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Abstract. Methane (CH4) is a potent greenhouse gas and
a key precursor of tropospheric ozone, itself a powerful
greenhouse gas and air pollutant. Methane emissions across
Queensland’s Surat Basin, Australia, result from a mix of
activities, including the production and processing of coal
seam gas (CSG). We measured methane concentrations over
1.5 years from two monitoring stations established 80 km
apart on either side of the main CSG belt located within a
study area of 350 km× 350 km. Using an inverse modelling
approach coupled with a bottom-up inventory, we quan-
tify methane emissions from this area. The inventory sug-
gests that the total emission is 173.2× 106 kg CH4 yr−1, with
grazing cattle contributing about half of that, cattle feed-
lots ∼ 25 %, and CSG processing ∼ 8 %. Using the inven-
tory emissions in a forward regional transport model in-
dicates that the above sources are significant contributors
to methane at both monitors. However, the model under-
estimates approximately the highest 15 % of the observed
methane concentrations, suggesting underestimated or miss-
ing emissions. An efficient regional Bayesian inverse model
is developed, incorporating an hourly source–receptor re-
lationship based on a backward-in-time configuration of
the forward regional transport model, a posterior sampling
scheme, and the hourly methane observations and a derived
methane background. The inferred emissions obtained from
one of the inverse model setups that uses a Gaussian prior
whose averages are identical to the gridded bottom-up in-
ventory emissions across the domain with an uncertainty of
3 % of the averages best describes the observed methane.

Having only two stations is not adequate at sampling dis-
tant source areas of the study domain, and this necessi-
tates a small prior uncertainty. This inverse setup yields a
total emission of (165.8± 8.5)× 106 kg CH4 yr−1, slightly
smaller than the inventory total. However, in a subdomain
covering the CSG development areas, the inferred emis-
sions are (63.6± 4.7)× 106 kg CH4 yr−1, 33 % larger than
those from the inventory. We also infer seasonal variation of
methane emissions and examine its correlation with climato-
logical rainfall in the area.

1 Introduction

Methane (CH4) is a potent greenhouse gas with a global
warming potential 84 times greater than carbon dioxide
(CO2) over a 20-year period and 28 times greater over a 100-
year period (IPCC, 2014). It is emitted by both anthropogenic
activities (e.g. coal mining and the raising of cattle) and nat-
ural sources (e.g. wetlands). In terms of anthropogenic ra-
diative forcing, methane is the second most important green-
house gas after CO2. Globally-averaged surface CH4 concen-
trations have increased by almost 160 % since pre-industrial
times, from 731 ppb (by volume) in 1750 to 1859 ppb in 2018
(Meinshausen et al., 2017; WMO, 2018; Rubino et al., 2019),
and this increase has been largely due to changes in anthro-
pogenic methane (IPCC, 2014). Compared to CO2, the at-
mospheric lifetime of methane is much shorter (∼ 10 years),
which means that near-term warming of the climate could
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diminish following mitigation actions that reduce methane
emissions. Methane also plays an important role as a pre-
cursor to tropospheric ozone, itself a greenhouse gas and an
air pollutant affecting human health and plant productivity.
Thus, understanding and quantifying methane emissions at
various scales is crucial to studying changes in atmospheric
radiative forcing and air quality.

Globally, a top-down estimate over the period 2008–2017
suggests that agriculture and waste contribute about 60 % of
the total anthropogenic methane emissions, followed by fos-
sil fuel production and use (gas, oil, coal mining, and indus-
try) at 31 % (Saunois et al., 2020). However, a study using
measurements of carbon-14 in methane recently showed that
nearly all methane from fossil sources is anthropogenic, con-
trasting with the bottom-up estimates of significant natural
geologic seepage (Etiope et al., 2019; Etiope and Schwiet-
zke, 2019), and that fossil fuel methane emissions may be
underestimated by up to 40 % (Hmiel et al., 2020). Signif-
icant CH4 emissions from conventional and unconventional
gas fields have been reported in the scientific literature (e.g.
Brandt et al., 2014; Schneising et al., 2014; Alvarez et al.,
2018).

In the Australian state of Queensland, since the mid-2000s
there has been a rapid growth of the production of coal
seam gas (CSG), which is virtually pure methane (Towler
et al., 2016; DNRM, 2017). CSG, also known as coalbed
methane, is classed as an unconventional natural gas, typ-
ically extracted from coal seams at depths of 200–1000 m.
As of 2015–2016, 96 % of the gas production in Queens-
land was CSG, with most of it coming from the Surat Basin
(78 %, 21 187 Mm3) and the rest (18 %, 4958 Mm3) from the
Bowen Basin (DNRM, 2017). With the sharp rise in CSG
production, methane emissions from the Surat Basin are a fo-
cus of Australia’s CSIRO Gas Industry Social and Environ-
mental Research Alliance (GISERA; https://gisera.csiro.au,
last access: 4 December 2020) research in Air Quality and
Greenhouse Gas. The Surat Basin is predominantly rural, and
methane sources other than CSG include agriculture and coal
mining. CSG activities that lead to potential methane emis-
sions include CSG wells, pumps, pipelines, vents, pneumatic
controls, and produced water bodies (Day et al., 2013).

The objective of the present paper is to quantify methane
emissions from a region of 350 km× 350 km of Queens-
land’s side of the Surat Basin (Fig. 1, covering the area
148◦17′43.4′′–151◦49′30.5′′ E, 25◦3′48.8′′–28◦5′3.7′′ S) that
encompasses the main CSG production and processing areas
using a top-down approach coupled with a bottom-up emis-
sion inventory that serves as a prior. The latter involves de-
riving emissions through a compilation of sources and activ-
ity data and application of emission factors. We conducted
concurrent in situ atmospheric monitoring of methane dur-
ing July 2015–December 2016 at two locations, namely Iron-
bark and Burncluith, 80 km from each other. The two stations
were set up such that they were on either side of the broad
present and projected CSG work area in the Surat Basin. The

measured concentrations allow for an atmospherically based
validation of the bottom-up inventory by using it in a for-
ward mesoscale meteorological and transport model, namely
TAPM (see Sect. 4.1), and comparing the predicted methane
concentrations with the measurements at the two sites.

An efficient top-down, or inverse, modelling methodol-
ogy for regional scale (∼ 100–1000 km) is formulated and
applied to quantify CH4 emissions in the Surat Basin. It
combines a Bayesian inference approach, an hourly-averaged
high-resolution backward-in-time construction of the for-
ward model TAPM, and a posterior probability density func-
tion (PDF) sampling scheme. A method to correct for time-
lag effects in the backward plume methodology is presented.
The 1.5-year long hourly methane measurements from the
two stations are combined in a Bayesian calculation to de-
rive a top-down emission distribution. Methane background
calculation and filtering methodologies are devised. Various
Bayesian priors and their uncertainties, including the use of
the bottom-up emissions to act as a prior, are tested. The in-
ferred top-down CH4 emissions are examined alongside the
bottom-up inventory emissions for the whole study domain
as well as subdomains containing the CSG and non-CSG ac-
tivities. We also compare the performance of the top-down
method by comparing the modelled methane concentrations
obtained using the top-down derived emissions in forward
modelling with the observed concentrations. To our knowl-
edge, this study is the first in Australia to quantify regional
scale CH4 emissions through a top-down approach employ-
ing transport modelling and concentration measurements, al-
though studies at other spatial scales with broadly similar ap-
proaches have been reported, e.g. by Luhar et al. (2014) and
Feitz et al. (2018) for single point sources at local scale and
by Wang and Bentley (2002) at continental scale with Aus-
tralian methane emissions divided into eight source regions.

2 Monitoring and data filtering

We set up two monitoring stations, namely Ironbark
(150◦14′37.6′′ E, 27◦8′6.6′′ S; 226.806 km east, 6995.596 km
north MGA (Map Grid Australia), Zone 56) and Burncluith
(150◦42′5.4′′ E, 26◦34′2.4′′ S; 271.051 km east, 7059.430 km
north MGA, Zone 56), located about 80 km apart on two
sides of the main coal seam gas belt of the Surat Basin
(Fig. 1b and c). The selection of the site locations was
largely based on a meteorological and dispersion modelling
study (Day et al., 2015; Etheridge et al., 2016) that sug-
gested that with the prevailing winds from the north-eastern
and south-western quadrants, long-term continuous moni-
toring of greenhouse gas concentrations at these two lo-
cations would optimise the size and frequency of detec-
tion of methane emissions from the broader CSG source re-
gion without being unduly impacted by individual sources
in the proximity of the measurement sites. There were
other practical considerations, namely access, power, secu-
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Figure 1. (a) Map of Australia showing the 350 km× 350 km study domain (red square) of Queensland’s part of the Surat Basin. The base
relief map is from https://www.mapsland.com/oceania/australia/large-relief-map-of-australia (last access: 4 December 2020; used under
Creative Commons Attribution-ShareAlike 3.0 Licence); (b) orography of the study domain, with terrain elevation ranging approximately
between 100 (green) and 1140 m (red) a.s.l.; (c) a © Google Earth map of the study domain showing the surface characteristics. The Iron-
bark and Burncluith monitoring sites and the three biggest towns of Dalby, Roma, and Chinchilla (population ∼ 12 700, 6850, and 6600,
respectively) in the area are also shown in (b) and (c).

rity, landowner assistance and possible future developments
that would impact the site.

Continuous high-frequency (∼ 0.3 Hz) measurements of
the concentrations of CH4, CO2 and water vapour (and also
carbon monoxide (CO) at Burncluith) were made at the two
sites for about 3 years with an overlapping period of 1.5 years
(July 2015 to December 2016) using Picarro cavity ring-
down spectrometers (models G2301 at Ironbark and G2401
at Burncluith) with inlets placed on masts at a height of 10 m.
The installations are described by Etheridge et al. (2016).
Measured concentrations (strictly speaking, mole fractions
in dry air, also volumetric mixing ratios) from each site
can be exactly intercompared due to identical calibrations
and measurement methodologies. The additional CO mea-
surements at Burncluith are useful in detecting combustion
sources of CO2 and CH4. Measurement accuracy was better
than ± 0.1 ppm for CO2 and ± 1 ppb for CH4 (Etheridge et
al., 2014). Concurrent meteorological observations included
winds measured at 5.8 m above ground level (a.g.l.) at Iron-
bark and at 7.6 m a.g.l. at Burncluith using sonic anemome-
ters.

