. a
Marengo, J. A., Tomasella, J., Alves, L. M., Soares, W. R., and Rodriguez,
D. A.: The drought of 2010 in the context of historical droughts in the
Amazon region, Geophys. Res. Lett., 38, L12703, https://doi.org/10.1029/2011GL047436,
2011. a
Martinsson, J., Abdul Azeem, H., Sporre, M. K., Bergström, R., Ahlberg, E., Öström, E., Kristensson, A., Swietlicki, E., and Eriksson Stenström, K.: Carbonaceous aerosol source apportionment using the Aethalometer model – evaluation by radiocarbon and levoglucosan analysis at a rural background site in southern Sweden, Atmos. Chem. Phys., 17, 4265–4281, https://doi.org/10.5194/acp-17-4265-2017, 2017. a
Massabò, D., Caponi, L., Bernardoni, V., Bove, M., Brotto, P., Calzolai, G.,
Cassola, F., Chiari, M., Fedi, M., Fermo, P., Giannoni, M., Lucarelli, F.,
Nava, S., Piazzalunga, A., Valli, G., Vecchi, R., and Prati, P.:
Multi-wavelength optical determination of black and brown carbon in
atmospheric aerosols, Atmos. Environ., 108, 1–12,
2015. a, b
Mkoma, S. L., Kawamura, K., and Fu, P. Q.: Contributions of biomass/biofuel
burning to organic aerosols and particulate matter in Tanzania, East Africa,
based on analyses of ionic species, organic and elemental carbon,
levoglucosan and mannosan, Atmos. Chem. Phys., 13, 10325–10338,
https://doi.org/10.5194/acp-13-10325-2013, 2013. a
Pachón, J. E., Weber, R. J., Zhang, X., Mulholland, J. A., and Russell,
A. G.: Revising the use of potassium (K) in the source apportionment of
PM2.5, Atmos. Poll. Res., 4, 14–21,
2013. a
Pachón, J. E., Galvis, B., Lombana, O., Carmona, L. G., Fajardo, S., Rincón,
A., Meneses, S., Chaparro, R., Nedbor-Gross, R., and Henderson, B.:
Development and Evaluation of a Comprehensive Atmospheric Emission Inventory
for Air Quality Modeling in the Megacity of Bogotá, Atmosphere, 9, 49 pp.,
https://doi.org/10.3390/atmos9020049, 2018. a, b, c
Petzold, A., Ogren, J. A., Fiebig, M., Laj, P., Li, S.-M., Baltensperger, U.,
Holzer-Popp, T., Kinne, S., Pappalardo, G., Sugimoto, N., Wehrli, C.,
Wiedensohler, A., and Zhang, X.-Y.: Recommendations for reporting “black
carbon” measurements, Atmos. Chem. Phys., 13, 8365–8379,
https://doi.org/10.5194/acp-13-8365-2013, 2013. a, b
Phuleria, H. C., Fine, P. M., Zhu, Y. F., and Sioutas, C.: Air quality impacts
of the October 2003 Southern California wildfires, J. Geophys. Res., 110,
D07S20–D07S20, https://doi.org/10.1029/2004JD004626,
2005. a
Poveda, G., Waylen, P. R., and Pulwarty, R. S.: Annual and inter-annual
variability of the present climate in northern South America and southern
Mesoamerica, Palaeogeogr. Palaeocl., 234, 3–27,
https://doi.org/10.1016/j.palaeo.2005.10.031, 2006. a, b, c
Prenni, A. J., Demott, P. J., Sullivan, A. P., Sullivan, R. C., Kreidenweis,
S. M., and Rogers, D. C.: Biomass burning as a potential source for
atmospheric ice nuclei: Western wildfires and prescribed burns, Geophys.
