Articles | Volume 20, issue 11
https://doi.org/10.5194/acp-20-6651-2020
https://doi.org/10.5194/acp-20-6651-2020
Research article
 | 
05 Jun 2020
Research article |  | 05 Jun 2020

Inverse modeling of SO2 and NOx emissions over China using multisensor satellite data – Part 2: Downscaling techniques for air quality analysis and forecasts

Yi Wang, Jun Wang, Meng Zhou, Daven K. Henze, Cui Ge, and Wei Wang

Data sets

In situ surface SO2, NO2, and O3 observations over China W. Wang https://arroma.uiowa.edu/all_datasets.php

VIIRS night-time lights C. D. Elvidge, K. Baugh, M. Zhizhin, F. C. Hsu, and T. Ghosh https://ngdc.noaa.gov/eog/viirs/download_dnb_composites.html

Sentinel-5P TROPOMI Tropospheric NO2 1-Orbit L2 7 km × 3.5 km Koninklijk Nederlands Meteorologisch Instituut (KNMI) https://disc.gsfc.nasa.gov/datasets/S5P_L2__NO2____1/summary

The MIX emission inventory for GEOS-Chem simulation M. Li, Q. Zhang, J. I. Kurokawa, J H. Woo, K. He, Z. Lu, T. Ohara, Y. Song, D. G. Streets, G. R. Carmichael, Y. Cheng, C. Hong, H. Huo, X. Jiang, S. Kang, F. Liu, H. Su, and B. Zheng http://geoschemdata.computecanada.ca/ExtData/HEMCO/MIX/v2015-03/

Download
Short summary
We developed four different methods to downscale SO2 and NO2 emissions derived from OMPS satellite observations (in Part 1) for regional air quality modeling at a spatial resolution that is finer than satellite observations. The VIIRS (city lights), TROPOMI, and OMI satellite data as well as surface data are used to evaluate the model. The method of using the top-down emissions from the past month for the air quality forecast in the present month is also shown to have practical merit.
Altmetrics
Final-revised paper
Preprint