The Burncluith station was located on a private farm and
there were 30–40 cattle in the adjoining paddocks. Occasion-
ally, under suitable meteorological conditions with the cattle
upwind of the inlet, the emissions from the local cattle caused
one or many sharp peaks in the observed methane signal, typ-
ical of a nearby point source. We developed a method which
removes these sharp, transient peaks but does not alter the
underlying signals from the numerous, region-wide feedlots,
grazing cattle, or other sources. This filtering method is de-
scribed in the Supplement Sect. S1.1 and, for consistency,
was also applied to the data from Ironbark, although local
cattle are less in number and further away at this site.

Frequently, high methane concentrations at the two sites
were observed at night under light-wind stable conditions,
particularly at Burncluith. Despite being of much practical
interest, however, light winds are difficult to represent in a
mesoscale meteorological and transport model. The causes
of that include inadequate physical understanding of light-
wind processes, flow properties being very sensitive to lo-
cal topography, and model resolution constraints (Luhar and
Hurley, 2012). As a practical measure, we filtered out the
nighttime sampling hours for light-wind conditions, and this
method is described in the Supplement Sect. S1.2.

Methane emissions due to biomass burning are not part of
the bottom-up inventory that we consider in the present mod-
elling due to their being sporadic and highly unpredictable.
Enhanced levels of CH4 and CO were detected at Burn-
cluith during forest fires in the northern sector of Burncluith
and wood-heater operations from the property located in the
proximity of the monitoring station. The observed CO was
used to filter out these occasional biomass burning events
from the measured concentration time series, an approach
similar to that used by Jeong et al. (2012). Details of the CO
filter are given in the Supplement Sect. S1.3.

The number of data hours after the filtering was 6432 for
Ironbark and 4149 for Burncluith (cf. the original, valid num-
ber of data points of 10 938 and 12 660, respectively). Unless
stated otherwise, the filtered CH4 data were used for our anal-
ysis and modelling.

3 Bottom-up emission inventory

Activity data for the year 2015 were used to develop
a bottom-up emission inventory for methane for the
Surat Basin. The emission inventory covered a domain of
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Figure 2. Bottom-up methane inventory emissions from the Surat
Basin by sector/source for the year 2015; % of the total also shown.
The total emission is 173.2× 106 kg CH4 yr−1.

345 km× 345 km with a spatial resolution of 1 km× 1 km.
Standard methodologies were generally adopted with data
from various State and Federal Government Departments
(e.g. National Pollutant Inventory (NPI), National Green-
house and Energy Reporting (NGER), and National Re-
source Management – NRM). The bottom-up inventory
included the following 14 emission sectors (1) feedlots,
(2) grazing cattle, (3) piggeries, (4) poultry farms, (5) power
stations, (6) coal mining, (7) CSG processing, (8) CSG pro-
duction, (9) domestic wood heating, (10) vehicular traf-
fic, (11) landfills, (12) sewage treatment plants, (13) river
seepage, and (14) geological seepage. The first four can be
grouped as agricultural activities. The inventory excluded
CH4 emissions from burning of biomass, land clearing, ter-
mites, groundwater wells (that were registered), wetlands, or
fuel consumption and any material handling related to min-
ing activities. Additional details pertaining to the bottom-up
inventory compilation are briefly given in the Supplement
Sect. S2, with a full report (Katestone, 2018) given in the
Supplement Sect. S6.

Figure 2 presents the bottom-up inventory emissions at-
tributed to the various sectors in the Surat Basin, with the
total emissions being 173.2× 106 kg CH4 yr−1. Grazing cat-
tle has the largest contribution, followed by cattle feedlots
and CSG processing. We use this emission inventory for our
study duration, July 2015–December 2016, with the assump-
tion that any emission changes from the year 2015 to 2016
were insignificant. It is also assumed that all emissions are
invariant with time. Although diurnal and seasonal variations
for some emissions, viz. wood heating, traffic, and power
plants, are available in the raw data used in the inventory,
contributions from these emissions are among the smallest
and, therefore, we averaged these emissions over the full year
for the purpose of computational efficiency in the modelling
conducted here.

Figure 3a presents the distribution of inventory methane
emissions (kg yr−1 per grid cell) regridded at a resolution
of 5 km× 5 km (69× 69 grid points). There are localised
sources as well as extensive, uniformly distributed source
areas. The latter are emissions due to grazing cattle. These
emissions are plotted in Fig. 3b in which four differently
coloured areas are the so-called National Resource Manage-
ment (NRM) regions. In each of these regions the available
total number of grazing cattle was distributed uniformly, with
the total number of grazing cattle in the study area being
1 086 059. There were 235 cattle feedlots and Fig. 3c shows
the distribution of their emissions. These are localised but
distributed throughout the region, with some located between
the two monitoring stations. Two mining source areas are
also located between the two monitoring stations (Fig. 3d).

The CSG emissions are shown in Fig. 3e (processing) and
Fig. 3f (production). The CSG production emissions are from
wellhead (separators, wellhead control equipment, main-
tenance and leaks), combustion (flaring, wellhead pumps,
backup generators, and diesel used by vehicles) and pipeline
emissions (high point vents on produced water pipelines and
pipeline control equipment; Day et al., 2013). The CSG
processing sources consist of processing facility emissions
(control equipment, compressor venting, and gas condition-
ing units), combustion emissions (flaring, plant compressors,
backup generators, and diesel used by vehicles), and collec-
tion and storage of water produced. Emissions from some
of the CSG sources are continuous while others are inter-
mittent (however, the inventory assumes all CSG emissions
are time invariant). There were five CSG operators with 13
processing facilities and 4628 wells within the study do-
main. The well numbers included CSG producing (∼ 85 %)
as well as exploration/appraisal/capped wells. Because of in-
sufficient information, methane emissions from two of the
five operators are not part of the inventory, but it was es-
tablished that these two operators, with a total of 256 wells,
only accounted for about 1.5 % of the CSG activities that may
be related to emissions. The biggest contributor to the total
CSG methane emissions was venting (88 %) from process-
ing. Methane from produced water is a component of both
CSG production and processing and is an important source
(Iverach et al., 2015). It was included under venting and was
calculated at 1.63× 106 kg yr−1 (∼10 % of the total CSG
emissions). Contribution from flaring was about 8 %.

All major bottom-up emissions, namely from grazing cat-
tle, feedlots, CSG processing and production, and coal min-
ing, have potentially significant uncertainty, arising from un-
certainty in both the activity data and emission factors, for
example their potential temporal variation and how up to date
they are with respect to the study period considered.
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Figure 3. Bottom-up methane inventory emissions from the Surat Basin (kg CH4 yr−1 per grid box; the grid-box size is 5 km× 5 km). Also
shown are the Ironbark and Burncluith monitoring sites and the three biggest towns. (a) All emissions and those due to (b) grazing cattle,
(c) cattle feedlots, (d) coal mining, (e) CSG processing, and (f) CSG production.
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4 Modelling regional methane using the bottom-up
emission inventory

We use the above inventory emissions in a (forward) regional
meteorological and transport model and compare the mod-
elled methane with the ambient measurements from the two
sites.

4.1 Model and configuration

The prognostic mesoscale model used is The Air Pollution
Model (TAPM vn4.0.5) developed by CSIRO, which has
coupled meteorological and dispersion components and is
designed for applications ranging in scale from local to re-
gional (∼ < 1000 km; Hurley et al., 2005; Hurley, 2008).

The meteorological component of TAPM predicts the
local-scale flow against a background of larger-scale mete-
orology provided by the input synoptic-scale analyses (or
forecasts). It solves momentum equations for horizontal wind
components; the incompressible continuity equation for the
vertical velocity in a terrain-following coordinate system;
and scalar equations for potential virtual temperature, spe-
cific humidity of water vapour, cloud water/ice, rainwater,
and snow. Explicit cloud microphysical processes are in-
cluded. Pressure is determined from the sum of hydrostatic
and optional non-hydrostatic components, and a Poisson
equation is solved for the non-hydrostatic component (not
used here). Turbulence closure in the mean prognostic equa-
tions uses a gradient diffusion approach with non-local or
counter-gradient corrections, which depends on eddy diffu-
sivity (K) and gradients of mean variables and a mass-flux
approach. The eddy diffusivity K is determined using prog-
nostic equations for the turbulent kinetic energy (E) and its
dissipation rate (ε). A vegetative canopy, soil scheme, and
urban scheme are used at the surface, while radiative fluxes,
both at the surface and at upper levels, are also included. Sur-
face boundary conditions for the turbulent fluxes are deter-
mined using the Monin–Obukhov similarity theory and pa-
rameterisations for stomatal resistance.

The dispersion module makes use of the predicted finer-
scale meteorology and turbulence fields from the mete-
orological component and comprises a default Eulerian
grid-based conservation equation for species concentration
(Hurley et al., 2005). The model has previously been ap-
plied to a variety of flow, turbulence, and dispersion prob-
lems at various scales, such as those reported by Luhar
and Hurley (2003, 2012), Luhar et al. (2008), Hurley and
Luhar (2009), Luhar et al. (2014, 2020), and Matthaios et
al. (2017), which include model evaluation studies.

TAPM can be used in a one-way nestable mode to im-
prove efficiency and resolution. The global databases’ in-
put to the model include land use, terrain height, leaf-area
index, synoptic-scale meteorological reanalyses, and sea-
surface temperature.

We applied TAPM for the duration 1 July 2015–31 De-
cember 2016 with two nested domains for both meteorol-
ogy and dispersion: 370 km× 370 km with grid resolution
5 km× 5 km and 1110 km× 1110 km with grid resolution
15 km× 15 km. Both domains had 75× 75 grid points and
were centred on (150◦4.5′ E, 26◦35′ S), which is equivalent
to 208.657 km east and 7056.383 km north MGA. There were
25 vertical levels, of which the lowest four were 10, 25, 50,
and 100 m a.g.l. The input synoptic-scale fields of the hori-
zontal wind components, temperature, and moisture required
as boundary conditions for the outermost model domain were
sourced from the U.S. NCEP (National Centers for Envi-
ronmental Prediction) reanalysis database given at a resolu-
tion of 2.5◦ latitude × 2.5◦ longitude at 6-hourly intervals
(Kalnay et al., 1996; https://psl.noaa.gov/data/gridded/data.
ncep.reanalysis.html, last access: 4 December 2020). The
model outputs hourly-averaged fields of meteorology and
concentration.

