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Abstract 15 

The Northern California Camp Fire that took place in November 2018 was one of the most damaging 

environmental events in California history. Here, we analyze ground-based station observations of airborne particulate 

matter that has a diameter < 2.5 micrometers (PM2.5) across northern California and conduct numerical simulations of 

the Camp Fire using the Weather Research and Forecasting model online coupled with Chemistry (WRF-Chem). 

Simulations are evaluated against ground-based observations of PM2.5, black carbon, and meteorology, as well as 20 

satellite measurements, such as Tropospheric Monitoring Instrument (TROPOMI) aerosol layer height and aerosol 

index. The Camp Fire led to an increase in Bay Area PM2.5 to over 70 µg m-3 for nearly two weeks, with localized 

peaks exceeding 300 µg m-3. Using the Visible Infrared Imaging Radiometer Suite (VIIRS) high resolution fire 

detection products, the simulations reproduce the magnitude and evolution of surface PM2.5 concentrations, especially 

downwind of the wildfire. The overall spatial patterns of simulated aerosol plumes and their heights are comparable 25 

with the latest satellite products from TROPOMI. WRF-Chem sensitivity simulations are carried out to analyze 

uncertainties that arise from fire emissions, meteorological conditions, feedback of aerosol radiative effects on 

meteorology, and various physical parameterizations, including the planetary boundary layer model and the plume 

rise model. Downwind PM2.5 concentrations are sensitive to both flaming and smoldering emissions over the fire, so 

the uncertainty in the satellite derived fire emission products can directly affect the air pollution simulations 30 

downwind. Our analysis also shows the importance of land surface and boundary layer parameterization in the fire 

simulation, which can result in large variations in magnitude and trend of surface PM2.5. Inclusion of aerosol radiative 

feedback moderately improves PM2.5 simulations, especially over the most polluted days. Results of this study can 

assist in the development of data assimilation systems as well as air quality forecasting of health exposures and 

economic impact studies. 35 

1 Introduction 

Wildfires have become increasingly prevalent in California. It has been reported that between 2007 and 2016, as 

many as 3672 fires occurred in California, consuming up to 434,667 acres (Pimlott et al., 2016). Increasingly, the 

population has expanded into high fire-risk areas and near wildland-urban interfaces (Brown et al., 2020). The intense 

smoke consisting of airborne particulate matter of diameter < 2.5 micrometers (PM2.5) associated with these fires leads 40 

to an increased risk of morbidity and mortality (Cascio, 2018).  PM2.5 from wildfires consists of a spectrum of light 

scattering and absorptive particles largely comprising organic and black carbon. It is increasingly important to 

understand the cause and nature of wildfires as the number of extreme events and the length of the wildfire season 

continue to grow (Kahn, 2020; Shi et al., 2019). Fire-related studies have estimated exposures to PM2.5 based on 

ground-level monitoring-station measurements (Shi et al., 2019; Herron-Thorpe et al., 2014; Archer-Nicholls et al., 45 

2015). Spatial coverage of such monitoring stations often tends to be scarce, especially in rural areas. Satellite remote 

sensing offers a powerful method to monitor air quality during fire events. One study used radiance measurements 

from the TROPOspheric Monitoring Instrument (TROPOMI) to derive atmospheric carbon monoxide and assess the 

resulting air quality burden in major cities due to emissions from the California wildfires from November 2018 

(Schneising, et al., 2020). Ideally, analysis of fire events is based on a combination of satellite-based measurements 50 
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and ground-level observations to obtain spatial and temporal distributions of emissions. The Camp Fire of November 

2018 was, to date, the deadliest and most destructive wildfire in California (Kahn, 2020; Brown et al., 2020). 

Originating along the Sierra Nevada mountain range, smoke from the fire spread across the Sacramento Valley to the 

San Francisco Bay Area. Peak levels of PM2.5 in the San Francisco area exceeded 200 µg m-3 and remained above 50 

µg m-3 for nearly two weeks. 55 

Numerous studies have addressed wildfire events using a variety of model frameworks and data sources (Shi et 

al., 2019; Herron-Thorpe et al., 2014; Archer-Nicholls et al., 2015; Sessions et al., 2011).  Shi et al. (2019) used the 

WRF-Chem model with Moderate Resolution Imaging Spectroradiometer (MODIS) and VIIRS fire data to study the 

wildfire of December 2017 in Southern California. Herron-Thorpe et al. (2014) evaluated simulations of 

the wildfires in the Pacific Northwest of 2007 and 2008 using the Community Multi-scale Air Quality (CMAQ) 60 

model with fire emissions generated by the BlueSky framework and fire locations determined by the Satellite Mapping 

Automated Reanalysis Tool for Fire Incident Reconciliation (SMART-FIRE). That study suggested that 

underprediction of PM2.5 was the result of underestimated burned area as well as underpredicted secondary organic 

aerosol (SOA) production and incomplete speciation of SOA precursors within the CMAQ model. Archer-Nicholls et 

al. (2015) simulated biomass burning aerosol during the 2012 dry season in Brazil using WRF-Chem and fire 65 

emissions prepared from MODIS. That study proposed that biases in the model were likely a result of uncertainty in 

the plume injection height and emissions inventory, as well as simulated aerosol sinks (e.g., wet deposition), and lack 

of inclusion of SOA production in the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC). Sessions 

et al. (2011) investigated methods for injecting wildfire emissions using WRF-Chem. That study tested two fire data 

preprocessors: PREP-CHEM-SRC (included with WRF-Chem) and the Naval Research Laboratory’s Fire Locating 70 

and Monitoring of Burning Emissions (FLAMBE), and three injection methods: the 1-D plume rise model within 

WRF-Chem, releasing emissions only within the planetary boundary layer, and releasing emissions between 3 and 5 

km. That study compared results from simulating wildfires during the NASA Arctic Research of the Composition of 

the Troposphere from Aircraft and Satellites (ARCTAS) field campaign in 2008 with satellite data. Sessions et al. 