Res. Lett., 39, 1–5, https://doi.org/10.1029/2012GL051915, 2012. a
Pulwarty, R. S., Barry, R. G., Hurst, C. M., Sellinger, K., and Mogollon,
L. E.: Meteorology , and Atmospheric Physics Precipitation in the Venezuelan
Andes in the Context of Regional Climate, Meteorol. Atmos.
Phys., 237, 217–237, 1998. a
Reid, C. E., Jerrett, M., Tager, I. B., Petersen, M. L., Mann, J. K., and
Balmes, J. R.: Differential respiratory health effects from the 2008
northern California wildfires: A spatiotemporal approach, Environ. Res.,
150, 227–235, https://doi.org/10.1016/J.ENVRES.2016.06.012,
2016. a
Sandradewi, J., Prévot, A. S. H., Szidat, S., Perron, N., Alfarra, M. R.,
Lanz, V. A., Weingartner, E., and Baltensperger, U.: Using Aerosol Light
Absorption Measurements for the Quantitative Determination of Wood Burning
and Traffic Emission Contributions to Particulate Matter, Environ.
Sci. Technol., 42, 3316–3323, https://doi.org/10.1021/es702253m, 2008. a, b, c, d, e, f
Saturno, J., Holanda, B. A., Pöhlker, C., Ditas, F., Wang, Q., Moran-Zuloaga,
D., Brito, J., Carbone, S., Cheng, Y., Chi, X., Ditas, J., Hoffmann, T.,
Hrabe de Angelis, I., Könemann, T., Lavrič, J. V., Ma, N., Ming, J.,
Paulsen, H., Pöhlker, M. L., Rizzo, L. V., Schlag, P., Su, H., Walter, D.,
Wolff, S., Zhang, Y., Artaxo, P., Pöschl, U., and Andreae, M. O.: Black and
brown carbon over central Amazonia: long-term aerosol measurements at the
ATTO site, Atmos. Chem. Phys., 18, 12817–12843,
https://doi.org/10.5194/acp-18-12817-2018, 2018. a
Schmeissner, T., Krejci, R., Ström, J., Birmili, W., Wiedensohler, A.,
Hochschild, G., Gross, J., Hoffmann, P., and Calderon, S.: Analysis of number
size distributions of tropical free tropospheric aerosol particles observed
at Pico Espejo (4765 m a.s.l.), Venezuela, Atmos. Chem. Phys., 11,
3319–3332, https://doi.org/10.5194/acp-11-3319-2011, 2011. a
Shen, Z., Zhang, Q., Cao, J., Zhang, L., Lei, Y., Huang, Y., Huang, R., Gao,
J., Zhao, Z., Zhu, C., Xiuli, Y., Zheng, C., Xu, H., and Liu, S.: Optical
properties and possible sources of brown carbon in PM2.5 over Xian, China,
Atmos. Environ., 150, 322–330, https://doi.org/10.1016/j.atmosenv.2016.11.024, 2017. a
Simoneit, B., Schauer, J., Nolte, C., Oros, D., Elias, V., Fraser, M., Rogge,
W., and Cass, G.: Levoglucosan, a tracer for cellulose in biomass burning and
atmospheric particles, Atmos. Environ., 33, 173–182,
https://doi.org/10.1016/S1352-2310(98)00145-9, 1999. a
Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J., Cohen, M. D., and
Ngan, F.: NOAA's HYSPLIT atmospheric transport and dispersion modeling
system, Bull. Am. Meteorol., 96, 2059–2077,
https://doi.org/10.1175/BAMS-D-14-00110.1, 2015. a
Stohl, A., Aamaas, B., Amann, M., Baker, L. H., Bellouin, N., Berntsen, T. K.,
Boucher, O., Cherian, R., Collins, W., Daskalakis, N., Dusinska, M.,
Eckhardt, S., Fuglestvedt, J. S., Harju, M., Heyes, C., Hodnebrog, Hao, J.,
Im, U., Kanakidou, M., Klimont, Z., Kupiainen, K., Law, K. S., Lund, M. T.,
Maas, R., MacIntosh, C. R., Myhre, G., Myriokefalitakis, S., Olivié,
D., Quaas, J., Quennehen, B., Raut, J. C., Rumbold, S. T., Samset, B. H.,
