Articles | Volume 20, issue 23
https://doi.org/10.5194/acp-20-15487-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-15487-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Quantifying methane emissions from Queensland's coal seam gas producing Surat Basin using inventory data and a regional Bayesian inversion
CSIRO Oceans and Atmosphere, Aspendale, 3195, Victoria, Australia
David M. Etheridge
CSIRO Oceans and Atmosphere, Aspendale, 3195, Victoria, Australia
Zoë M. Loh
CSIRO Oceans and Atmosphere, Aspendale, 3195, Victoria, Australia
Julie Noonan
CSIRO Oceans and Atmosphere, Aspendale, 3195, Victoria, Australia
Darren Spencer
CSIRO Oceans and Atmosphere, Aspendale, 3195, Victoria, Australia
Lisa Smith
Katestone Environmental Pty. Ltd., Milton, 4064, Queensland, Australia
Cindy Ong
CSIRO Energy, Kensington, 6152, Western Australia, Australia
Related authors
Ashok K. Luhar, Anthony C. Jones, and Jonathan M. Wilkinson
Atmos. Chem. Phys., 24, 14005–14028, https://doi.org/10.5194/acp-24-14005-2024, https://doi.org/10.5194/acp-24-14005-2024, 2024
Short summary
Short summary
Nitrate aerosol is often omitted in global chemistry–climate models, partly due to the chemical complexity of its formation process. Using a global model, we show that including nitrate aerosol significantly impacts tropospheric composition fields, such as ozone, and radiation. Additionally, lightning-generated oxides of nitrogen influence both nitrate aerosol mass concentrations and aerosol size distribution, which has important implications for radiative fluxes and indirect aerosol effects.
Ashok K. Luhar, Ian E. Galbally, and Matthew T. Woodhouse
Atmos. Chem. Phys., 22, 13013–13033, https://doi.org/10.5194/acp-22-13013-2022, https://doi.org/10.5194/acp-22-13013-2022, 2022
Short summary
Short summary
Recent improvements to global parameterisations of oceanic ozone dry deposition and lightning-generated oxides of nitrogen (LNOx) have consequent impacts on earth's radiative fluxes. Uncertainty in radiative fluxes arising from uncertainty in LNOx is of significant magnitude in comparison with the
present-dayIPCC AR6 anthropogenic effective radiative forcing (ERF) due to ozone. Hence, uncertainty in LNOx needs to be explicitly addressed in relation to the GWP and ERF of anthropogenic methane.
Ashok K. Luhar, Ian E. Galbally, Matthew T. Woodhouse, and Nathan Luke Abraham
Atmos. Chem. Phys., 21, 7053–7082, https://doi.org/10.5194/acp-21-7053-2021, https://doi.org/10.5194/acp-21-7053-2021, 2021
Short summary
Short summary
Lightning-generated nitrogen oxides (LNOx) greatly influence tropospheric photochemistry. The most common parameterisation of lightning flash rate used to calculate LNOx in global composition models underestimates measurements over the ocean by a factor of 20–25. We formulate and validate an alternative parameterisation to remedy this problem. The new scheme causes an increase in the ozone burden by 8.5 % and the hydroxyl radical by 13 %, and these have implications for climate and air quality.
Luke M. Western, Matthew Rigby, Jens Mühle, Paul B. Krummel, Chris R. Lunder, Simon O'Doherty, Stefan Reimann, Martin K. Vollmer, Dickon Young, Ben Adam, Paul J. Fraser, Anita L. Ganesan, Christina M. Harth, Ove Hermansen, Jooil Kim, Ray L. Langenfelds, Zoë M. Loh, Blagoj Mitrevski, Joseph R. Pitt, Peter K. Salameh, Roland Schmidt, Kieran Stanley, Ann R. Stavert, Hsiang-Jui Wang, Ray F. Weiss, and Ronald G. Prinn
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-348, https://doi.org/10.5194/essd-2025-348, 2025
Preprint under review for ESSD
Short summary
Short summary
We used global measurements and an atmospheric model to estimate how emissions and abundances of 42 chemically and radiatively important trace gases have changed over time. These gases affect the Earth's radiative balance and the ozone layer. Our data sets help track progress in reducing harmful. This work supports international efforts to protect the environment by providing clear, long-term, consistent data on how these gases are changing in the atmosphere.