(2011) found that differences in injection heights result in different transport pathways.  75 

The present study is a comprehensive investigation of air quality impacts of the Camp Fire using a combined 

analysis of ground-based and space-borne observations and WRF-Chem simulations. Descriptions of the observation 

and model are presented in Section 2; model evaluation is presented in Section 3; results of analysis are given in 

Section 4, followed by discussion and conclusion in Section 5. 

2 Model Description and Observational Data 80 

The present study employs WRF-Chem (version 3.8.1) driven by the latest version of meteorological reanalysis 

data for initialization and boundary conditions. Fire emissions are determined by pairing active fire location data from 

VIIRS Satellite with the Brazilian Biomass Burning Emission Model (3BEM), which calculates species mass 

emissions from the burned biomass carbon density, combustion factors, emission factors, and the burning area. WRF-

Chem simulations are evaluated against EPA surface observations and TROPOMI satellite products.  85 
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2.1 WRF-Chem Configuration 

The WRF-Chem simulation time period is 7 November 2018 (a day before the fire began) to 22 November 2018 

(when the fire was 90% contained). We carried out simulations over two domains (Fig. 1): Domain 1 includes all of 

California at 8 km × 8 km horizontal resolution, while Domain 2 covers Northern California at 2 km × 2 km horizontal 

resolution. 49 vertical layers are used from the surface to 100 hPa with 50 m vertical resolution in the planetary 90 

boundary layer. The meteorological boundary and initial conditions for the outer domain are generated from the fifth 

generation of European Centre for Medium-range Weather Forecasts (ECMWF) Re-Analysis dataset (ERA5) at 30 

km × 30 km resolution (Copernicus Climate Change Service, 2017). Chemical boundary and initial conditions for the 

outer domain are generated from the Model for Ozone and Related Chemical Tracers version 4 (MOZART-4) 

(University Corporation for Atmospheric Research, 2013).  95 

We use physical options of the Noah Land-Surface Model (Tewari et al., 2004), the Mellor-Yamada-Janjic (MYJ) 

boundary layer scheme (Janjic, 1994), and the RRTM (longwave) and Dudhia (shortwave) radiative transfer 

schemes (Dudhia, 1989). Cumulus parameterization is not included. The second-generation Regional Acid Deposition 

Model (RADM2) chemical mechanism coupled with the Modal Aerosol Dynamics model for Europe (MADE) and 

Secondary Organic Aerosol Model (SORGAM) (Zhao et al., 2011) are employed. Aerosol optical properties are 100 

calculated based on the volume approximation, for which the volume average of each aerosol species is used to 

calculate refractive indices (Jin, et al., 2015).  Aerosol radiative feedbacks on meteorology and chemistry are included 

in the simulations.   

We use the National Emission Inventory for anthropogenic emissions (US EPA, 2018). Biogenic emissions are 

calculated online using the Guenther scheme (Guenther et. al., 2006). Dust emissions are calculated online using the 105 

Goddard Chemical Aerosol Radiation Transport (GOCART) dust emission scheme with University of Cologne (UOC) 

modifications (Shao et al., 2011). Sea salt emissions are excluded. Technical details of wildfire emissions and the 

plume rise calculation are discussed in the next section.  

2.2 Fire Emissions Inventory and Plume Rise Model 

Wildfire emissions are generated using the PREP-CHEM-SRC v1.5 preprocessor (Freitas et al., 2011) employing 110 

the Brazilian Biomass Burning Emission Model (3BEM, Longo et al., 2010) with satellite data on detected fires. For 

each pixel with fire detected, the mass of emitted species is calculated by:  

𝑀[𝜂] = 𝛼𝑣𝑒𝑔 ⋅ 𝛽𝑣𝑒𝑔 ⋅ 𝐸𝐹𝑣𝑒𝑔
[𝜂]

⋅ 𝑎𝑓𝑖𝑟𝑒             (1) 

for a certain species η, where αveg is the carbon density (the mass of burnable above-ground biomass per unit area of 

vegetation), βveg is the combustion factor, EFveg is the emission factor by species and vegetation type, and afire is the 115 

burning area of each fire pixel. Vegetation type is generated from the MODIS data following IGBP land cover 

classification. Vegetation type-specific emission factors (EFveg) and combustion factors (βveg) are derived from Ward 

et al. (1992) and Andreae and Merlet (2001). Vegetation type-specific carbon density (αveg) is based on Olson et al. 

(2000) and Houghton et al. (2001).  Active fire detection is retrieved from the VIIRS fire product with 375 m spatial 
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resolution. A limitation of the VIIRS fire count product is its relatively low temporal resolution. As a polar-orbiting 120 

satellite, VIIRS provides fire detection during the daytime only once (about 13:30 local time) at each location.  

The emission preprocessor generates a file formatted for WRF-Chem containing the smoldering-

phase surface emission fluxes of each species, the fire size for each vegetation type, and flaming factor. Flaming factor 

is the ratio of biomass consumed in the flaming phase to biomass consumed in the smoldering phase. The 17 IGBP 

land cover classes are aggregated into four main types: tropical forest, extratropical forest, savanna, and grassland. The 125 

size of the wildfire and phase of combustion play important roles in the structure of the plume and the vertical 

distribution of emissions. Wildfire combustion is generally considered to occur in two phases: smoldering and 

flaming. Emissions from the smoldering phase are allotted to the first layer of the computational grid, while those 

from the flaming phase are released at injection heights above the surface, as determined by the plume rise model 

described below. Fire size determines the total surface heat flux, as well as the entrainment radius of the plume. Fire 130 

parameters are ascribed a daily temporal resolution and are distributed to the WRF-Chem domains. The fire 

parameters are then input to the plume rise model (Freitas et al., 2007, 2010). The plume rise model is a 1-

dimensional model implemented in each WRF-Chem grid cell with an independent vertical grid resolution of 100 m. 

