Articles | Volume 20, issue 11
https://doi.org/10.5194/acp-20-6563-2020
https://doi.org/10.5194/acp-20-6563-2020
Research article
 | 
05 Jun 2020
Research article |  | 05 Jun 2020

Variability in lidar-derived particle properties over West Africa due to changes in absorption: towards an understanding

Igor Veselovskii, Qiaoyun Hu, Philippe Goloub, Thierry Podvin, Mikhail Korenskiy, Yevgeny Derimian, Michel Legrand, and Patricia Castellanos

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Igor Veselovskii on behalf of the Authors (22 Apr 2020)  Author's response 
ED: Publish subject to technical corrections (30 Apr 2020) by Matthias Tesche
AR by Igor Veselovskii on behalf of the Authors (06 May 2020)  Author's response   Manuscript 
Download
Short summary
Atmospheric dust has a significant impact on the Earth's climate system, and this impact remains highly uncertain. The desert dust is always a mixture of various minerals, and the imaginary part of the complex refractive index often exhibits an increase in UV for dust containing iron oxides. Our results demonstrate that multiwavelength Raman lidar measurements allow for the characterization of the spectral dependence of the imaginary part of dust.
Altmetrics
Final-revised paper
Preprint