Articles | Volume 20, issue 23
Atmos. Chem. Phys., 20, 14597–14616, 2020
https://doi.org/10.5194/acp-20-14597-2020
Atmos. Chem. Phys., 20, 14597–14616, 2020
https://doi.org/10.5194/acp-20-14597-2020

Research article 01 Dec 2020

Research article | 01 Dec 2020

Air quality impact of the Northern California Camp Fire of November 2018

Brigitte Rooney et al.

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Yuan Wang on behalf of the Authors (20 Sep 2020)  Author's response    Manuscript
ED: Publish as is (30 Sep 2020) by Joshua Fu
AR by Yuan Wang on behalf of the Authors (02 Oct 2020)  Author's response    Manuscript
Download
Short summary
Wildfires have become increasingly prevalent. Intense smoke consisting of particulate matter (PM) leads to an increased risk of morbidity and mortality. The record-breaking Camp Fire ravaged Northern California for two weeks in 2018. Here, we employ a comprehensive chemical transport model along with ground-based and satellite observations to characterize the PM concentrations across Northern California and to investigate the pollution sensitivity predictions to key parameters of the model.
Altmetrics
Final-revised paper
Preprint