It calculates the maximum height to which a plume reaches and distributes emissions therein (Fig. 2). The plume top 

height, determined by the surface heat flux from the fire and the thermodynamic stability of the atmospheric 135 

environment, is defined as the height at which the in-plume parcel vertical velocity < 1 m s-1. The plume rise model 

uses upper and lower bounds of heat fluxes determined by each land type to calculate the minimum and maximum 

plume top height.  Flaming emissions are distributed equally to each vertical level within the injection layer with the 

following calculation: Flaming Emission per Level = Smoldering Emission × Flaming Factor × DZ-1, where DZ = 

Maximum Plume Top Height – Minimum Plume Top Height.  The model also accounts for entrainment, water balance, 140 

and internal gravity wave damping. 

Figure 3 shows the fire size and particulate matter emissions produced from MODIS and VIIRS data. The Camp 

Fire burned primarily extratropical forest vegetation (which comprised 68% of the total burned area), followed by 

savanna (23% of total area). The flaming emission rate for species n from vegetation type v, is calculated by 

𝐹𝑙𝑎𝑚𝑖𝑛𝑔 𝑃ℎ𝑎𝑠𝑒 𝑅𝑎𝑡𝑒𝑛,𝑣 =  ∑ 𝐴𝑟𝑒𝑎𝑣 ∙ 𝑆𝑚𝑜𝑙𝑑𝑒𝑟𝑖𝑛𝑔 𝑃ℎ𝑎𝑠𝑒 𝐹𝑙𝑢𝑥𝑛 ∙ 𝐹𝑙𝑎𝑚𝑖𝑛𝑔 𝐹𝑎𝑐𝑡𝑜𝑟𝑣𝐹𝑖𝑟𝑒 𝐶𝑒𝑙𝑙𝑠        (2) 145 

At maximum, the carbon monoxide (CO) emission flux was 4.1 × 107 mol km-2 hr-1, and PM2.5 flux was 3.7 × 104 µg 

m-2 s-1. On average, 46% of the fuel burned is estimated to have been consumed during the flaming phase.  

Fire Inventory from NCAR (FINN) Version 1.5 (Wiedinmyer, 2011) is another fire emissions product that we 

will test in a sensitivity analysis. It is assembled for atmospheric chemistry models with a daily temporal resolution 

and a 1 km horizontal resolution. FINN is generated using satellite observations of active fires and land cover paired 150 

with emission factors and fuel loading estimates. The emissions are allocated to a diurnal cycle following WRAP 

(2005). FINN outputs the total wildfire emission flux, fire size, and land type fraction. As FINN does not include a 

smoldering-to-flaming phase ratio, the plume rise model calculates a ratio based on CO emissions.  

2.3 Surface and Satellite Observations 
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The observational data include both ground-based measurements and satellite observations. Meteorological and 155 

surface concentration data were obtained from the NOAA’s National Climatic Data Center (NCDC) and EPA Air 

Quality System (AQS), respectively. We focus on three areas: the region closest to the fire, the Sacramento Metro 

Area (population of 2.5 million), and the San Francisco Bay Area (population of 7 million). Hourly observations of 

wind speed at 10 m, wind direction at 10 m, temperature at 2 m, PM2.5, black carbon (BC), and CO are available 

for the sites shown in Fig. 1. We use level-2 products from the TROPOMI onboard the Copernicus Sentinel-5 160 

Precursor satellite (S5P) to evaluate the spatial and vertical distribution of predictions. We compare TROPOMI 

aerosol layer height retrievals (3.5 km × 7 km) with the predicted WRF-Chem height of maximum PM2.5, and 

ultraviolet aerosol index (UVAI, 3.5 km × 7 km) with the predicted WRF-Chem BC columns. The model results are 

sampled around 13:30 local time when S5P passes over California. 

2.4 Control and Sensitivity Simulations 165 

To investigate the effects of key model parameters on the ability to predict the atmospheric impact of the wildfire, 

we conduct a range of sensitivity simulations. As meteorology and atmospheric structure play important roles in plume 

dynamics and the transport of particulate matter, we separately perturb the aerosol radiative feedback to meteorology, 

the planetary boundary layer parameterization, and the plume entrainment coefficient. To understand further the extent 

to which fire characteristics provided by satellite data can affect the simulations, we analyze the influence of fire data 170 

sources, the emission rate, and partitioning between smoldering phase and flaming phase emissions. A summary of 

these simulations is provided in Table 1.  

Our evaluation focuses on the control simulation (S_CTRL). S_CTRL applies a factor of 3 to the smoldering 

emissions on 13 November and a factor of 2 to the smoldering emissions on 14-16 November due to the intermittent 

cloudy conditions over the northern California on those days. S_CTRL uses the native flaming factor and fire size 175 

products, the default entrainment constant of 0.05, and the Mellor-Yamada-Janjic planetary boundary layer scheme. 

In the following scenarios, one parameter is individually perturbed from this configuration. S_EMRAW uses the 

native emissions input with unaltered smoldering phase emissions, S_NOAERO turns off the aerosol radiative 

feedback to meteorological fields, S_FCTX2 doubles the flame factor for the entire simulation period (thus increasing 

flaming phase emissions without changing the smoldering phase), S_ENTR reduces the entrainment coefficient within 180 

the plume rise model from 0.05 to 0.02, and S_LSM employs an alternative land surface model and planetary boundary 

layer scheme. We perform another sensitivity simulation using FINN in place of VIIRS (S_FINN).  