Schulz, M., Seland, Shine, K. P., Skeie, R. B., Wang, S., Yttri, K. E., and
Zhu, T.: Evaluating the climate and air quality impacts of short-lived
pollutants, Atmos. Chem. Phys., 15, 10529–10566,
https://doi.org/10.5194/acp-15-10529-2015, 2015. a
Su, L., Yuan, Z., Fung, J. C., and Lau, A. K.: A comparison of HYSPLIT
backward trajectories generated from two GDAS datasets, Sci. Total Environ.,
506/507, 527–537, https://doi.org/10.1016/J.SCITOTENV.2014.11.072, 2015. a
Sullivan, A. P. and Weber, R. J.: Chemical characterization of the ambient
organic aerosol soluble in water: 1. Isolation of hydrophobic and hydrophilic
fractions with a XAD-8 resin, J. Geophys. Res., 111, D05314,
https://doi.org/10.1029/2005JD006485, 2006a. a
Sullivan, A. P. and Weber, R. J.: Chemical characterization of the ambient
organic aerosol soluble in water: 2. Isolation of acid, neutral, and basic
fractions by modified size-exclusion chromatography, J. Geophys. Res., 111, D05315,
https://doi.org/10.1029/2005JD006486, 2006b. a, b
Sullivan, A. P., Holden, A. S., Patterson, L. A., McMeeking, G. R.,
Kreidenweis, S. M., Malm, W. C., Hao, W. M., Wold, C. E., and Collett Jr.,
J. L.: A method for smoke marker measurements and its potential application
for determining the contribution of biomass burning from wildfires and
prescribed fires to ambient PM2.5 organic carbon, J. Geophys.
Res.-Atmos., 113, D22302, https://doi.org/10.1029/2008JD010216, 2008. a, b, c
Sullivan, A. P., Frank, N., Kenski, D. M., and Collett, J. L.: Application of
high-performance anion-exchange chromatography-pulsed amperometric detection
for measuring carbohydrates in routine daily filter samples collected by a
national network: 1 Determination of the impact of biomass burning in the
upper Midwest, J. Geophys. Res., 116, D08302, https://doi.org/10.1029/2010JD014169, 2011. a, b
Thornhill, G. D., Ryder, C. L., Highwood, E. J., Shaffrey, L. C., and Johnson, B. T.: The effect of South American biomass burning aerosol emissions on the regional climate, Atmos. Chem. Phys., 18, 5321–5342, https://doi.org/10.5194/acp-18-5321-2018, 2018. a
Tsimpidi, A. P., Karydis, V. A., Pandis, S. N., and Lelieveld, J.: Global
combustion sources of organic aerosols: model
comparison with 84 AMS factor-analysis data sets, Atmos. Chem. Phys., 16, 8939–8962, https://doi.org/10.5194/acp-16-8939-2016, 2016. a
comparison with 84 AMS factor-analysis data sets, Atmos. Chem. Phys., 16, 8939–8962, https://doi.org/10.5194/acp-16-8939-2016, 2016. a
Tzompa-Sosa, Z. A., Sullivan, A. P., Retama, A., and Kreidenweis, S. M.:
Contribution of Biomass Burning to Carbonaceous Aerosols in Mexico City
during May 2013, Aerosol Air Qual. Res., 16, 114–124,
https://doi.org/10.4209/aaqr.2015.01.0030, 2016. a
van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M.,
Kasibhatla, P. S., Morton, D. C., DeFries, R. S., Jin, Y., and van Leeuwen,
T. T.: Global fire emissions and the contribution of deforestation, savanna,
forest, agricultural, and peat fires (1997–2009), Atmos. Chem. Phys.,
10, 11707–11735, https://doi.org/10.5194/acp-10-11707-2010, 2010. a, b