The bottom-up inventory emissions lie within the inner
model domain. In this model setup, each inventory emis-
sion grid cell (at 5 km× 5 km) was considered as a surface
source, apart from the emissions from the power stations,
which were taken as point sources with specification of their
stack heights and plume-rise parameters. For computational
efficiency, rather than considering all 14 emission categories
plotted in Fig. 2 as separate sources, we aggregated them
into nine sectors, with each sector taken as a tracer source:
grazing cattle (Source 1); feedlots, piggeries, and poultry
(Source 2); CSG processing (Source 3); CSG production
(Source 4); mining (Source 5); river seeps (Source 6); do-
mestic wood heating, wastewater treatment, and motor vehi-
cles (Source 7); ground seeps and landfill (Source 8); and
power stations (Source 9). The relative emissions of the
above nine sources are 53.8 %, 25.8 %, 8.4 %, 1.1 %, 8.3 %,
0.21 %, 0.82 %, 1.2 %, and 0.37 %.

4.2 Estimation of background methane concentration

Since the simulated methane does not include the back-
ground levels that are representative of methane emis-
sions located outside the bottom-up inventory, we devised a
method for estimating hourly varying background CH4 for
each site involving concentrations under high atmospheric
mixing conditions and the hourly standard deviation of con-
centration (see details in the Supplement Sect. S3). The es-
timated background concentration can be either added to the
simulated methane or subtracted from the observed methane.

The estimated background methane concentration time se-
ries for Ironbark and Burncluith look very similar, and in
Fig. 4 we present the average (green line) of the two back-
ground time series. The plot shows a marked seasonal vari-
ation in the background methane with a peak in September
(early spring) and a minimum in February (late summer). To
view the background variation with respect to the measured
methane signal, we also present in Fig. 4 as dot points the
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Figure 4. Estimated average hourly-averaged background CH4 con-
centration time series (green line) and the difference between the
estimated backgrounds between Ironbark and Burncluith (purple
line). The data points are the hourly mean measurements at Ironbark
without any filtering (clipped at 2100 ppb to make the background
concentration variation stand out better).

unfiltered hourly mean observations (clipped at 2100 ppb)
at Ironbark. The uncertainty (1 standard deviation) in the
background CH4 is 3.6 and 3.3 ppb for Ironbark and Burn-
cluith, respectively. The difference between the estimated
background at Ironbark and that at Burncluith (purple line in
Fig. 4) is small and within ± 5 ppb. Any difference between
the two backgrounds could be due to different sites in the
study area getting impacted by different out-of-domain emis-
sions depending on the transport meteorology. On average,
the background concentration at Ironbark is greater by 1 ppb,
and the standard deviation of the difference is 1.4 ppb. The
average of the two background time series is taken to repre-
sent the regional hourly background CH4 concentration, with
an average uncertainty of 3.5 ppb. Sensitivity of the inferred
emissions to other choices of the background concentration
is examined in Sect. 7.5.

4.3 Model performance for meteorology

Accurate modelling of the flow field over our region of inter-
est is important as it controls the atmospheric plume trans-
port and dispersion, which in turn influences the accuracy of
prediction of CH4 and conversely the accuracy of inferred
emissions. The hourly-averaged predicted winds extracted
from the model output for the inner nest at the lowest model
vertical level (10 m) at the grid point nearest to each of the
two monitoring stations were compared with the observa-
tions from the two stations for the duration of the simulation.
The details of the model performance for meteorology are
given in the Supplement Sect. S4. At both sites, the measured
winds were most frequent from the north-eastern sector, with
those at Burncluith being generally weaker in strength than
those at Ironbark. As judged from the correlation coefficient
(r) and index of agreement (IOA) values, the performance of
TAPM for wind speed and wind direction was comparable

to that obtained in other TAPM modelling studies (see the
Supplement Sect. S4).

4.4 Modelled methane compared to the observations

The monitoring sites were selected to avoid potential large,
sustained methane sources within 10–20 km or even small
sources within about a kilometre of the measurement inlet.
Small sources that were closer to the inlets (mainly Burn-
cluith) were identified and their signals filtered from the data
as described in Sect. 2. As a result, we expect that the hourly-
averaged filtered data are as representative as possible of the
atmospheric methane concentration across the 5 km× 5 km
model grid cell containing the observation site and can be
directly compared to the model simulations.

The hourly-averaged modelled methane concentrations on
the innermost grid domain were extracted at the lowest model
level at the grid point nearest to each of the monitoring sites
for comparison with the observations. The hourly-averaged
concentrations simulated for the individual nine source cat-
egories were aggregated and added to the estimated back-
ground concentration to compare with the observed, filtered
CH4 concentrations.

The scatter plots in Fig. 5 comparing the modelled and ob-
served CH4 at the two sites display a substantial degree of
scatter, which is not unusual for atmospheric transport and
diffusion models driven by predicted meteorology and us-
ing hourly-averaged concentrations paired in both time and
space (e.g. Luhar et al., 2008). While the correlation coeffi-
cient values of 0.57 and 0.74 for Ironbark and Burncluith, re-
spectively, imply a reasonable model prediction (see Table 1
for additional model performance statistics for the inventory
emissions), it is clear that the modelled levels are generally
lower than the observations, particularly the higher-end con-
centrations at Ironbark.

There could be various reasons for the differences between
the modelled and observed methane, including uncertainty
associated with the bottom-up emission inventory, its poten-
tial temporal variation, sources missing from the emission
inventory, potential changes to the 2015 bottom-up inventory
used here in the year 2016 (see Sect. 7.4), and the general
modelling uncertainty, including that related to representing
point measurements by grid-cell-averaged model values.

The comparison in Fig. 5 involving hourly methane paired
in time and space enables a simple, yet stringent, validation
check of a transport model, especially one that is driven by
turbulent flow fields predicted by a prognostic meteorolog-
ical model instead of observations. A complementary but
less stringent approach in validating air quality models is
the quantile–quantile (q-q) plot, which is a graphical tech-
nique for testing “goodness of fit” between two distributions.
In such a plot, typically, sorted modelled concentrations are
plotted against sorted observed values (i.e. unpaired in time)
at a monitoring location (e.g. Venkatram et al., 2001; Luhar
and Hurley, 2003; http://www.itl.nist.gov/div898/handbook/
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Table 1. Performance statistics for the emissions from the Case 3 inversions and for the bottom-up emissions as to how well they describe the
methane concentration measurements at the two sites when used in forward modelling (r: correlation coefficient, IOA: index of agreement,
a: slope, b: intercept, FB: fractional bias, RMSE: root mean square error).

Emissions Ironbark (N = 6432) Burncluith (N = 4149)

r IOA a b FB RMSE r IOA a b FB RMSE
(ppb) (ppb) (ppb) (ppb)

Case 3a (σp = 1%qp) 0.53 0.68 0.36 1153 0.61×10−3 25.5 0.69 0.82 0.71 527 −0.45 × 10−3 11.1
Case 3b (σp = 5%qp) 0.49 0.66 0.55 863 −1.98 × 10−3 32.0 0.58 0.71 0.87 244 −1.26 × 10−3 16.8
Case 3c (σp = 3%qp) 0.51 0.68 0.48 954 −0.72 × 10−3 28.4 0.63 0.76 0.79 381 −0.86 × 10−3 14.0
Bottom-up inventory
emissions 0.57 0.59 0.25 1360 3.36×10−3 25.4 0.74 0.84 0.61 707 0.35×10−3 9.4

Figure 5. Hourly-averaged observed methane plotted against the simulated methane for the two monitoring stations. The solid line is the
least-squares fit, and the dashed line is the 1 : 1 line (i.e. perfect agreement).

eda/section3/qqplot.htm, last access: 4 December 2020). If
the two sets come from a population with the same distribu-
tion, the data points should fall approximately along the 1 : 1
line. The principal advantage of a q-q plot is that a “good fit”
is easy to recognize, and various distributional aspects, such
as shape, tail behaviour and outliers, can be simultaneously
examined.

In the q-q plot in Fig. 6 for Ironbark, the observed CH4
distribution is modelled well for measurements < 1820 ppb,
but for higher observed concentrations, which account for ap-
proximately 25 % of the sample size, the modelled values are
smaller. For Burncluith, the q-q plot shows a substantially
better model performance, with the model underestimation
of higher-end (> 1820 ppb) methane observations, which is
approximately 10 % of the sample size, much reduced com-
pared to Ironbark. Overall, TAPM is largely predicting the
observed CH4 distribution correctly, except for a relatively
few higher-end concentrations.

4.5 Contribution to the modelled methane by the
various source categories

The top four source categories based on their contribution
to the modelled CH4 averaged over the full study period
at Ironbark were Source 1 (45 %, grazing cattle), Source 2
(25 %, feedlots, piggeries, and poultry), Source 3 (19 %, CSG
processing), and Source 5 (5.5 %, mining). These were the

Figure 6. q-q plot showing the sorted hourly-averaged observed
CH4 concentrations versus the sorted modelled ones at Ironbark
and Burncluith. The line of perfect agreement (dashed line) is also
shown.

same at Burncluith but with their respective contributions
being 69 %, 17 %, 6.4 %, and 4.1 %. The CSG production
(Source 4) contributions are 2.2 % and 0.73 %, respectively,
at the two sites.

In contrast, the largest four contributors to the highest
5 % of the modelled hourly-averaged methane concentra-
tions (i.e. all the concentrations above the 95th percentile)
at Ironbark turn out to be Source 3 (35 %), Source 2 (27 %),
Source 1 (25 %), and Source 5 (7 %). These at Burncluith
are Source 1 (28 %), Source 2 (25 %), Source 3 (22 %), and
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Source 5 (13 %). The CSG production (Source 4) contributes
3.8 % and 2.5 %, respectively, at the two sites. The Source 2
grouping is dominated by feedlots.

The CSG processing (Source 3) emissions are localised
near the two sites, which result in methane spikes under
favourable winds and thus contribute more to the higher-end
modelled methane than to the overall average methane. In
contrast, the simulation average methane is dominated by
Sources 1 and 2 because concentration enhancements due to
these sources occur under most wind conditions because of
their very wide distribution across the region.

5 Regional top-down, or inverse, modelling for
emission estimation

Given that the bottom-up emission inventory underestimates
the observed methane in the Surat Basin, one may then ask
what the magnitude and distribution of methane emissions
are that are implied by the methane concentration measure-
ments at Ironbark and Burncluith. This is addressed by the in-
verse modelling approach for regional emissions formulated
and applied below.

5.1 Bayesian inverse modelling approach

Our inverse model uses a Bayesian inference approach that
incorporates a source–receptor relationship, concentration
measurements, and prior information on source parameters
(i.e. source information obtained independently of the mea-
surements; Rao, 2007; Singh et al., 2015). The approach up-
dates the source prior as concentration measurements are
considered and accounts for both model and observational
uncertainties.

Several applications using the Bayesian approach have
previously been conducted for methane source estimation,
including those at local scale (e.g. Yee and Flesch, 2010;
Luhar et al., 2014; Feitz et al., 2018) and regional scale (e.g.
Jeong et al., 2012; Miller et al., 2014; Henne et al., 2016; Cui
et al., 2017).