3 Evaluation of Fire Simulations 

3.1 Meteorology 

The three spatial areas of our interest differ significantly in topography and meteorology. Figure 4 shows the 185 

averaged wind observations and S_CTRL predictions. S_CTRL captures general wind patterns and achieves strong 

correlation with observed temperatures in each of the areas (Fig. 5). In the first few days of the Camp Fire, the foothills 
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and the Sacramento area experienced strong northerly winds, while the Bay Area experienced northeasterly winds, 

both predicted by the simulation. Other distinct features like those on 11 November near the fire and in the Bay Area 

are also reproduced by S_CTRL with some bias in timing. In the Bay Area, winds were typically southerly at speeds 190 

less than 2 m s-1 and consistent through most of the simulation duration. In the relatively dry Sacramento Valley 

inland, winds were also predominantly southerly, but were calmer (< 1 m s-1) and varied more than those on the coast. 

After 11 November, the wind speeds were much slower. Coastal air regulates Bay Area temperatures, whereas the 

drier Sacramento area experiences a greater temperature range. S_CTRL also produced these relative characteristics, 

but, in general, generated faster winds and higher temperatures than those observed. A summary of model performance 195 

statistics is provided in Table 2. The complex terrain of the Bay Area and the Sierra Nevada Foothills near the fire 

location likely contribute to uncertainty in predicting meteorological parameters. Note that the 4-5 K mean biases in 

the regional surface temperature (T) are non-negligible. Fig. 5 shows that the largest biases mainly occur during the 

night when the hourly temperature reaches the minimum during the day (deviation from the 1:1 line), while the 

daytime temperature matches relatively well with the observations (close to the 1:1 line). However, it is important to 200 

realize that the nighttime temperature biases have little influence on the PM simulations we focus on. The temporal 

evolutions of observed PM near Sacramento and the Bay Area do not show a clear diurnal cycle (Fig. 6), nor do the 

modeled PM biases, as shown in the next section. 

3.2 Surface-Level Particulate Matter 

Figure 6 shows the predicted evolution of surface PM2.5 from AQS observations and S_CTRL over the period of 205 

the wildfire. Within hours of the onset of the Camp Fire, observed PM2.5 concentrations in Sacramento and the San 

Francisco Bay Area (130 and 240 km downwind) increased from below the National Ambient Air Quality Standard 

(NAAQS) 24-h average of 35 µg m-3 to 50 µg m-3. Both areas remained above the standard for more than a week, 

reaching values of three times the standard for multiple days. The region near the fire, Sacramento, and the San 

Francisco Bay Area were each out of attainment of the NAAQS 24-h average of PM2.5 for 11, 11, and 12 days, 210 

respectively, during 7-20 November, while S_CTRL predicted 12, 11, and 11 days, respectively. Much of northern 

California did not return to attainment until 22 November when the wildfire reached 90% containment. Table 3 

summarizes the ability of S_CTRL to reproduce observed values of surface PM2.5 in the three focus areas and at 

stations 27 and 28 in the Bay Area. The model prediction exhibits a mean bias of 64.8 µg m-3 in the region of the 

Camp Fire, -11.4 µg m-3 in Sacramento, and -16.8 µg m-3 in the Bay Area. Mean bias was smaller at some individual 215 

monitoring stations, such as Station 27 and 28 that has mean bias of -9.9 µg m-3 and -6.2 µg m-3, respectively. In the 

broader area near the fire, S_CTRL significantly overestimates surface PM2.5, reaching nearly 1 mg m-3 while observed 

concentrations peaked closer to 300 ug m-3. However, S_CTRL shows a similar temporal trend to that observed, 

capturing many peak times.  The Sacramento area experienced maxima near 300 µg m-3, while the Bay Area reached 

around 200 µg m-3. S_CTRL shows good agreement of the magnitude and temporal evolution of surface PM2.5 in the 220 

Bay Area and Sacramento for most days, with the exception of 10 November and 14-16 November (to be discussed 

subsequently). Time series of observed and predicted surface CO and BC in the Bay Area are shown in Fig. 7. Again, 

S_CTRL shows good agreement with the magnitude and trend of both species. While PM2.5 is largely underpredicted 
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in the period of 14-16 November, BC is over predicted by 5-10 µg m-3 at peaks. S_CTRL also produces positive bias 

in surface CO over 16-18 November.  225 

Error in surface PM2.5 can, in part, be attributed to error in the predicted wind fields. In the latter hours of 8 

November near the Camp Fire, S_CTRL predicts southerly winds, while observations are steadily northerly, leading 

to some return of initially transported plume. Again, on 11 November, predicted winds show a dramatic reversal, and 

surface PM2.5 spikes. In Sacramento on 10 November, observed and predicted northerly winds at midday initially lead 

to increased PM2.5 concentrations, but winds swing southerly in the later hours. On 13 November, observed winds 230 

blow south and transport emissions to Sacramento, while S_CTRL predicts winds in the opposing direction, leading 

to an underprediction in PM2.5. However, error in predicted wind fields does not explain the substantial 

underprediction of surface PM2.5 in the Bay Area over 14-16 November, as the station-averaged winds of the area do 

not show significant deviation from observations. We tested the Four-Dimensional Data Assimilation (FDDA) of 

large-scale horizontal wind from the ERA5, but it could not reduce the aforementioned biases in wind, possibly due 235 

to the fact that the observed wind patterns are driven by some mesoscale or even local-scale dynamics. 