Xavier Faïn, Sophie Szopa, Vaishali Naïk, Patricia Martinerie, David M. Etheridge, Rachael H. Rhodes, Cathy M. Trudinger, Vasilii V. Petrenko, Kévin Fourteau, and Philip Place
Atmos. Chem. Phys., 25, 1105–1119, https://doi.org/10.5194/acp-25-1105-2025, https://doi.org/10.5194/acp-25-1105-2025, 2025
Short summary
Short summary
Carbon monoxide (CO) plays a crucial role in the atmosphere's oxidizing capacity. In this study, we analyse how historical (1850–2014) [CO] outputs from state-of-the-art global chemistry–climate models over Greenland and Antarctica are able to capture both absolute values and trends recorded in multi-site ice archives. A disparity in [CO] growth rates emerges in the Northern Hemisphere between models and observations from 1920–1975 CE, possibly linked to uncertainties in CO emission factors.
Ashok K. Luhar, Anthony C. Jones, and Jonathan M. Wilkinson
Atmos. Chem. Phys., 24, 14005–14028, https://doi.org/10.5194/acp-24-14005-2024, https://doi.org/10.5194/acp-24-14005-2024, 2024
Short summary
Short summary
Nitrate aerosol is often omitted in global chemistry–climate models, partly due to the chemical complexity of its formation process. Using a global model, we show that including nitrate aerosol significantly impacts tropospheric composition fields, such as ozone, and radiation. Additionally, lightning-generated oxides of nitrogen influence both nitrate aerosol mass concentrations and aerosol size distribution, which has important implications for radiative fluxes and indirect aerosol effects.
Xavier Faïn, David M. Etheridge, Kévin Fourteau, Patricia Martinerie, Cathy M. Trudinger, Rachael H. Rhodes, Nathan J. Chellman, Ray L. Langenfelds, Joseph R. McConnell, Mark A. J. Curran, Edward J. Brook, Thomas Blunier, Grégory Teste, Roberto Grilli, Anthony Lemoine, William T. Sturges, Boris Vannière, Johannes Freitag, and Jérôme Chappellaz
Clim. Past, 19, 2287–2311, https://doi.org/10.5194/cp-19-2287-2023, https://doi.org/10.5194/cp-19-2287-2023, 2023
Short summary
Short summary
We report on a 3000-year record of carbon monoxide (CO) levels in the Southern Hemisphere's high latitudes by combining ice core and firn air measurements with modern direct atmospheric samples. Antarctica [CO] remained stable (–835 to 1500 CE), decreased during the Little Ice Age, and peaked around 1985 CE. Such evolution reflects stable biomass burning CO emissions before industrialization, followed by growth from CO anthropogenic sources, which decline after 1985 due to improved combustion.
Christo Buizert, Sarah Shackleton, Jeffrey P. Severinghaus, William H. G. Roberts, Alan Seltzer, Bernhard Bereiter, Kenji Kawamura, Daniel Baggenstos, Anaïs J. Orsi, Ikumi Oyabu, Benjamin Birner, Jacob D. Morgan, Edward J. Brook, David M. Etheridge, David Thornton, Nancy Bertler, Rebecca L. Pyne, Robert Mulvaney, Ellen Mosley-Thompson, Peter D. Neff, and Vasilii V. Petrenko
Clim. Past, 19, 579–606, https://doi.org/10.5194/cp-19-579-2023, https://doi.org/10.5194/cp-19-579-2023, 2023
Short summary
Short summary
It is unclear how different components of the global atmospheric circulation, such as the El Niño effect, respond to large-scale climate change. We present a new ice core gas proxy, called krypton-86 excess, that reflects past storminess in Antarctica. We present data from 11 ice cores that suggest the new proxy works. We present a reconstruction of changes in West Antarctic storminess over the last 24 000 years and suggest these are caused by north–south movement of the tropical rain belt.
Ashok K. Luhar, Ian E. Galbally, and Matthew T. Woodhouse
Atmos. Chem. Phys., 22, 13013–13033, https://doi.org/10.5194/acp-22-13013-2022, https://doi.org/10.5194/acp-22-13013-2022, 2022
Short summary
Short summary
Recent improvements to global parameterisations of oceanic ozone dry deposition and lightning-generated oxides of nitrogen (LNOx) have consequent impacts on earth's radiative fluxes. Uncertainty in radiative fluxes arising from uncertainty in LNOx is of significant magnitude in comparison with the
present-dayIPCC AR6 anthropogenic effective radiative forcing (ERF) due to ozone. Hence, uncertainty in LNOx needs to be explicitly addressed in relation to the GWP and ERF of anthropogenic methane.