The approach hinges on Bayes’ theorem (Jaynes, 2003):

p(q |c)=
p(c |q) × p(q)

p (c)
, (1)

where the prior PDF p(q) reflects our knowledge of the
source parameter vector q prior to receiving the concentra-
tion observations c; p(c | q) is the likelihood function which
is the probability of experiencing c for a given q and is typi-
cally obtained using a model-derived source–receptor link-
age; the posterior p(q |c) relates to the update of p(q)
by its modulation by p(c |q) which contains the new in-
formation brought in by the concentration measurements c;
and p(c) [=

∫
p(c |q)p (q)dq] is the evidence and is basi-

cally a normalisation constant in the present application (Yee
and Flesch, 2010). The likelihood function, also termed the

source–receptor relationship, is derived using a transport and
dispersion model.

It is assumed that the number of sources (Ns)
and their locations

(
xs,1, . . .,xs,j , . . .,xs,Ns

)
where xs,1 ≡(

xs,1,ys,1,zs,1
)

are given a priori and the source emis-
sions are positive and non-zero. The emission rates of these
sources are to be estimated, and these are represented by
q ≡

(
q1, . . .,qj , . . .,qNs

)
with a total of Ns unknown emis-

sion rates. Assuming each source emission to be indepen-
dent, the prior PDF can be written as

p(q)=

Ns∏
j=1

p
(
qj
)
. (2)

Assuming that the model and measurement uncertainties are
independent and distributed normally, the total likelihood of
all c for a given hypothesis of q is calculated as (Yee, 2012)

p(c |q)=
∏Nm
i=1

1
√

2π
(
σ 2
i +σ

2
m,i

)1/2 exp{
−
(cm,i(q)−ci)

2

2
(
σ 2
i +σ

2
m,i

)
}
.

(3)

c ≡
(
c1, . . .,ci, . . .,cNm

)
, ci is the observed concentration at

the ith instant (time and location), cm,i is the correspond-
ing modelled concentration for a given hypothesis of q, σi
is the independent measurement error, σm,i is the indepen-
dent model error, andNm is the number of concentration data
(which can be time series from several independent moni-
tors). cm,i for all hypotheses, or possible values, for q is cal-
culated and used in constructing the likelihood distribution
p(c |q). Hence the posterior PDF for a given source hypoth-
esis q is calculated as

p(q |c)= 1
Z0

∏Ns
j=1p

(
qj
)∏Nm

i=1
1

√
2π
(
σ 2
i +σ

2
m,i

)1/2

exp

{
−
(cm,i(q)−ci)

2

2
(
σ 2
i +σ

2
m,i

)
}
,

(4)

where Z0 is equivalent to p(c) and is essentially a normali-
sation constant. The posterior yields probabilities of all emis-
sion rates (q) considered.

The total modelled concentration at a given location xr and
time is determined as

cm,i =

Ns∑
j=1

cm,ij . (5)

Because methane is treated as a passive tracer, the concentra-
tion field simulated for one rate of emission can be scaled lin-
early for another without the need to re-run the model. Thus

cm,ij = qjαij
(
xs,j ,xr,i

)
, (6)

for each emission rate component of q. The quantity
αij
(
xs,j ,xr,i

)
is the source–receptor relationship or coupling
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coefficient and is equivalent to the modelled mean concentra-
tion at a given time and location xr,i due to j th source release
at location xs,j with a unit emission rate.

In Eq. (4), in the absence of an informative prior, a uniform
prior PDF can be used with the given limits (qmax,qmin):

p
(
qj
)
=

1
qmax,j − qmin,j

, (7)

with the probability being zero outside these bounds.
If the prior is Gaussian, then

p
(
qj
)
=

1
√

2π σp,j
exp

{
−

(
qj − qp,j

)2
2σ 2

p,j

}
, (8)

where qp and σp are the prior mean emission rate and its stan-
dard deviation, respectively.

High dimensionality of the posterior makes its direct com-
putation and the subsequent integration (the “brute-force”
method) over the source-parameter space very expensive or
perhaps even impossible. For Gaussian priors and uncertain-
ties, the posterior can be solved for the mean and variance
with their analytical matrix forms (Tarantola, 2005; Jeong et
al., 2012). To make the inverse approach more generally ap-
plicable and efficient, we use a Markov chain Monte Carlo
(MCMC) technique incorporating the Metropolis–Hastings
algorithm to sample the posterior PDF (Tarantola, 2005; Yee,
2012). With MCMC, non-Gaussian priors or uncertainties, or
parameters with known physical constraints, can also be in-
cluded (Miller et al., 2014). The normalization constant Z0
in Eq. (4) need not be known before MCMC samples can be
drawn from the posterior PDF. This ability to generate a sam-
ple without knowing this constant of proportionality (which
is often extremely difficult to compute) is a major feature
of MCMC algorithms (Luhar et al., 2014). The frequency
distribution of the MCMC-generated samples represents the
posterior.

The posterior PDF can be marginalized to obtain the mean
emissions rate for each source as follows:

q̄j =

∫
qjp(q |c)dq, (9)

and likewise, the variance can also be determined.

5.2 Construction of hourly source–receptor
relationship

In order to use hourly measurements, the source–receptor re-
lationship needs to be calculated every hour for every source
(real or potential) location and every monitor location using
either forward or backward transport modelling (Rao, 2007).
Generally speaking, if the number of source locations under
consideration is greater than the number of receptor locations
(as for the present case), then the backward approach is much
more computationally efficient (Luhar et al., 2014).

In the backward approach, source emissions are tracked
backwards in time from a monitor treated as a source. The
value at a given point of the constructed backward concen-
tration field is analogous to the magnitude of the contribu-
tion made by an emitting source at that point to the true (i.e.
forward) modelled concentration at the monitor. Hence, we
can use a single backward source–receptor relationship dis-
tribution determined every hour to get the contribution made
by each real or potential source located in the domain. This
contrasts with the forward modelling approach in which each
source location must be considered a unique, separate source
and its dispersion computed for every hour. Essentially, the
source–receptor relationship furnishes a way to chart the dis-
tribution of source potential within a given geographical do-
main. However, it does not quantitatively allocate the real
contribution of sources within the domain to the concentra-
tion levels detected at monitoring stations – this is done by
the Bayesian inference in Eq. (4).

One backward approach for regional scale is to use
backward trajectories constructed by only using three-
dimensional winds computed from a meteorological model
(e.g. Cheng et al., 1993). However, such wind trajectories
only represent advective transport and do not account for tur-
bulent mixing which causes a plume to disperse as it travels
in the atmosphere. If measurements given at a high tempo-
ral resolution, e.g. hourly averages, are to be used for inver-
sion it is necessary that the influence of atmospheric flow
and dispersion processes that occur at such scales is consid-
ered. This can only be properly done by simulating backward
tracer plumes which considers both advection and turbulent
mixing.

We modify TAPM to construct backward dispersing
plumes. The Eulerian dispersion module in TAPM comprises
a solution of the advection–diffusion equation for the ensem-
ble mean concentration c, which for a passive species is (e.g.
Yee et al., 2008)

∂c

∂t
+ ū · ∇c−∇ · (K∇c)= S, (10)

in which the unknown turbulent flux terms are closed us-
ing the K-theory or gradient transport approach. The forc-
ing term S represents species emissions. The elements of the
eddy diffusivity tensor K are zero except along its main di-
agonal (Kx,Ky,Kz). Diffusion is assumed to be symmetric
in the horizontal plane, so Kx,Ky,KH (say). KH and Kz
are determined using the modelled turbulent kinetic energy
(TKE) and the TKE dissipation rate.

The vertical component w̄ of the mean wind vector ū

(≡ ū, v̄, w̄) in Eq. (10) is determined by using the continuity
equation after the mean horizontal wind velocity components
(ū, v̄) are calculated.

The Eulerian adjoint of Eq. (10) describes the backward
evolution of a scalar field (c∗), and is also termed backward
or retro plume, adjoint function, sensitivity function, or influ-
ence function, and is given as (Marchuk, 1995; Pudykiewicz,
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1998; Hourdin and Talagrand, 2006; Yee et al., 2008)

−
∂c∗

∂t
− ū · ∇c∗−∇ ·

(
K∇c∗

)
= F, (11)

where F is the forcing term representing the measurement
distribution, which is treated as a source at the measurement
(or receptor) location. Therefore, αij in Eq. (6) is equivalent
to c∗ derived for a unit emission rate.

The implementation of Eq. (11) in TAPM was done
through changes in the forward model code as follows.
The meteorological and turbulence fields calculated by the
model at every hour (not hourly-averaged) were stored for
the full simulation period. The modelled horizontal com-
ponents (ū, v̄) of wind were reversed (i.e. by sign change).
The (inverted) vertical wind component (w̄) was then calcu-
lated by solving the continuity equation given the reversed
horizontal wind components. The turbulence parameter val-
ues remained the same. The diffusivities in the dispersion
component are positive and do not have any correction for
counter-gradient flux in the vertical, and, therefore, they were
not modified for the backward mode. The two monitor lo-
cations were treated as separate “sources”, each having unit
emission, and hourly-averaged plume dispersion fields due
to these “sources” were determined by running the TAPM
dispersion module backwards in time for the entire simula-
tion duration by using the reversed winds calculated previ-
ously. The meteorological and turbulence fields were linearly
interpolated in time for dispersion calculations for model
time steps lying between two successive hours. The resulting
hourly-averaged backward concentration fields were used as
the source–receptor relationship. For inversion, we assume
that all methane sources are located near the ground within
the lowest model level (i.e. 10 m a.g.l.) and, therefore, only
the 10 m hourly source–receptor relationship was required.