To study the structural evolution of the wildfire plume, we compare simulated total black carbon column with 

TROPOMI UVAI satellite retrievals (Fig. 8). TROPOMI UVAI is based on the difference between wavelength-

dependent Rayleigh scattering observed in an atmosphere with aerosols and that of a modeled molecular atmosphere 

(Stein Zweers et al., 2018). This difference is measured in the UV spectral range where ozone absorption is small. A 240 

positive residual (red coloring) indicates the presence of UV-absorbing aerosols, like black carbon (BC), while a 

negative residual (blue coloring) indicates presence of non-absorbing aerosols. As WRF-Chem does not generate an 

aerosol index parameter, we compare UVAI to total BC column, a significantly absorbing aerosol. Over the period of 

the simulation, broad characteristics and shape, as well as some more distinct features, of the Camp Fire plume are 

reproduced by S_CTRL. Using similar input data sources and WRF-Chem configuration, but a simpler plume rise 245 

model, Shi et al. (2019) also capture the general shape of the plume, but underestimate aerosol magnitude. 

Discrepancies in S_CTRL plume transport correlate to bias in surface PM2.5. On the first day of the fire, observations 

show that strong winds in northern California drag the plume west, where steady coastal winds transported the plume 

south and inland again (Fig. 8). The dynamics creates a dense plume with two narrow stretches. S_CTRL predictions 

of total BC column fail to capture the hook-shape present in the UVAI retrievals but reflect the two separate stretches 250 

of narrow plume. The simulation constrains one stretch to the valley, leading to overprediction of surface PM2.5 in 

Sacramento on 8 November (Fig. 6b). On 11 November, the simulation does not reproduce the second band of the 

plume which wraps along the coast and towards San Francisco; rather, the plume remains more concentrated to the 

Sacramento Valley again. This leads to underprediction of surface PM2.5 in the Bay Area and overprediction in 

Sacramento (Fig. 6b and c). The narrow PM2.5 peaks of S_CTRL on 14-16 November in Sacramento can likely be 255 

attributed to the more pronounced plume on 14 November and 16 November. A stark horizontal gradient of fire 

emissions could restrict accumulation of PM2.5 averaged over the Sacramento region. 

To investigate the predicted decrease of surface PM2.5 in the Bay Area in the afternoon of 14 November, we 

individually analyze station 27 (Fig. 9). Figure 9 shows the vertical profile of S_CTRL PM2.5 concentrations, the 
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observed and predicted surface PM2.5, and the observed and predicted wind fields. Additionally, Fig. 10 shows the 260 

spatial distribution of PM2.5 and surface winds of observations (a) and predictions (b) at four times on 14 November. 

In the late morning at station 27, observed winds become northeasterly and PM2.5 spikes as more particle-laden air 

flows westward (Fig. 9). At the same time, S_CTRL winds also become northeasterly and PM2.5 increases accordingly. 

However, predicted winds reverse, and PM2.5 levels remain relatively low from midday 14 November to midday 15 

November. This behavior emerges as part of a larger flow pattern in Fig. 10. Throughout the morning of 14 November, 265 

the simulated wildfire plume approaches the Bay Area and is then driven back inland by a strong sea breeze in the 

afternoon, not present in the observational data. This behavior is demonstrated in the vertical profile of PM2.5 (Fig. 

9a). A column of clean air flushing the Bay Area leads to a predicted bias of -50 µg m-3 on 15 November.  

3.3 Aerosol Vertical Profile 

The TROPOMI ALH retrieval represents vertically localized aerosol layers within the free troposphere in cloud-270 

free conditions and is designed to capture aerosol layers produced by biomass burning aerosol (such as wildfires), 

volcanic ash, and desert dust (Apituley et al., 2019). ALH is retrieved based on the significant effect of aerosol vertical 

structure on the high spectral resolution observations in the O2-A band in the near-infrared (759 to 770 nm). The ALH 

algorithm includes a spectral fit estimation of reflectance across the O2 A band using the Optimal Estimation retrieval 

method with primary fit parameters of aerosol layer mid pressure and aerosol optical thickness (de Graaf et al., 2019). 275 

The assumed aerosol profile is a single uniform scattering layer with a fixed pressure thickness, constant aerosol 

volume extinction coefficient, and constant aerosol single scatter albedo. The mid pressure of the layer, defined as the 

average of the top and bottom pressures, is converted to altitude with a temperature profile. This parameterization is 

best suited for aerosol profiles dominated by a sole elevated and optically thick aerosol layer, which is characteristic 

of wildfire plumes.  280 

We compare the satellite-derived aerosol layer height to WRF-Chem predictions of PM2.5 using two methods. We 

define the smoke aerosol layer with a PM2.5 threshold concentration of 3 µg m-3. For the first method, the layer height 

is calculated as the average of heights at which PM2.5 is greater than the threshold. For the second method, these 

heights are weighted by BC mass. Figure 11 shows the satellite-derived layer height (a) and the S_CTRL model bias 

of average heights (b) and mass weighted average heights (c). TROPOMI layer heights are generally 1 to 2 km and 285 

reach greater than 6 km in some instances. Using purely averaged heights, S_CTRL typically overpredicts ALH by 

100 to 400 m and remains within a smaller range than TROPOMI. S_CTRL layer heights weighted by BC mass are 

lower, thus improving agreement with the satellite. Note that the reported retrieval bias in TROPOMI ALH is about 

780 m for wildfire emission plumes and 1.75 km over land generally (Nanda et al., 2020), so the above model-satellite 

differences in ALH are within the . Archer-Nicholls et al. (2015) and Sessions et al. (2011) also reported overpredicted 290 

aerosol layer heights using WRF-Chem when compared to airborne data and Multi-angle Imaging Spectro Radiometer 

MISR stereo heights, respectively. Using CMAQ, however, Herron-Thorpe et al. (2014) reported underpredicted 

heights when compared to Cloud-Aerosol Lidar with Orthogonal Polarization CALIOP products. Archer-Nicholls et 

al. (2015) found that error in plume injection height can contribute to error in surface PM, and that PM biases were 

dependent on vegetation type as carbon-density and heat release vary by vegetation. Location of the aerosol layer 295 
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within the column likely also contributes to error in surface predictions of PM2.5 in this study, however, the current 

analysis is inconclusive. The assumption of a single, elevated aerosol layer used in the TROPOMI ALH derivation 

may not be characteristic of the vertical structure predicted by WRF-Chem. As seen in Fig. 9 and 10 and in the vertical 

profile near the wildfire, layers of aerosol are commonly present at the surface and exist as multiple nonlocalized 

layers. Sessions et al. (2011) also found that using the FLAMBE fire data preprocessor with emission injection heights 300 

not constrained to the boundary layer resulted in better agreement with satellite products than PREP-CHEM-SRC. 