Yohanna Villalobos, Peter J. Rayner, Jeremy D. Silver, Steven Thomas, Vanessa Haverd, Jürgen Knauer, Zoë M. Loh, Nicholas M. Deutscher, David W. T. Griffith, and David F. Pollard
Atmos. Chem. Phys., 22, 8897–8934, https://doi.org/10.5194/acp-22-8897-2022, https://doi.org/10.5194/acp-22-8897-2022, 2022
Short summary
Short summary
We study the interannual variability in Australian carbon fluxes for 2015–2019 derived from OCO-2 satellite data. Our results suggest that Australia's semi-arid ecosystems are highly responsive to variations in climate drivers such as rainfall and temperature. We found that high rainfall and low temperatures recorded in 2016 led to an anomalous carbon sink over savanna and sparsely vegetated regions, while unprecedented dry and hot weather in 2019 led to anomalous carbon release.
Mei Bai, Zoe Loh, David W. T. Griffith, Debra Turner, Richard Eckard, Robert Edis, Owen T. Denmead, Glenn W. Bryant, Clare Paton-Walsh, Matthew Tonini, Sean M. McGinn, and Deli Chen
Atmos. Meas. Tech., 15, 3593–3610, https://doi.org/10.5194/amt-15-3593-2022, https://doi.org/10.5194/amt-15-3593-2022, 2022
Short summary
Short summary
The open-path laser (OPL) and open-path Fourier transform infrared (OP-FTIR) are used in agricultural research, but their error in emissions research has not been the focus of studies. We conducted trace gas release trials and herd and paddock emission studies to compare their applicability and performance. The OP-FTIR has better stability in stable conditions than OPL. The CH4 OPL accurately detects the low background level of CH4, but the NH3 OPL only detects background values >10 ppbv.
Yohanna Villalobos, Peter J. Rayner, Jeremy D. Silver, Steven Thomas, Vanessa Haverd, Jürgen Knauer, Zoë M. Loh, Nicholas M. Deutscher, David W. T. Griffith, and David F. Pollard
Atmos. Chem. Phys., 21, 17453–17494, https://doi.org/10.5194/acp-21-17453-2021, https://doi.org/10.5194/acp-21-17453-2021, 2021
Short summary
Short summary
Semi-arid ecosystems such as those in Australia are evolving and might play an essential role in the future of climate change. We use carbon dioxide concentrations derived from the OCO-2 satellite instrument and a regional transport model to understand if Australia was a carbon sink or source of CO2 in 2015. Our research's main findings suggest that Australia acted as a carbon sink of about −0.41 ± 0.08 petagrams of carbon in 2015, driven primarily by savanna and sparsely vegetated ecosystems.
Ashok K. Luhar, Ian E. Galbally, Matthew T. Woodhouse, and Nathan Luke Abraham
Atmos. Chem. Phys., 21, 7053–7082, https://doi.org/10.5194/acp-21-7053-2021, https://doi.org/10.5194/acp-21-7053-2021, 2021
Short summary
Short summary
Lightning-generated nitrogen oxides (LNOx) greatly influence tropospheric photochemistry. The most common parameterisation of lightning flash rate used to calculate LNOx in global composition models underestimates measurements over the ocean by a factor of 20–25. We formulate and validate an alternative parameterisation to remedy this problem. The new scheme causes an increase in the ozone burden by 8.5 % and the hydroxyl radical by 13 %, and these have implications for climate and air quality.
Cited articles
Alvarez, R. A., Zavala-Araiza, D., Lyon, D. R., Allen, D. T., Barkley, Z.
R., Brandt, A. R., Davis, K. J., Herndon, S. C., Jacob, D. J., Karion, A., Kort, E. A., Lamb, B. K., Lauvaux, T., Maasakkers, J. D., Marchese, A. J., Omara, M., Pacala, S. W., Peischl, J., Robinson, A. L., Shepson, P. B., Sweeney, C., Townsend-Small, A., Wofsy, S. C., and Hamburg, S. P.: Assessment of methane emissions from the U.S., oil
and gas supply chain, Science, 361, 186–188, https://doi.org/10.1126/science.aar7204, 2018.