One complexity with doing a backward dispersion calcu-
lation using one continuous release over the full simulation
period over a large domain, as done here, is that the source–
receptor field at a given hour is a superposition of plume
footprints from the current hour as well as previous hours
(typically 4–5 h for the present domain size). So, there is a
time history of the plume in the source–receptor field at a
given time (whose influence becomes smaller and smaller as
the distance between the source and the receptor becomes
smaller, the domain size decreases, the averaging time is in-
creased, or when the winds are strong). However, this time
history in a backward run corresponds to future hours in a
forward run, so at a given hour there can be a time mismatch
between the forward concentration at a grid point and the
backward concentration at that point. One way to deal with
this problem is to do a separate backward run for each hour
for the whole simulation period; however, this is extremely
expensive computationally. As a practical and approximate
solution to this issue, at a particular backward travel hour (t)
the plume travel time (tr) from the release point (i.e. the mon-
itor location) to a grid point location (x) is determined by

releasing a second tracer (with concentration c∗ = c∗2) back-
wards from the monitor simultaneously with the main tracer
(with concentration c∗ = c∗1) with the same tracer properties
except that it decays exponentially with a decay rate of λ
(taken as 10−6 s−1), so

c∗2 (x, t)= c
∗

1 (x, t)exp(−λtr) , (12)

which gives

tr (x, t)=
1
λ

ln
[
c∗1 (x, t)

c∗2 (x, t)

]
. (13)

The source–receptor value (c∗ = c∗1) calculated at a grid
point location x at a given backward travel hour t = tb is then
taken equal to that calculated at the same location at t = tb+tr
(where tr is rounded to the nearest hour). The forward travel
hour for a grid point is equal to the total hours in a simulation
period minus tb. Therefore, the source–receptor relationship
(c∗) for the grid points at time t is constructed from the output
of c∗1 at different times according to the value of tr at individ-
ual grid points. A maximum value for tr needs to be specified,
which we take as 15 h – approximately the time taken by the
backward plume from either monitor to leave the (innermost)
model domain (beyond this value, c∗ is zero). This is needed
to avoid occasional spurious smearing in the spatial patterns
of c∗ caused by a very diluted, turning, or recirculating back-
ward plume that has travelled longer than tr overlapping the
direct backward plume at a particular location.

To illustrate the modelled forward and backward relation-
ship and the impact of accounting for tr, Fig. 7a presents
the hourly-averaged forward modelled 10 m concentration
field (c) in the innermost model domain on 20 June 2016
at 23:00 h (local standard time) due to a sample of 12 point
sources, all emitting at the same fixed rate and whose loca-
tions correspond to some of the feedlots. Figure 7b is the
backward modelled 10 m concentration field (c∗) for Iron-
bark (I) at the same time without the travel time correction
(i.e. tr = 0), and Fig. 7c is the same field with the travel time
correction. Essentially, the value at any point in the backward
field is equivalent to the forward model concentration value
at Ironbark if there were a source at that point with the same
emission rate (as the backward emission rate). The backward
concentration value at a given location represents the proba-
bility (including both frequency and intensity) a source emis-
sion at that location adds to the concentration at the monitor-
ing site. The backward field is mainly determined by the flow
field cross the domain and the separation between the recep-
tor and the source. Figure 7a suggests that only one source,
S1 contributes to concentration at Ironbark. Figure 7c is con-
sistent with this, in which the backward plume from Ironbark
only impacts S1 with the same magnitude, and not any other
source location. On the other hand, the backward plume in
Fig. 7b does not pass through any of the 12 sources, meaning
no impact of these sources at Ironbark, which obviously is
not correct as S1 does impact Ironbark (Fig. 7a). Figure 7c
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is the source–receptor relationship (normalised by the fixed
emission rate) for Ironbark for the hour under consideration.

A hourly-averaged modelled backward concentration field
(c∗ /q, s m−3) at the lowest model level (i.e. 10 m a.g.l.), an
example of which was shown in Fig. 7c, obtained for a unit
emission rate (q = 1 g s−1) is in essence the required hourly
source–receptor relationship which can be linearly scaled for
any other emission rate (q).

The modelled backward concentration field (c∗ /q, s m−3)
averaged over all hourly fields over the simulation period (i.e.
1.5 years) for Ironbark is shown in Fig. 8a, which suggests
that, overall, any sources located farther from the monitor-
ing station would contribute less as plume concentrations de-
crease with increasing distances, and vice versa. The direc-
tional distribution of the backward field is also a function of
the distribution of regional winds which determine how of-
ten the receptor is downwind of a source (see wind roses in
Figs. S3 and S4). The values in the south-eastern and north-
western corners of the study domain are particularly low, so
potential sources located there would, on average, have a rel-
atively low probability of being sampled at Ironbark.

The backward distribution for Burncluith (Fig. 8b) is very
similar, but since it is located north of Ironbark it would sam-
ple potential sources in the north-east better.

The two monitoring sites combined would sample the bulk
of the CSG sources between and around them in the domain
(which was the prime objective of our monitoring).

5.3 Bayesian inversion setup

Assuming that emission rates are time invariant, we use all
hourly methane data (Nm) from the two monitoring stations
together in one combined Bayesian calculation to determine
the total emission rates from gridded sources using Eq. (4).
Since each hour corresponds to a unique meteorological con-
dition, the use of all hours simultaneously provides the me-
teorological variability needed to achieve a better “triangula-
tion” for source estimation. This approach is similar to that
used by Luhar et al. (2014) in the context of a local point
source. It requires the source–receptor relationship (c∗ (x, t))
for each hour for each measurement site (e.g. Fig. 7c).

For the purposes of inferring emissions using our Bayesian
methodology, the source array of 69× 69 used in the for-
ward modelling above is rather too large a source num-
ber to explore all the source possibilities (i.e. hypotheses)
on an hourly basis, even with use of the MCMC sam-
pling. Moreover, there is only a limited amount of infor-
mation available from just two monitoring sites. A coarser
array of sources is more practicable, and consequently we
consider an array of 11× 11 localised sources (Ns = 121,
cell size ∼ 31 km× 31 km) within the same model domain.
No sub-grid variability of these emission sources is con-
sidered. The hourly source–receptor relationships calculated
at 5 km× 5 km resolution for Ironbark and Burncluith were
used. Our inverse methodology as used does not distinguish

between different source categories. This is mainly because
the concentration of methane alone was monitored and not
any tracers specific to methane source types. Therefore, there
are no separate source categories in the inferred emissions
(unlike what was done for the forward simulation), and only
total emissions are optimised.

To reduce serial correlations in the sequence of MCMC
samples drawn from the posterior using the Metropolis–
Hastings algorithm, we only retained every fifth sample. The
total number of useable samples was 21 000 for each source,
of which the first 1000 samples were discarded as “burn-in”
samples. The selected samples were then used in the calcula-
tion of the source statistics.

6 Inversion using “synthetic” methane concentration
data

A “synthetic” inverse run is first performed by using the mod-
elled hourly-averaged time series of methane concentration
at Ironbark and Burncluith obtained using the bottom-up in-
ventory (regridded to 11× 11 sources, see Fig. 9a, to be con-
sistent with the source number considered in the inversion)
to investigate whether the inverse methodology is able to re-
trieve the bottom-up emissions and under what types of pri-
ors and their uncertainties. The results of this exercise pro-
vide a useful guidance to the subsequent inversion using the
actual measured methane data.

Only the forward modelled (or synthetic) concentrations at
the two monitoring sites were used at times when valid (or fil-
tered) methane observations were available (Nm = 10581).
The background measurement uncertainty was taken as σ =
3.5 ppb based on the previous calculation, and the uncertainty
in the transport model was assumed to be σm = 20 % of the
modelled concentration (Yee and Flesch, 2010; Luhar et al.,
2014). These values are also used later in Sect. 7 for inver-
sions based on the methane data.

6.1 Selection of the prior

Specifying the prior PDF p(q) is an important step, even
for the present synthetic case, because we are still limited to
the same degree of information available (i.e. concentrations
from only two sites), the same number of unknown sources
to estimate, and the same domain size as in the inversion case
with the real concentration data considered subsequently. We
specify the following two Gaussian priors.

An identical (or uniform) Gaussian p(q) for each source
with a mean methane emission rate qp = 45.4 g s−1(=

1.43 × 106 kg yr−1) per source is specified, with a specified
standard deviation σp. This mean value is essentially the total
bottom-up emission from the domain divided by the number
of sources (i.e. 121).
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Figure 7. (a) Forward modelled hourly-averaged 10 m concentration field on 20 June 2016 at 23:00 h (local standard time) due to 12 point
sources, with the 10 m modelled winds also shown; (b) backward modelled 10 m concentration field for Ironbark (I) at the same time without
the travel time correction (tr = 0); and (c) backward modelled 10 m concentration field for Ironbark with the travel time correction. Each
source point has the same emission rate. The plume contours (white) and colours represent the same concentration values. The black contours
represent the topography. The model domain size is 370 km× 370 km, and the Ironbark (I) and Burncluith (B) locations are shown.

Figure 8. Normalised modelled backward distribution of near-surface concentration (c∗/q, ×10−9 s m−3), which is an average over the
entire study period: (a) Ironbark and (b) Burncluith.

The bottom-up inventory emissions used as a Gaussian
prior. The inventory emissions shown in Fig. 9a are taken
as the mean values of a Gaussian prior for each source, with
a specified standard deviation σp.

6.2 Results for the synthetic case

In Fig. 10a, the methane emission rates inferred by the in-
verse methodology for the uniform Gaussian prior case with
a prior uncertainty of σp = 5 % of the mean for each source
are plotted against the bottom-up inventory sources used to
construct the synthetic concentration time series for the in-
version. Ideally, the data points should fall along the 1 : 1
line, but due to the limited amount of information supplied
via the modelled concentrations from only two monitors and
the prior being narrow and not very informative, most in-
ferred emission rates are scattered around the prior mean,
i.e. qp = 45.4 g s−1, although it is apparent that a few in-
ferred emission rates are greater than this value and tending
to the corresponding bottom-up emission rates. The spatial

distribution of the inferred emissions is presented in Fig. 9b,
which, as expected, is much more uniform than the bottom-
up inventory emissions in Fig. 9a.

When the prior uncertainty is increased to σp = 10 % of
the mean (Fig. 10b), the scatter increases, but most inferred
emissions still stay around the prior mean, barring some
higher-end ones which move further closer to the corre-
sponding bottom-up emission rates. Further increase in σp
leads to a larger increase in scatter, with no improvement in
the inferred emissions.

The total inferred methane emissions are
(179.3± 10.8)× 106 and (175.7± 24.5)× 106 kg yr−1

for σp = 5 % and 10 % of the mean, respectively, where
the uncertainty is 1 standard deviation. These values
are very similar to the bottom-up inventory total of
173.2× 106 kg yr−1.

Figure 11a with 5 % prior uncertainty is the same as
Fig. 10a except that the individual bottom-up inventory emis-
sions (Fig. 9a) have been used as the mean values of the
Gaussian prior. The inversion retrieves the bottom-up emis-
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Figure 9. Emission rates of CH4 (kg yr−1 per grid cell) (a) based on the bottom-up inventory, (b) estimated by the synthetic inversion using
a uniform Gaussian prior with an uncertainty of σp = 5 % of the mean for each source, and (c) estimated by the synthetic inversion using the
bottom-up inventory as a Gaussian prior with an uncertainty of σp = 5 % of the mean for each source. There are 11× 11 sources, and the
grid-cell size is 31 km× 31 km.