Consideration of the WRF vertical grid is also necessary when comparing surface level values. Further development 

of the analytic method used to evaluate WRF-Chem aerosol layer heights may provide insight into the behavior of the 

plume rise model and its vertical structure. 

4 Sensitivity Simulation Analysis 305 

We conduct sensitivity simulations to investigate the effects of various parameters on the ability of the WRF-

Chem model to accurately predict downwind PM concentrations from wildfires. As meteorological conditions and 

related boundary structure play important roles in plume dynamics and the transport of PM, we separately test the 

aerosol feedback to meteorology and the land surface model. To understand the extent to which fire characteristics 

provided by satellite data can affect the simulation, we analyze the fire product sources (VIIRS versus FINN), the total 310 

fire emissions, and the division between smoldering versus flaming phase emissions. To examine the influence of the 

plume rise model, we perturb a key parameter, the entrainment coefficient. 

4.1 Aerosol Radiative Feedback to Meteorology 

By absorbing and scattering solar radiation, aerosols can impact the radiative fluxes, cloud formation, and 

precipitation in the atmosphere (Wang et al., 2016; 2020), and, in turn, the meteorological conditions for aerosol 315 

formation, transport, and removal (Li et al., 2019). WRF-Chem has the option to couple aerosol-radiative direct effects 

with meteorology simulation. S_NOAERO uses the same input data and configuration as S_CTRL, but disables the 

aerosol radiative feedback. Figure 12 shows the evolution of surface wind speed and temperature throughout the 

wildfire near the source (a), in Sacramento (b), and in the Bay Area (c). The aerosol radiative impact on simulated 

meteorology is more pronounced for surface temperature than wind. When aerosol radiative feedbacks are noticeable, 320 

colder temperatures and calmer winds are found near the surface. Generally, feedbacks are more evident in the region 

closer to the fire sources with larger PM concentrations. Also, in the Bay Area, the largest changes in meteorology 

coincide with the largest differences in surface PM2.5 between the two scenarios (Fig. 13), which occurs when higher 

concentrations are predicted (10-11 November, 14-16 November). Consequently, the aerosol radiative feedback in 

WRF-Chem acts to stabilize the atmosphere, presumably due to the solar absorption by smoke aerosols and reduction 325 

of radiation reaching the surface (Wang et al., 2013). When taking the entire time period into account, the overall 

smoke radiative effect on meteorology is relatively small in the downwind region, like the Bay Area, even when 

aerosol concentrations are high. 

4.2 Fire Emission Inventory 
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Currently fire emission inventories generally have large uncertainty. Although wildfires have been studied for 330 

decades and there is vast literature characterizing biomass combustion emissions, there are large knowledge gaps in 

the composition of these emissions when a nontrivial fraction of the burnt area includes built environment comprising 

a vast array of non-biomass related materials. For the Camp Fire, there is a paucity of the types of burned land cover 

and fire emissions data required to incorporate these considerations into model simulations. WRF-Chem input fire 

files produced with VIIRS and PREP-CHEM-SRC include fire size, smoldering emission flux, and flaming factor. 335 

Here, we test the sensitivity of predictions to different emission dataset (FINN (S_FINN) versus VIIRS/MODIS), as 

well as emission injection parameters, such as the smoldering emission flux (S_EMRAW) and flaming factor 

(S_FCTX2). S_FINN produces very little aerosol, though it captures the timing of some peaks. The aerosol 

underestimation may be a result of bias in the emission inventory or an issue of its implementation in the plume rise 

model code, as FINN specifies total wildfire emissions rather than a smoldering and flaming distribution. 340 

When VIIRS emission inventory is used, the total wildfire emission flux can be altered through two parameters: 

the smoldering emission flux at the surface and the flaming factor. Directly increasing the smoldering emission flux 

adds emissions to the surface layer and increases flaming phase emissions proportionally. Figure 13 shows the impact 

of doubling smoldering emissions on 13 November and tripling them during 14-16 November. These changes to the 

inventory more than double concentrations of surface PM2.5 in the area of the wildfire and increase concentrations in 345 

the Bay Area by 20 to 60 µg m-3 during 14-16 November. Consequently, increasing input of total wildfire emissions 

improves the agreement of predictions with observations in Sacramento and the Bay Area, suggesting that some 

uncertainty may stem from satellite fire products. This finding is supported by Archer-Nicholls et al. (2015), as they 

applied a factor of 5 to scale up the wildfire emissions in their simulations. By modifying the flaming factor, we 

perturb only the emissions injected aloft by the plume, as emissions higher in the atmosphere may allow for greater 350 

transport downwind. By doubling the flaming factor over the full simulation duration, S_FCTX2 recovers 10-35 µg 

m-3 in the Bay Area 14-16 November (Fig. 13c), when S_CTRL substantially underpredicts PM2.5.  

4.3 Plume Rise Parameterization – Entrainment Coefficient 

The plume rise model parameterizes entrainment as proportional to the plume vertical velocity and inversely 

proportional to the plume radius (Freitas et al., 2010). Greater entrainment causes rapid cooling, such that near surface 355 

plume temperatures are only slightly warmer than the environment, lowering buoyancy and reducing the plume height. 