Brandt, A. R., Heath, G. A., Kort, E. A., O'Sullivan, F., Pétron, G.,
Jordaan, S. M., Tans, P., Wilcox, J., Gopstein, A. M., Arent, D., Wofsy, S., Brown, N. J., Bradley, R., Stucky, G. D., Eardley, D., and Harriss, R.: Methane leaks from North American natural gas
systems, Science, 343, 733–735, https://doi.org/10.1126/science.1247045, 2014.
Cheng, M.-D., Hopke, P. K., and Zeng, Y.: A receptor-oriented methodology
for determining source regions of particulate sulfate at Dorset, Ontario,
J. Geophys. Res., 98, 16839–16849, https://doi.org/10.1029/92JD02622, 1993.
Cui, Y. Y., Brioude, J., Angevine, W. M., Peischl, J., McKeen, S. A., Kim, S.-W., Neuman, J. A., Henze, D. K., Bousserez, N., Fischer, M. L., Jeong, S., Michelsen, H. A., Bambha, R. P., Liu, Z., Santoni, G. W., Daube, B. C., Kort, E. A., Frost, G. J., Ryerson, T., Wofsy, S. C., and Trainer, M.: Top-down estimate of methane emissions in California using a
mesoscale inverse modeling technique: The San Joaquin Valley, J.
Geophys. Res., 122, 3686–3699, https://doi.org/10.1002/2016JD026398, 2017.
Day, S., Dell'Amico, M., Etheridge, D., Ong, C., Rodger, A., Sherman, B.,
and Barrett, D.: Characterisation of regional fluxes of methane in the Surat
Basin, Queensland, Phase 1: A review and analysis of literature on methane
detection and flux determination, CSIRO Australia, Canberra, 57 pp., ISBN (online): 978-1-4863-0259-8, 2013.
Day, S., Ong, C., Rodger, A., Etheridge, D., Hibberd, M., van Gorsel, E., Spencer, D., Krummel, P., Zegelin, S., Fry, R., Dell'Amico, M., Sestak, S., Williams, D., Loh, Z., and Barrett, D.: Characterisation of regional fluxes of methane in the Surat Basin,
Queensland: Phase 2: A pilot study of methodology to detect and quantify
methane sources, report EP15369, CSIRO Australia, Canberra, 76 pp., 2015.
DNRM: Queensland's Petroleum and Coal Seam Gas 2015–2016, Department of
Natural Resources and Mines, Queensland Government, Australia, 8 pp., available at:
http://australiaminerals.gov.au/__data/assets/pdf_file/0003/47622/Queenslands-petroleum-and-coal-seam-gas-2017.pdf (last access: 4 December 2020), 2017.
Etheridge, D., Loh, Z., Schroder, I., Berko, H., Kuske, T., Allison, C., Gregory, R., Spencer, D., Langenfelds, R., Zegelin, S., Hibberd, M., and Feitz, A.: Metadata report: Arcturus atmospheric greenhouse gas monitoring, Record
2014/37, Geoscience Australia, Canberra, 28 pp., https://doi.org/10.11636/Record.2014.037, 2014.
Etheridge, D. M., Day, S., Hibberd, M. F., Luhar, A., Spencer, D. A., Loh,
Z. M., Zegelin, S., Krummel, P. B., van Gorsel, E., Thornton, D. P., Gregory, R. L., Ong, C., and Barrett, D.: Characterisation of regional fluxes of methane in the Surat
Basin, Queensland: The continuous monitoring results – installation,
commissioning and operation of two field stations and preliminary data,
Milestone 3.1 GISERA Greenhouse Gas Research – Phase 3, CSIRO Australia, Canberra, ISBN (online) 978-1-4863-0830-9, 19 pp., 2016.
Etiope, G. and Schwietzke, S.: Global geological methane emissions: an
update of top-down and bottom-up estimates, Elem. Sci. Anth., 47, 1–9,
https://doi.org/10.1525/elementa.383, 2019.
Etiope, G., Ciotoli, G., Schwietzke, S., and Schoell, M.: Gridded maps of geological methane emissions and their isotopic signature, Earth Syst. Sci. Data, 11, 1–22, https://doi.org/10.5194/essd-11-1-2019, 2019.