Virkkula, A., Mäkelä, T., Hillamo, R., Yli-Tuomi, T., Hirsikko, A.,
Hämeri, K., and Koponen, I.: A Simple Procedure for Correcting Loading
Effects of Aethalometer Data, J. Air Waste Manage. Assoc., 57, 1214–1222,
https://doi.org/10.3155/1047-3289.57.10.1214, 2007. a
Wang, J., Nie, W., Cheng, Y., Shen, Y., Chi, X., Wang, J., Huang, X., Xie, Y.,
Sun, P., Xu, Z., Qi, X., Su, H., and Ding, A.: Light absorption of brown
carbon in eastern China based on 3-year multi-wavelength aerosol optical
property observations and an improved absorption Ångström exponent
segregation method, Atmos. Chem. Phys., 18, 9061–9074,
https://doi.org/10.5194/acp-18-9061-2018, 2018. a
Weber, R. J., Sullivan, A. P., Peltier, R. E., Russell, A., Yan, B., Zheng, M.,
de Gouw, J., Warneke, C., Brock, C., Holloway, J. S., Atlas, E. L., and
Edgerton, E.: A study of secondary organic aerosol formation in the
anthropogenic-influenced southeastern United States, J. Geophys. Res., 112, D13302,
https://doi.org/10.1029/2007JD008408, 2007. a
Wong, J. P., Tsagkaraki, M., Tsiodra, I., Mihalopoulos, N., Violaki, K.,
Kanakidou, M., Sciare, J., Nenes, A., and Weber, R. J.: Effects of
Atmospheric Processing on the Oxidative Potential of Biomass Burning Organic
Aerosols, Environ. Sci. Technol., 53, 6747–6756,
https://doi.org/10.1021/acs.est.9b01034,
2019a. a
Wong, J. P. S., Tsagkaraki, M., Tsiodra, I., Mihalopoulos, N., Violaki, K.,
Kanakidou, M., Sciare, J., Nenes, A., and Weber, R. J.: Atmospheric evolution
of molecular-weight-separated brown carbon from biomass burning,
Atmos. Chem. Phys., 19, 7319–7334, https://doi.org/10.5194/acp-19-7319-2019,
2019b.
a, b
Yamasoe, M. A., Artaxo, P., Miguel, A. H., and Allen, A. G.: Chemical
composition of aerosol particles from direct emissions of vegetation fires in
the Amazon Basin: water-soluble species and trace elements, Atmos. Environ.,
34, 1641–1653, https://doi.org/10.1016/S1352-2310(99)00329-5, 2000. a
Yan, C., Zheng, M., Bosch, C., Andersson, A., Desyaterik, Y., A.P., S.,
Collett, J., Zhao, B., Wang, S., He, K., and Gustagsson, O.: Important fossil
source contribution to brown carbon in Beijing during winter, Sci.
Rep., 7, 43182, https://doi.org/10.1038/srep43182, 2017. a
Youssouf, H., Liousse, C., Roblou, L., Assamoi, E. M., Salonen, R. O., Maesano,
C., Banerjee, S., and Annesi-Maesano, I.: Quantifying wildfires exposure for
investigating health-related effects, Atmos. Environ., 97, 239–251, https://doi.org/10.1016/j.atmosenv.2014.07.041,
2014. a
Short summary
Air pollution affects health for millions of people worldwide. This is particularly worrisome for citizens in emerging economies where air quality is often heavily deteriorated. We show how, every year, agricultural burns and forest fires in the grasslands of northern South America increase the concentration of harmful particles in the environment, further worsening air quality for nearly 60 million in this region, even when the fires occur hundreds of kilometers away from urban areas.
Air pollution affects health for millions of people worldwide. This is particularly worrisome...
Altmetrics
Final-revised paper
Preprint