Figure 10. Scatter plot of the bottom-up inventory methane emission rates (g s−1 per source) versus those inferred from the inverse (top-
down) methodology for the synthetic case involving a uniform Gaussian prior with a prior uncertainty of (a) σp = 5 % and (b) σp = 10 % of
the mean for each source. The number of sources is 11× 11. The dash–dot line is the mean value of the prior, the dashed line is the 1 : 1 line
(i.e. perfect agreement), and the solid line is the least-squares fit.

sions very well, with a little scatter in the data points. The
spatial distribution of the inferred emissions is presented in
Fig. 9c for this case, which is very similar to that of the in-
ventory emissions in Fig. 9a. As the prior uncertainty is in-
creased to σp = 10 % of the mean (Fig. 11b), the uncertainty
in the retrieved emissions gets larger, with a slight decrease
in the correlation.

The total inferred emissions corresponding to
Fig. 11a and Fig. 11b are (164.8± 9.7)× 106 and
(156.9± 23.8)× 106 kg yr−1, respectively – values some-
what smaller than the inventory total.

A comparison of Fig. 9c with the bottom-up inventory
(Fig. 9a) indicates that some regions in the south-east, for
example the strong coal mining source on the eastern bound-
ary at the grid location (11, 4) and north-western corners are
not replicated by the inverse model. This is despite a strong
prior with a relatively small uncertainty and could be due to
the fact that the two monitoring locations do not sample this
source area sufficiently (see Fig. 8; because they were sited
to optimally sample the CSG region). Extra monitoring sta-

tions and/or separate narrower priors for such sources would
be needed to cover these areas better.

The synthetic case results suggest that with only two
monitoring locations the bottom-up inventory Gaussian prior
works well and is, indeed, needed. Obviously, a small prior
uncertainty biases the inferred emission distribution towards
the prior p(q), and what uncertainty level is selected depends
on the available information supplied to the inversion. The
synthetic case reveals that σp ∼ 5 % of the mean is needed
to retrieve the bottom-up emissions. Thus, for a real inver-
sion using the methane measurements one may expect that
an even narrower prior uncertainty may be needed. Further
guidance on σp can also come from a comparison of the
forward modelled methane concentrations using the inferred
emissions with the methane observations from the two sites.

The synthetic case results also demonstrated that the re-
gional inverse model was stable and feasible with MCMC.

Atmos. Chem. Phys., 20, 15487–15511, 2020 https://doi.org/10.5194/acp-20-15487-2020



A. K. Luhar et al.: Quantifying methane emissions from Queensland’s Surat Basin 15501

Figure 11. Scatter plot of the bottom-up inventory methane emission rates (g s−1 per source) versus those inferred from the inverse (top-
down) methodology for the synthetic case involving the bottom-up inventory source emissions as the mean of a Gaussian prior with a prior
uncertainty of (a) σp = 5 % and (b) σp = 10 % of the mean for each source. The number of sources is 11× 11. The dashed line is the 1 : 1
line (i.e. perfect agreement) and the solid line is the least-squares fit.

7 Inversion using the methane measurements

We now use the filtered methane measurements from the
two monitoring stations to quantify emissions (with Nm =

10581, σ = 3.5 ppb and σm = 20 % of the modelled concen-
tration). The above synthetic case results have revealed that
a good, tight prior is needed to infer emissions within the
selected domain using concentrations from the two monitor-
ing locations. We consider several cases to examine how the
source inference is influenced using the real-world measure-
ments depending on the type of prior that may be available,
ranging from a non-informative one to the most informative
we have, i.e. the bottom-up inventory.

7.1 Priors and inferred emissions

Three cases involving different priors are considered.

7.1.1 Non-informative uniform prior (Case 1)

A case of a non-informative prior is first considered in which
the only constraint is that the emission rate for each source
lies within the broad range 10–10 000 g s−1 with uniform
probability, where the upper limit is nearly double the total
domain-wide bottom-up inventory.

The inferred emissions (Fig. 12a) between the two mon-
itoring sites and around the centre of the region are qual-
itatively in accordance with the bottom-up inventory emis-
sions (Fig. 9a), but with larger magnitudes. In contrast, the
inverse estimates in locations farther from these source ar-
eas are smaller than the inventory emissions. Notably, the
total inferred emission with the non-informative prior is
162.0× 106 kg yr−1 which compares well with the inventory
total. The largest emission rate of about 1100 g s−1 per grid
cell in Fig. 12a is about 10 % of the upper bound of the spec-
ified prior range.

7.1.2 Uniform Gaussian prior (Case 2)

Next, a more realistic prior PDF is specified with a Gaussian
distribution having an identical mean of 45.4 g s−1 and σp =

10 % of the mean, for each source. The mean is the same as
that used in one of the synthetic runs.

The inferred emissions for this case shown in Fig. 12b are
qualitatively similar to Fig. 12a; however, in the former the
high emission sources are relatively less pronounced, with
emissions from other source locations generally being larger.
The total annual emission from the Surat Basin obtained us-
ing this inversion is (143.1± 18.0)× 106 kg yr−1.

7.1.3 Gaussian prior using the bottom-up inventory
emissions (Case 3)

In this case, as in the synthetic case corresponding to Fig. 9c,
the bottom-up inventory emissions (Fig. 9a) are used in a
Gaussian prior. As guided by the synthetic case results pre-
sented earlier, the uncertainty in the prior needs to be rela-
tively small.

The inferred emission rates in Fig. 13a obtained for Case
3 with σp = 1 % of the mean (Case 3a) appear very simi-
lar to the inventory emission rates (Fig. 9a), with a total of
(173.4± 6.4)× 106 kg yr−1. The fact that even the intense
emission on the eastern boundary of the domain present in
the inventory is mostly reproduced despite this area being
not sampled well by the two network locations means that
the chosen prior with a very small uncertainty is somewhat
too inflexible. It forces the inversion towards a result that is
very similar to the prior itself, thus likely overriding the in-
formation inherent in the concentration observations.

Figure 13b is the same as Fig. 13a, except that the prior is
relaxed by increasing σp to 5 % of the mean (Case 3b), with a
total inferred emission of (162.9± 13.6)× 106 kg yr−1. This
leads to the source areas in the centre of the Surat Basin
and those between Ironbark and Burncluith becoming more
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Figure 12. Emission rates of CH4 (kg yr−1 per grid cell) estimated by the inversion: (a) with a non-informative uniform prior (Case 1); and
(b) with a uniform Gaussian prior (Case 2). There are 11× 11 sources, and the grid-cell size is 31 km× 31 km.

Figure 13. Emission rates of CH4 (kg yr−1 per grid cell) estimated by the inversion with a Gaussian prior involving mean values equal to the
bottom-up emissions (Fig. 9a) and the standard deviation equal to (a) 1 % (Case 3a), (b) 5 % (Case 3b), and (c) 3 % (Case 3c) of the mean
values. There are 11× 11 sources, and the grid-cell size is 31 km× 31 km.

conspicuous. In contrast, the source areas near the eastern
boundary of the domain nearly fade, with the concentration
observations applying greater influence in areas where the
source–receptor relationship, shown in Fig. 8, is stronger.
Clearly, the inversion is sensitive to σp; however, it is ap-
parent that a σp between 1 % and 5 % of the mean would
yield a reasonable trade-off between the benefit of the inver-
sion approaching the prior in areas where the chances of the
two monitoring stations detecting the methane signal is small
and simultaneously making sure that the selected prior would
not unduly overrule the information supplied by the concen-
tration measurements. Consequently, another inversion was
performed for σp = 3 % of the mean (Case 3c). The inferred
emissions from this run presented in Fig. 13c in essence stand
between those for σp = 1 % and 5 % of the mean. This Case
3c inversion is our best estimate, which gives an annual total
CH4 emission of (165.8± 8.5)× 106 kg yr−1. The fine tun-
ing of the prior uncertainty is also guided by the need that
the inferred emissions are able to describe the measured con-
centrations when used in a forward model simulation (see the
validation Sect. 7.2).

Figure 14a presents the difference between the inferred
methane emissions given in Fig. 13c and the bottom-up in-
ventory emissions in Fig. 9a. The largest difference is found
for the grid box between Ironbark and Burncluith, with the
inferred emissions (22.9× 106 kg yr−1) being larger by ap-
proximately a factor of 3 than the latter (7.3× 106 kg yr−1).
The total inventory emission for this source grid is controlled
by CSG processing (51 %); feedlots, poultry, and piggeries
combined (32 %); and CSG production (6 %) sectors.

The calculated posterior uncertainty (standard deviation)
relative to the inferred mean emissions (%) corresponding to
Fig. 13c (Case 3c, σp = 3 % of the prior mean) is presented
in Fig. 14b. Most of these values are similar to the relative
uncertainty in the prior (i.e. σp = 3 % of the prior mean). In-
terestingly, the farthest grid point due east of Ironbark, which
corresponds to a relatively strong coal mine source in the
bottom-up inventory (Fig. 3d), has a disproportionally large
uncertainty (∼ 25 %), probably due to limited sampling.

7.2 Validation of the inferred emissions

To examine to what extent the inferred emissions represent
the methane concentration measurements compared to the
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Figure 14. (a) Difference between the Case 3c inferred methane emissions (Fig. 13c) and the bottom-up inventory emissions in Fig. 9a
(kg yr−1 per grid box) and (b) posterior uncertainty (standard deviation) relative to the Case 3c inferred mean emissions (%). There are
11× 11 sources, and the grid-cell size is 31 km× 31 km.

bottom-up emissions, we conducted three separate forward
transport model runs using the inferred emissions from the
above inversion Cases 1, 2, and 3.

The q-q plots for the Case 1 inferred emissions (Fig. 15a,
d) show that there is an overestimation of methane at both
monitoring stations for the higher-end concentrations, but the
simulated CH4 at Ironbark is much better reproduced than
when using the bottom-up emissions (grey lines). For Burn-
cluith, the overestimation is almost as large in magnitude as
the underestimation obtained when the inventory emissions
are used.

The Case 2 inferred emissions obtained with a better prior
lead to a significant improvement in the methane simulation,
especially at Burncluith (Fig. 15b, e).

As apparent from Fig. 15c, f, the use of the bottom-up in-
ventory as the prior in Case 3c with 3 % prior uncertainty
relative to the mean yields emission estimates that further
improve the simulation of methane, especially at Ironbark.
Comparatively, the use of 1 % prior uncertainty leads to
a better performance at Ironbark but worse at Burncluith.
With 5 % prior uncertainty, the performance is the other way
round. With the exception of about four outlying data points
at the higher end of the concentration distribution, the Case
3c inversion with 3 % prior uncertainty (corresponding to
Fig. 13c) leads to the best overall model reproduction of the
measured CH4 from the two monitoring sites. The under-
prediction seen when the inventory emissions are used (grey
curves in Fig. 15) is nearly eliminated.