Feitz, A., Schroder, I., Phillips, F., Coates, T., Neghandhi, K., Day, S.,
Luhar, A., Bhatia, S., Edwards, G., Hrabar, S., Hernandez,E., Wood, B., Naylor, T., Kennedy, M., Hamilton, M., Hatch, M., Malos, J., Kochanek, M., Reid, P., Wilson, J., Deutscher, N.,Zegelin, S., Vincent, R., White, S., Ong, C., George, S., Maas, P., Towner, S., Wokker, N., and Griffith, D.: The Ginninderra CH4 and CO2 release experiment: An
evaluation of gas detection and quantification techniques, Int. J. Greenh. Gas Con., 70, 202–224, https://doi.org/10.1016/j.ijggc.2017.11.018, 2018.
Harper, L. A, Denmead, O. T., Freney, J. R, and Byers, F. M.: Direct
measurements of methane emissions from grazing and feedlot cattle, J. Anim. Sci., 77, 1392–1401, https://doi.org/10.2527/1999.7761392x, 1999.
Henne, S., Brunner, D., Oney, B., Leuenberger, M., Eugster, W., Bamberger, I., Meinhardt, F., Steinbacher, M., and Emmenegger, L.: Validation of the Swiss methane emission inventory by atmospheric observations and inverse modelling, Atmos. Chem. Phys., 16, 3683–3710, https://doi.org/10.5194/acp-16-3683-2016, 2016.
Hmiel, B., Petrenko, V. V., Dyonisius, M. N., Buizert, C., Smith, A. M., Place, P. F., Harth, C., Beaudette, R., Hua, Q., Yang, B., Vimont, I., Michel, S. E., Severinghaus, J. P., Etheridge, D., Bromley, T., Schmitt, J., Faïn, X., Weiss, R. F., and Dlugokencky, E.: Preindustrial
14CH4 indicates greater anthropogenic fossil CH4 emissions,
Nature, 578, 409–412, https://doi.org/10.1038/s41586-020-1991-8, 2020.
Hourdin, F. and Talagrand, O.: Eulerian backtracking of atmospheric tracers,
I: Adjoint derivation and parametrization of subgrid-scale transport,
Q. J. Roy. Meteor. Soc., 132, 567–583,
https://doi.org/10.1256/qj.03.198.A, 2006.
Hurley, P.: TAPM V4, Part 1: Technical Description, CSIRO Marine and
Atmospheric Research Paper No. 25, Australia, p. 59, available at:
http://www.cmar.csiro.au/research/tapm/docs/tapm_v4_technical_paper_part1.pdf (last access: 5 December 2020), 2008.
Hurley, P. J. and Luhar, A. K.: Modelling the meteorology at the Cabauw
tower for 2005, Bound.-Lay. Meteorol., 132, 43–57, https://doi.org/10.1007/s10546-009-9384-4, 2009.
Hurley, P. J., Physick, W. L., and Luhar, A. K.: TAPM: a practical approach
to prognostic meteorological and air pollution modelling, Environ. Modell. Softw., 20, 737–752, https://doi.org/10.1016/j.envsoft.2004.04.006, 2005.
IPCC: Climate Change: Synthesis Report, Contribution of Working Groups
I, II and III to the Fifth Assessment Report of the Intergovernmental Panel
on Climate Change, Core Writing Team, edited by: Pachauri, R. K. and Meyer, L. A., IPCC, Geneva, Switzerland, 151 pp., available at: http://www.ipcc.ch/pdf/assessment-report/ar5/syr/SYR_AR5_FINAL_full.pdf (last access: 5 December 2020), 2014.
IPCC: Refinement to the 2006 IPCC Guidelines for National Greenhouse
Gas Inventories, edited by: Calvo Buendia, E., Tanabe, K., Kranjc, A., Baasansuren, J., Fukuda, M., Ngarize, S., Osako, A., Pyrozhenko, Y., Shermanau, P., and Federici, S., volume 4: Agriculture, Forestry and Other Land Use: Chapter 10: Emissions from Livestock and Manure Management, IPCC,
Switzerland, 209 pp., 2019.
Iverach, C. P., Cendon, D. I., Hankin, S. I., Lowry, D., Fisher, R. E.,
France, J. L., Nisbet, E. G., Baker, A., and Kelly, B. F. J.: Assessing
connectivity between an overlying aquifer and a coal seam gas resource using
methane isotopes, dissolved organic carbon and tritium, Sci. Rep.-UK,
5, 15996, https://doi.org/10.1038/srep15996, 2015.