Larger wildfires generate less entrainment and reach higher injection heights. The parameterization also includes the 

effect of horizontal winds on entrainment. Strong wind shear can enhance entrainment and increase boundary layer 

mixing (Freitas et al., 2010). Archer-Nicholls et al. (2015) decreased the original entrainment coefficient (Freitas et 

al., 2007) from 0.1 to 0.05 to improve their simulations of a wildfire. As the Camp Fire developed rapidly and 360 

intensely, we performed the sensitivity simulation S_ENTR with a lower entrainment coefficient of 0.02 to allow for 

higher injection heights. However, entrainment perturbation resulted in less than 1% change in surface PM2.5 from 

S_CTRL. A possible reason is that the background winds were quite strong already, for which the entrainment 

coefficient played a limited role. 
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We compare simulations using two different land surface models (LSM) which include the PBL schemes: the 365 

Noah LSM with Mellor-Yamada-Janjic (MYJ) PBL and the Pleim-Xiu LSM (referred to here as P-X) with the 

Asymmetric Convection Model 2 (ACM2) PBL (Janjic, 1994; Pleim and Xiu, 1995; Chen & Dudhia, 2001; Pleim, 

2007). Land surface models simulate the heat and radiative fluxes between the ground and the atmosphere (Campbell 

et al., 2018). Noah LSM has four soil moisture and temperature layers, while the Pleim-Xiu LSM has two (Hu et al, 

2014; Campbell et al., 2018). Both include a vegetation canopy model and vegetative evapotranspiration. The PBL 370 

scheme provides the boundary layer fluxes (heat, moisture, and momentum) and the vertical diffusion within the 

column. It uses boundary layer eddy fluxes to distribute surface fluxes and grows the PBL by entrainment. A key 

feature of PBL schemes is the inclusion of local mixing (between adjacent layers) and/or nonlocal mixing (from the 

surface layer to higher layers). The MYJ scheme is a turbulent kinetic energy prediction, while the ACM2 scheme is 

a member of the diagnostic non-local class. MYJ solves for the total kinetic energy in each column from buoyancy 375 

and shear production, dissipation, and vertical mixing. ACM2 has two main components: a term for local transport by 

small eddies and a term for nonlocal transport by large eddies. Coniglio et al. (2013) showed that the MYJ scheme 

can undermix the PBL in locations upstream of convection in the presence of overly cool and moist conditions near 

the ground in the daytime, whereas ACM2 can result in an excessively deep PBL in evening. Pleim (AMS, 2007) also 

noted that ACM2 predicts the PBL profile of potential temperature and velocity with greater accuracy. 380 

The use of P-X and ACM2 results in substantially different aerosol trends and plume evolution, the effects of 

which are largely location-dependent (Fig. 13). Near the fire and in the Bay Area, S_LSM produces little similarity in 

surface PM2.5 magnitude and trend as compared to S_CTRL. S_LSM reduces PM2.5 concentrations by more than 50% 

in both areas for the majority of the simulation period. However, S_CTRL overpredicts PM2.5 near the wildfire, while 

S_LSM underpredicts but produces a more muted temporal pattern, similar to observations. In the Sacramento area, 385 

S_LSM generally predicts higher PM2.5 values with a distinct diurnal trend. Peaks are of similar magnitude to S_CTRL 

but displaced temporally. The topography of the Sacramento area is more uniform than the complex terrain of the Bay 

area as well as the foothills and canyons near the wildfire, likely contributing to the distinctions in the behavior of the 

two schemes. Moreover, the current sensitivity study stresses the importance of the parameterization of the land 

surface and the boundary layer. As shown here, the Noah LSM and MYJ scheme performs well for the broader region 390 

of northern California, whereas improvement near the wildfire itself may be attained with altered PBL 

parameterization. 

4.4 Joint Perturbation 

To test the linearity of different factors in regulating the fire-related PM pollution, we choose two factors, 

emission flaming factor and aerosol radiative feedback, and conduct a new experiment by jointly perturbing these two. 395 

We compare the results from this joint perturbing experiment with those from each individual perturbing experiment 

and the linear sum of the two in Figure 14. It shows that for the most times, the effect of joint perturbation is close to 

the sum of the two individual effects (the black line follows well with the black circles), indicating that the relatively 

good linearity and additivity holds between those two factors in a general sense. The exception occurs under the 

extreme conditions. During Nov. 14-18 when the plume was thick and PM2.5 concentration was highest in the Bay 400 



 13 

Area, the aerosol radiative feedback dominates, and the effect of joint perturbation is close to the aerosol radiative 

effect (the black line follows well with the blue dotted line). 

5. Conclusions and Discussion 

The record-breaking Camp Fire ravaged northern California for nearly two weeks. At a distance of 240 km 

downwind of the wildfire, Bay Area surface PM2.5 levels reached nearly 200 µg m-3 and remained over 70 µg m-3 over 405 

7-22 November 2018. It is uncertain to what extent the current chemical transport models can reproduce the key 

features of this historical event. Here, we employ the WRF-Chem model to characterize the spatio-temporal PM 

concentrations across northern California and to investigate the sensitivity of predictions to key parameters of the 

model. The model utilizes satellite fire detection products with a resolution of 375 m and a biomass burning model to 

generate the fire emission inventory at near real time. We conduct model simulations at 2 km resolution. A wide range 410 

of observational data is employed to evaluate the model performance, including ground-based observations of PM2.5, 

black carbon, and meteorology from EPA and NOAA stations, as well as satellite measurements, such as Tropospheric 

Monitoring Instrument (TROPOMI) aerosol layer height and aerosol index. 

We focus on three geographic areas: the vicinity of the wildfire, Sacramento, and the San Francisco Bay Area. 