Table 1 presents performance statistics for the three Case
3 inversions and for the bottom-up emissions as to how
well they describe the methane concentration measurements
at the two sites when used in the forward modelling. The
observed (O) and modelled (M) concentrations are paired
in time for these statistics, which are: r correlation co-
efficient, IOA index of agreement, a slope, b intercept
of the linear best fit line (with observations along the x

axis), FB fractional bias, and RMSE root mean square er-
ror. FB = 2(Ō − M̄)/(Ō + M̄), which varies between −2
(overestimation) and +2 (underestimation), and IOA = 1−[
(M −O)2/(|M − Ō| + |O − Ō|)2

]
, where 0 is no agree-

ment and 1 is perfect agreement. The IOA, unlike r , is sen-
sitive to differences between the observed and model means
as well as to certain changes in proportionality.

Compared to the case with the bottom-up emissions, the
inferred emissions improve the prediction of methane con-
centration at Ironbark, except for a slight decrease in correla-
tion. At Burncluith, the improvement is limited to the slope.
Note that these statistics are dominated by lower-end concen-
trations which are much more numerous than the higher-end
concentrations. The q-q plots in Fig. 15 on the other hand
tend to emphasise more model performance for a relatively
small number of higher-end concentrations.

Some deterioration in the model performance when the in-
ferred emissions are used could be caused by the 11× 11
source distribution representing the emissions in the do-
main being rather coarse (compared to 69× 69 used for the
bottom-up emissions). Considering the performance statis-
tics in Table 1 and the q-q plots in Fig. 15c and f, the Case 3c
inversion is our best estimate of emissions.

7.3 Emissions from the CSG area

Given the focus on CSG activity related emissions in the
Surat Basin, we compare the aggregate bottom-up and in-
ferred emissions from the CSG areas, many of which are con-
centrated near and between the two monitoring stations. The
subdomain that includes all the CSG sources in the study area
is shown in Fig. 16, which is an area of about 18 260 km2,
15 % of the study domain, and covers 19 of the 121 source
grids considered. The CSG subdomain also contains emis-
sions from other sectors (see Fig. 3).
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Figure 15. q-q plots showing the sorted hourly observed versus sorted modelled CH4 at the Ironbark and Burncluith monitoring stations. The
forward modelled concentrations utilise emission estimates from the Case 1, 2, and 3 inversions. The forward model concentrations obtained
using the bottom-up emissions are also shown (grey line). The dashed 1 : 1 line represents perfect agreement.

Figure 16. Subdomain of the study area that covers all the CSG
source areas (shaded grid cells) included in the bottom-up emission
inventory. It covers 19 of the 121 source grids (each with a source
footprint of 31 km× 31 km) considered in the inverse modelling.

The total bottom-up inventory emissions from the CSG
sub-domain is 47.7× 106 kg yr−1 (cf. 173.2× 106 kg yr−1

for the study domain), whereas that obtained using the in-
version (Case 3c, Fig. 13c) is (63.6± 4.7)× 106 kg yr−1 (cf.
165.8× 106 kg yr−1 for the study domain), which is 33 %
larger than the former. The total bottom-up emission for this
subdomain is dominated by CSG (34.7 %, of which 30.6 % is
due to CSG processing), followed by grazing cattle (29.9 %),
feedlots (23.5 %), and coal mines (7.7 %), which together ac-
count for 95.8 % of the emissions from this area. Since the
inverse methodology does not differentiate between source
sectors, emissions from individual sectors cannot be inferred.
Considering that the grazing cattle emissions are diffuse
sources and thus not likely responsible for peaks in the mea-
surements that dominate the inverse estimates, and since
feedlots are scattered throughout the domain (Fig. 3c), in-
cluding the non-CSG areas from where there is no general
inference of higher emissions, it is plausible that the increase
in the inferred emissions would mainly correspond to CSG
as the source sector.

A considerable portion of the CSG emissions is in the area
between the two monitoring stations. The inferred emissions
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in this area are much greater than the corresponding bottom-
up inventory emissions. However, this area also has signifi-
cant coal mining emissions nearby (Fig. 3d), and it is possible
that the methane emissions from a combination of these two
source sectors are much larger than the inventory emissions.

Conversely, the total bottom-up inventory emissions from
the rest of the study domain (i.e. the non-CSG subdo-
main) is 125.5× 106 kg yr−1, whereas that obtained using
the inversion from Case 3c is (102.2± 4.8)× 106 kg yr−1

which is 18.5 % lower than the former. The total bottom-
up emission for the non-CSG area is dominated by graz-
ing cattle (62.7 %), followed by feedlots (24.8 %) and coal
mines (8.6 %), which together account for 96.1 % of the
emissions from this area. It is possible that the emis-
sion factor of 84 kg CH4 animal−1 yr−1 for Australian graz-
ing cattle (Harper et al., 1999) used in the bottom-up in-
ventory (see Supplement Sect. S6) is an overestimate (cf.
51 kg CH4 animal−1 yr−1 for beef cattle (pasture) reported
by the Australian National Inventory Report (NIR, 2017) or
63 kg CH4 animal−1 yr−1 for non-dairy cattle for Oceania re-
ported by the IPCC, 2019), and that would be consistent with
a lower top-down methane emission from the non-CSG area
compared to the inventory. This also means that the CSG
component of the top-down emissions in CSG sub-domain
could be higher to compensate for the lower grazing cattle
emissions if a lower emission factor for grazing cattle is used.

Apart from the uncertainties associated with the bottom-up
emissions, potential methane emissions from some sources,
namely wetlands (the amount of which in the area is very
limited; https://wetlandinfo.des.qld.gov.au, last access: 4 De-
cember 2020), land clearing, termites, material handling and
fuel usage related to mining activities, groundwater wells,
and biomass burning, are not part of the bottom-up emis-
sions. In contrast, all CH4 sources are implicitly represented
in the inversions, apart from the biomass burning events
which have been filtered out using the CO filter. It is difficult
to pinpoint which source sectors might be underrepresented
in the bottom-up inventory without some kind of source dis-
crimination, for instance, through the use of tracers such as
the CH4 isotopes.

7.4 Temporal variation of the inferred emissions

Here we apply the inverse model with the Case 3c settings
(as used for Fig. 13c with 3 % prior uncertainty relative
to the mean) to 3-monthly measurement blocks within the
measurement period (July 2015–December 2016) in order to
examine potential temporal variation of the inferred emis-
sions, bearing in mind that for a 3-monthly simulation the
amount of concentration data supplied to the Bayesian inver-
sion is much less than that for the full simulation. Figure 17a
presents the 3-monthly variation of the inferred emissions
as kg CH4 yr−1 (bar plots) for ease of comparison, along
with the time-invariant bottom-up inventory emissions (red
line) and inferred emissions from Case 3c (blue line). The 3-

monthly emission rates are within 165–180 kg yr−1 and are
generally larger than the time-invariant inferred emissions
obtained using the measurements from the full period. We
believe that this is at least partly because as the amount of
information supplied to the inversion reduces, the inferred
emissions are not modulated to the same extent as that for the
full period, and thus they tend to move closer to the bottom-
up inventory which is used as a prior. Another related reason
could be the narrowing of the amount of source area repre-
sented by the source–receptor relationship because of sea-
sonal winds falling in relatively narrow directional sectors
compared to the broader wind rose for the full period.

Figure 17b is the same as Fig. 17a but for the CSG sub-
domain. The 3-monthly inferred emissions lie between the
bottom-up inventory value and the time-invariant inferred
value. Again, as in Fig. 17a, 3-monthly inferred emissions
push towards the inventory value.

Figure 17c is the same as Fig. 17a but for the non-CSG
subdomain (which is dominated by grazing cattle emissions
(62.7 %) as per the bottom-up inventory). In this plot, we also
present a 3-monthly climatological average (1992–current
2020) of rainfall at the Dalby airport (location 27.16◦ S,
151.26◦ E), located next to the town of Dalby, within the
study domain. The rainfall data were obtained from the Aus-
tralian Bureau of Meteorology (from http://www.bom.gov.
au/climate/averages/tables/cw_041522.shtml, last access: 4
December 2020). There is a good correlation (r = 0.79) be-
tween the 3-monthly inferred non-CSG methane emission
and the rainfall, suggesting that the inferred emission vari-
ation could, to some extent, be attributed to the seasonal-
ity of rainfall which would influence areas such as pasture
growth and thus methane emissions from grazing. This cor-
relation for the 3-monthly inferred emissions for the full do-
main (Fig. 17a) is 0.71 and it is −0.06 for those from the
CSG subdomain (Fig. 17b). It is reasonable to assume that
the higher the rainfall the higher the grazing cattle emissions,
and in that case these r values indicate that the seasonal vari-
ability in the inferred emissions within the full domain is, to
a lesser degree, also influenced by such emissions. However,
the inferred emission seasonality within the CSG area does
not correlate with rainfall, meaning that the emission season-
ality is possibly dominated by the CSG sources.

Another potential contributor to the temporal variability
in the inferred emissions in Fig. 17 is the seasonality of the
winds, which influences the source–receptor relationships.

The uncertainties in the inferred seasonal emissions
Fig. 17 is around 5 % of the mean – a relatively small value
largely the result of a tight prior.

To test how well the temporal variation of the inferred
emissions represents reality, we conducted a forward TAPM
run using these emissions, and the resulting q-q plots (red
dots) are shown in Fig. 18. The methane data at Burncluith
are best described by these 3-monthly varying emissions
compared to any other emission setup, but at Ironbark, these
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Figure 17. Three-monthly variation of the inferred emissions (bar plots), including 1 standard deviation uncertainty (∼ 5 % of the mean),
for (a) the full study domain, (b) the CSG subdomain, and (c) the non-CSG subdomain. The respective time-invariant bottom-up inventory
emissions (red line) and the time-invariant inferred emissions from the Case 3c inversion (Fig. 13c) are also shown. Note the emission units.
In (c), a 3-monthly climatological average (1992–current 2020) of rainfall at the Dalby airport located within the study domain is also shown.

emissions underestimate the data (the inversion setup corre-
sponding to Fig. 15c best describes the Ironbark data).