Jaynes, E. T.: Probability theory: The logic of science, Cambridge
University Press, Cambridge, UK, 753 pp., 2003.
Jeong, S., Zhao, C. Andrews, A. E., Bianco, L., Wilczak, J. M., and Fischer,
M. L.: Seasonal variation of CH4 emissions from central California,
J. Geophys. Res., 117, D11306, https://doi.org/10.1029/2011JD016896, 2012.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., and Joseph, D.: The
NCEP/NCAR 40 year reanalysis project, B. Am. Meteorol. Soc., 77,
437–471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2, 1996.
Katestone: Surat Basin Methane Inventory 2015 – Summary Report, prepared by:
Katestone Environmental Pty. Ltd., Brisbane, Queensland, for CSIRO, document
no. D15193-18, 2018.
Luhar, A. K. and Hurley, P.: Evaluation of TAPM, a prognostic meteorological
and air pollution model, using urban and rural point source data,
Atmos. Environ., 37, 2795–2810, https://doi.org/10.1016/S1352-2310(03)00204-8, 2003.
Luhar, A. K. and Hurley, P. J.: Application of a coupled prognostic model
to turbulence and dispersion in light-wind stable conditions, with an
analytical correction to vertically resolve concentrations near the surface,
Atmos. Environ., 51, 56–66, https://doi.org/10.1016/j.atmosenv.2012.01.046, 2012.
Luhar, A. K., Thatcher, M., and Hurley, P. J.: Evaluating a
building-averaged urban surface scheme in an operational mesoscale model for
flow and dispersion, Atmos. Environ., 88, 47–58, https://doi.org/10.1016/j.atmosenv.2014.01.059, 2014.
Luhar, A. K., Mitchell, R. M., Meyer, C. P., Qin, Y., Campbell, S., Gras, J.
L., and Parry, D.: Biomass burning emissions over northern Australia
constrained by aerosol measurements: II–Model validation, and impacts on
air quality and radiative forcing, Atmos. Environ., 42,
1647–1664, https://doi.org/10.1016/j.atmosenv.2007.12.040, 2008.
Luhar, A. K., Etheridge, D. M., Leuning, R., Loh, Z. M., Jenkins, C. R., and
Yee, E.: Locating and quantifying greenhouse gas emissions at a geological
CO2 storage site using atmospheric modeling and measurements, J. Geophys. Res.-Atmos., 119, 10959–10979, https://doi.org/10.1002/2014JD021880, 2014.
Luhar, A. K., Emmerson, K. M., Reisen, F., Williamson, G. J., and Cope, M.
E.: Modelling smoke distribution in the vicinity of a large and prolonged
fire from an open-cut coal mine, Atmos. Environ., 229, 117471, https://doi.org/10.1016/j.atmosenv.2020.117471, 2020.
Marchuk, G. I.: Adjoint equations and analysis of complex systems,
Dordrecht, Netherlands: Springer Science, 466 pp., 1995.
Matthaios, V. N., Triantafyllou, A. G., and Koutrakis, P.: PM10
episodes in Greece: Local sources versus long-range transport – observations
and model simulations, JAPCA J. Air Waste Ma.,
67, 105–126, https://doi.org/10.1080/10962247.2016.1231146, 2017.
Meinshausen, M., Vogel, E., Nauels, A., Lorbacher, K., Meinshausen, N., Etheridge, D. M., Fraser, P. J., Montzka, S. A., Rayner, P. J., Trudinger, C. M., Krummel, P. B., Beyerle, U., Canadell, J. G., Daniel, J. S., Enting, I. G., Law, R. M., Lunder, C. R., O'Doherty, S., Prinn, R. G., Reimann, S., Rubino, M., Velders, G. J. M., Vollmer, M. K., Wang, R. H. J., and Weiss, R.: Historical greenhouse gas concentrations for climate modelling (CMIP6), Geosci. Model Dev., 10, 2057–2116, https://doi.org/10.5194/gmd-10-2057-2017, 2017.
Miller, S. M., Michalak, A. M., and Levi, P. J.: Atmospheric inverse modeling with known physical bounds: an example from trace gas emissions, Geosci. Model Dev., 7, 303–315, https://doi.org/10.5194/gmd-7-303-2014, 2014.
NIR: National Inventory Report 2015, volume 1, Commonwealth of Australia,
available at: https://www.industry.gov.au/sites/default/files/2020-07/national-inventory-report-2015-volume-1.pdf (last access: 5 December 2020), 347 pp., Canberra,
2017.
Pudykiewicz, J. A.: Application of adjoint tracer transport equations for
evaluating source parameters, Atmos. Environ., 32, 3039–3050,
https://doi.org/10.1016/S1352-2310(97)00480-9, 1998.
Rao, K. S.: Source estimation methods for atmospheric dispersion,
Atmos. Environ., 41, 6964–6973, https://doi.org/10.1016/j.atmosenv.2007.04.064, 2007.
Rubino, M., Etheridge, D. M., Thornton, D. P., Howden, R., Allison, C. E., Francey, R. J., Langenfelds, R. L., Steele, L. P., Trudinger, C. M., Spencer, D. A., Curran, M. A. J., van Ommen, T. D., and Smith, A. M.: Revised records of atmospheric trace gases CO2, CH4, N2O, and δ13C−CO2 over the last 2000 years from Law Dome, Antarctica, Earth Syst. Sci. Data, 11, 473–492, https://doi.org/10.5194/essd-11-473-2019, 2019.
Schneising, O., Burrows, J. P., Dickerson, R. R., Buchwitz, M., Reuter, M.,
and Bovensmann, H.: Remote sensing of fugitive methane emissions from oil
and gas production in North American tight geologic formations, Earth's
Future, 2, 548–558, https://doi.org/10.1002/2014EF000265, 2014.
Singh, S. K., Sharan, M., and Issartel, J.-P.: Inverse modelling methods for
identifying unknown releases in emergency scenarios: an overview,
Int. J. Environ. Pollut., 57, 68–91, https://doi.org/10.1504/IJEP.2015.072121, 2015.
Tarantola, A.: Inverse problem theory and methods for model parameter
estimation, Society for Industrial and Applied Mathematics, Philadelphia, 342 pp., 2005.
Towler, B., Firouzi, M., Underschultz, J., Rifkin, W., Garnett, A., Schultz,
H., Esterle, J., Tyson, S., and Witt, K.: An overview of the coal seam gas developments in Queensland,
J. Nat. Gas Sci. Eng., 31, 249–271, https://doi.org/10.1016/j.jngse.2016.02.040, 2016.
Venkatram, A., Brode, R., Cimorelli, A., Lee, R., Paine, R., Perry, S., Peters, W., Weil, J., and Wilson, R.: A complex terrain dispersion model for regulatory applications, Atmos. Environ., 35, 4211–4221, https://doi.org/10.1016/S1352-2310(01)00186-8, 2001.
Wang, Y. P. and Bentley, S. T.: Development of a spatially explicit
inventory of methane emissions from Australia and its verification using
atmospheric concentration data, Atmos. Environ., 36, 4965–4975,
https://doi.org/10.1016/S1352-2310(02)00589-7, 2002.
WMO: WMO Greenhouse Gas Bulletin, No. 14, 22 November 2018, 8 pp., ISSN 2078-0796, available at: https://library.wmo.int/doc_num.php?explnum_id=5455 (last access: 5 December 2020), 2018.
Yee, E., Lien, F.-S., Keats, A., and D'Amours, R.: Bayesian inversion of
concentration data: Source reconstruction in the adjoint representation of
atmospheric diffusion, J. Wind Eng. Ind. Aerod., 96, 1805–1816, https://doi.org/10.1016/j.jweia.2008.02.024, 2008.
Yee, E.: Inverse dispersion for an unknown number of sources: Model
selection and uncertainty analysis, ISRN Applied Mathematics, Article ID-465320, 20 pp., 2012.
Yee, E. and Flesch, T. K.: Inference of emission rates from multiple sources
using Bayesian probability theory, J. Environ. Monitor., 12,
622–634, https://doi.org/10.1039/B916954G, 2010.
Short summary
With the sharp rise in coal seam gas (CSG) production in Queensland’s Surat Basin, there is much interest in quantifying methane emissions from this area and from unconventional gas production in general. We develop and apply a regional Bayesian inverse model that uses hourly methane concentration data from two sites and modelled backward dispersion to quantify emissions. The model requires a narrow prior and suggests that the emissions from the CSG areas are 33% larger than bottom-up estimates.
With the sharp rise in coal seam gas (CSG) production in Queensland’s Surat Basin, there is...
Altmetrics
Final-revised paper
Preprint