Given the rapid rise in the CSG production in the Surat
Basin, one may deduce that the 2016 CSG methane emis-
sions were larger than the 2015 bottom-up emissions and,
therefore, could potentially explain the top-down emissions
in the CSG area being higher than the inventory emissions.
Figure 19 shows that compared to July–December 2015, the
total CSG produced was higher by 32 % during January–
June 2016 and by 45 % during July–December 2016, which
correlates with an increase in the number of CSG production
wells in the area (data from https://www.data.qld.gov.au/
dataset/petroleum-gas-production-and-reserve-statistics,
last access: 4 December 20201). However, Fig. 19 also
shows that there is a downward trend in the amount of
flared/vented gas. Considering, based on the bottom-up
inventory in Sect. 3, that venting (from processing) is the
biggest contributor (88 %) followed by flaring (8 %; from
both processing and production) to the total CSG methane
emissions, it is plausible that despite the increase in the CSG
development in the area the CSG-related methane emissions
have not increased and that they may have even gone down.
The temporal variation of the inferred emissions in Fig. 17b
for the CSG-dominated area also does not indicate any
consistent increase in emissions from 2015 to 2016. Thus,
the 33 % higher top-down emission estimate from the CSG
area compared to the inventory estimate cannot be explained
in terms of the growth in the CSG production from 2015 to
2016 and is possibly related to underestimated or missing
emissions in the inventory. This also implies that the emis-
sions from CSG may be more closely related to practices in
the industry than to the amount of CSG produced.

1This data file places the gas fields of Spring Gully and Peat
within the Bowen Basin, whereas in our bottom-inventory these are
part of the Surat Basin. This is because of how the gas field zones
and basin boundaries are defined. The gas fields included in our
study are based on their geographic locations relative to the square
study domain selected. Adding these two gas fields to the Surat
Basin does not change the trends shown in Fig. 19.

7.5 Sensitivity of the inversion to background methane

Figure 4 shows that there is a slight difference in the es-
timated background CH4 levels between the two monitor-
ing locations, with the Ironbark background methane larger
by 1 ppb on average than Burncluith and the standard devi-
ation of the background differences being 1.4 ppb, the lat-
ter comparable to the background concentration uncertainty
(= 3.5 ppb) considered in the inversion.

We conducted an inversion sensitivity test with the same
model setup as that for Fig. 13c (Case 3c), except that in-
stead of using the background time series that was averaged
over the two sites, we used the respective background time
series for the two sites. The results were virtually the same
compared to Fig. 13c, other than some insignificant changes
in areas with low emissions. Table 2 gives the annual inferred
emissions, which show no sensitivity.

Our background methane calculation methodology as-
sumes that under very vigorous atmospheric mixing condi-
tions in the daytime, the measured concentrations within the
study domain represent methane levels both within and out-
side the domain boundaries, so that the measured concentra-
tions can be taken to represent the background under such
conditions. Because the background concentration is calcu-
lated from the measurements within the source region un-
der study, there is a possibility that the real background is
potentially lower than what we have used. To examine this,
another inversion sensitivity test was conducted by using an
alternate methane background time series (with all other set-
tings the same as the final Case 3c inversion), and this is de-
scribed in detail in the Supplement Sect. S5. Essentially, the
alternate background was constructed using the original av-
eraged background from the two sites and the marine base-
line methane measurements from the Cape Grim Baseline
Air Pollution Station (https://capegrim.csiro.au, last access:
4 December 2020), located on the north-western tip of Tas-
mania (40.7◦ S, 144.7◦ E). The marine baseline methane rep-
resents concentration levels without the direct influence of
the continental sources. The alternate background falls be-
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Figure 18. q-q plots showing the sorted hourly observed versus sorted modelled CH4 at the two monitoring stations. The modelled concen-
trations are predicted using the time-invariant inferred emissions from the Case 3c inversion (with 3 % uncertainty in the prior relative to
the mean; blue dots); the 3-monthly inferred emissions (red dots); and the bottom-up inventory emissions (grey dots). The dashed 1 : 1 line
represents perfect agreement.

Table 2. Inferred methane emissions (× 106 kg yr−1) obtained using the methane background averaged over the two sites (as used in the
paper, Case 3c), the individual methane background from the two sites, and the alternate methane background calculated using the Cape
Grim baseline methane data (see the Supplement Sect. S5). The values in the parentheses are % change over the inferred emissions using the
averaged background. The bottom-up inventory emissions are also included for comparison.

Selected background Total CSG Non-CSG
subdomain subdomain

Average background
(as used in this paper) 165.8 63.6 102.2

Separate backgrounds
from the two sites 164.8 (−0.6 %) 62.7 (−1.4 %) 102.1 (−0.1 %)

Alternate background
(see Sect. S5 in the Supplement) 177.0 (+6.8 %) 66.1 (+3.9 %) 110.9 (+8.5 %)

Bottom-up inventory
emissions 173.2 (+4.5 %) 47.7 (−25 %) 125.5 (+22.8)

Figure 19. Six-monthly trends of the total CSG produced,
amount of flared/vented gas, and number of wells in the Surat
Basin (based on data from https://www.data.qld.gov.au/dataset/
petroleum-gas-production-and-reserve-statistics, last access: 4 De-
cember 2020).

tween the average Surat background as used in the paper
and the Cape Grim baseline and is, on average, lower than
the original Surat background by 2.8 ppb. (On average, the

Cape Grim marine baseline was 8.4 ppb lower than the orig-
inal Surat background used.)

The inversion results in Table 2 show that compared to the
inferred emissions obtained using the original background
methane, the alternate background gives total emissions that
are 6.8 % higher, while the increase is smaller at 3.9 % in
the CSG subdomain and larger at 8.5 % in the non-CSG re-
gion. The overall increase is expected because the increase
in the measured concentrations by 2.8 ppb as a result of the
use of the alternate background needs to be accounted for
by the inversion by enhancing the amount of inferred emis-
sions. We also find that the amount of increase in the inferred
emissions with the alternate background is almost uniformly
spread through the study domain relative to the total emission
and that there are no significant spatial distributional shifts in
the inferred emissions with the two background choices.

There are possibly other and better ways of calculating the
background methane concentration, such as having methane
measurements at many locations around the perimeter of the
study domain (which is often subject to operational and bud-
get constraints) or modelling methane at a much larger scale,
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preferably global, with data assimilation, which could then
provide concentration boundary conditions needed for the re-
gional modelling.

8 Conclusions

This paper presented quantification of methane emis-
sions from the CSG-producing Surat Basin, an area
of 350 km× 350 km in Queensland, Australia. The 2015
bottom-up methane emission inventory served as a very use-
ful prior in our regional inverse methodology based on a
Bayesian inference approach that utilised hourly mean CH4
concentrations monitored at the Ironbark and Burncluith sta-
tions for 1.5 years, an hourly source–receptor relationship,
and an MCMC technique for posterior PDF sampling.

The largest contribution to the emissions in the bottom-
up methane inventory was from grazing cattle (∼50 %), cat-
tle feedlots (∼25 %), and CSG processing (∼ 8 %), with the
aggregate emissions in the study area being approximately
173.2× 106 kg CH4 yr−1. Although the forward transport
modelling with the bottom-up emissions yielded a credible
simulation of the suitably filtered observed methane concen-
trations, about 15 % of the higher-end concentration observa-
tions were underestimated.

The importance of specifying a suitable prior in the
Bayesian inference was made apparent by the synthetic
inversion, demonstrating the use of the bottom-up inven-
tory with a narrow uncertainty as being a good choice for
that purpose when only two monitoring locations avail-
able. For inversion with the real methane measurements, a
Gaussian prior having mean values taken the same as the
bottom-up emissions with an uncertainty equal to 3 % of
the mean yielded the best emission distribution, as evident
from its performance in faithfully reproducing the measured
methane concentration time series. This inverse setup yielded
a domain-wide emission of (165.8± 8.5)× 106 kg CH4 yr−1

which is very slightly less than the one obtained from
the bottom-up inventory. However, within a subdomain
covering all the CSG source areas, the inferred emission
(63.6± 4.7)× 106 kg CH4 yr−1 is 33 % larger than that de-
duced from the bottom-up inventory. The dominant localised
inventory emissions in this area are from CSG, followed by
feedlots. Since feedlots are scattered throughout the domain
including the non-CSG areas from where there is no indica-
tion of higher emissions, it is plausible that the increase in
the inferred emissions would mainly correspond to CSG as
the source sector.

Despite the amount of concentration data going into the
seasonal inversion being relatively limited, the inferred sea-
sonal variation of methane emissions from the non-CSG sub-
domain correlated well with climatological seasonal rainfall
in the area, suggesting a possible link with the seasonality of
agricultural emissions. This correlation was almost zero for

the CSG subdomain, possibly due to the CSG sources domi-
nating the seasonality.

There was some sensitivity to the background methane
concentration observed in the inversion, and we believe that
further approaches to the background calculation are neces-
sary for regions like the Surat Basin.

The source–receptor relationship showed that having only
two monitoring stations is inadequate for sampling distant
source areas within the large study domain, especially areas
in the south-eastern and north-western corners (the network
design for the two monitoring stations mainly focused on the
central CSG regions). Lengthening the measurement period
to sample these areas better would not have helped because
the wind climatology of the area is not likely to change con-
siderably. When source areas are not sampled well, one may
impose stricter priors that are more credible than the inferred
emissions or alternatively increase the number of stations.
The former strategy is probably reflected in our use of a small
uncertainty in the prior (i.e. 3 % of the mean) for the best
inversion case. A smaller prior uncertainty pushes the inver-
sion more towards the prior itself, with distant source areas
not sampled sufficiently by the network sites looking like the
prior distribution.

The inverse methodology could not distinguish between
different source categories, mainly because the concentration
of methane alone was monitored and not tracers specific to
methane source types. To do source discrimination and attri-
bution, monitoring of tracer species such as methane isotopes
(13CH4, CH3 D, and 14CH4) or other hydrocarbons in cases
where they are associated with the source gas would prove
useful when suitable sampling systems or instrumentation for
field deployment become available.

The methods developed in this study could be used to im-
prove the monitoring and management of greenhouse gas and
other air emissions from the onshore gas industry, including
that in the Surat Basin. They provide independent informa-
tion to industry and communities living in gas development
regions on one of the main environmental impacts potentially
arising from onshore gas developments. Improved quantifi-
cation of methane emissions on the regional scale is an im-
portant step in emissions reductions from the onshore gas
sector and possibly other industries. The present top-down
method is particularly suited to distributed emissions with
potentially unknown locations across a large geological gas
reservoir and gas production infrastructure. If monitoring is
deployed before gas exploration and production begins then
a baseline would be established from which emissions from
the industry might be detected. Ongoing top-down quantifi-
cation, with monitoring stations located close to where emis-
sions appear and with source-specific information from trac-
ers could provide the information necessary to validate emis-
sions from the gas industry to support greenhouse gas inven-
tories.
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