The control experiment was able to simulate the general transport and extent of the plume as well as the magnitude 415 

and temporal evolution of surface PM2.5 in Sacramento and the Bay Area. Meanwhile, the control experiment 

substantially overpredicted surface PM2.5 near the fire, but captured the general evolution of the fire development. On 

the Pacific coast, the Bay Area was subject to significant sea breezes not observed during the time period of simulation. 

Owing to strong winds predicted from the ocean, a large negative bias existed in surface PM2.5. Increasing total wildfire 

emissions (smoldering + flaming) and increasing flaming phase emissions alone each recovered some PM2.5 biases. 420 

Aerosol radiative feedback on meteorology acted to stabilize the atmosphere and slightly increased the PM2.5 

concentration near the surface during most severe episodes. Hence, its inclusion modestly improves model 

performance. Our study shows that sources of downwind PM error stem primarily from the localized structure of the 

plume and uncertainty in fire emissions. Uncertainty of partitioning between smoldering and flaming phases may also 

contribute to uncertainty in plume horizontal transport. 425 

Future studies are needed to further improve the present modeling framework to simulate wildfires. Some 

wildfires exhibit a distinct diurnal cycle, but the current fire preparation module has not utilized the time information 

of the fire radiative power measurements by the polar-orbiting satellites. Also, the current land cover and vegetation 

type data are still relatively coarse in spatial resolution and classification accuracy, which cannot fully resolve a small 

town in a rural area. In fact, the Camp Fire reportedly burned the town of Paradise, California between 8 and 10 430 

November 2018. The town of Paradise covered 11,614 acres which corresponds to about 7.6% of the total burned area. 

This contributes to the uncertainty in the fire emission preparation. Additional verification of input fire data sources, 

such as FINN, and their implementation in the WRF-Chem plume rise model is needed for studies of the vertical 

structure. Deeper understanding of the role of plume dynamics and boundary layer parameterization on aerosol 

concentrations downwind from wildfires will inform updates to forecast models like WRF-SFIRE-CHEM, which 435 
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couples WRF with a fire spread model and smoke dispersion simulation (Barbunzo 2019; Kochanski et al., 2013). 

Given the complexity of the problem, here we only perturb individual factors in this study. Future studies can test 

different combinations of the main factors identified by the present study, which can yield additional insights about 

non-linear interactions among different processes related with fire emission and transport. 

The recent TROPOMI aerosol layer height product shows promise as an analytical tool, but requires further 440 

development of the method by which it can be directly compared to WRF-Chem. Given the assumptions required to 

perform the TROPOMI ALH retrieval, more research is needed to compare that product with any height retrievals 

from MODIS/MAIAC (Lyapustin et al. 2019), MISR, and CALIPSO. The intercomparison can help quantify 

measurement uncertainty. Herron-Thorpe et al. (2014) noted that careful consideration must also be given to the 

vertical coordinates across models and satellite products, as discrepancies in reporting heights in reference to sea level, 445 

ground level, or the geoid can influence analyses.  

 

 

Code availability 

WRF-Chem model code is available for download via the WRF website 450 

(https://www2.mmm.ucar.edu/wrf/users/downloads.html). The FINN utility is available for download via the NCAR 

Atmospheric Chemistry Observations & Modeling website (http://bai.acom.ucar.edu/Data/fire). 

 

Data availability 

US Environmental Protection Agency Air Quality System Data Mart (internet database) is available for download 455 

(https://www.epa.gov/airdata). NCDC data is available for download via the NCEI website 

(https://www.ncei.noaa.gov/metadata/geoportal/rest/metadata/item/gov.noaa.ncdc:C00684/html#). TROPOMI data is 

available for download via the Copernicus Open Access Hub website (https://scihub.copernicus.eu/). ERA5 data is 

available for download via the Copernicus Climate Data Store website (https://cds.climate.copernicus.eu/). FINN 

emission data is available for download via the NCAR Atmospheric Chemistry Observations & Modeling website 460 

(http://bai.acom.ucar.edu/Data/fire). 

 

Author contribution 

Y.W., J.H.S., and J.H.J conceived and designed the research. Y.W., and B.R. performed the WRF-Chem simulations. 

B.R., Y.W., and J.H.S. performed the data analyses and produced the figures. B. Z. provided technical support for fire 465 

emission preparation. Z.C.Z. helped satellite data analyses. B.R., Y.W., and J.H.S wrote the paper. All authors 

contributed to the scientific discussions and preparation of the manuscript. 

 

Competing Interests 

The authors declare that they have no conflict of interest. 470 

 

https://www2.mmm.ucar.edu/wrf/users/downloads.html
http://bai.acom.ucar.edu/Data/fire
https://www.epa.gov/airdata
https://www.ncei.noaa.gov/metadata/geoportal/rest/metadata/item/gov.noaa.ncdc:C00684/html
https://scihub.copernicus.eu/
https://cds.climate.copernicus.eu/
http://bai.acom.ucar.edu/Data/fire


 15 

Acknowledgements 

This study was supported by the Jet Propulsion Laboratory, California Institute of Technology, under contract with 

NASA. We thank Kristal R. Verhulst, Yi Yin, Don Longo, Gonzalo Ferrada, and Saulo Freitas for their support and 

discussion.   475 

 

References  

Andreae, M. O., and Merlet, P.: Emission of trace gases and aerosols from biomass burning. Global Biogeochemical 

Cycles, 15(4), 955–966, https://doi.org/10.1029/2000GB001382, 2001. 

Apituley, A., Pedergnana, M., Sneep, M., Pepijn Veefkind, J., Loyola, D., Landgraf, J., and Borsdorff, T.: Sentinel-5 480 

precursor/TROPOMI Level 2 Product User Manual Carbon Monoxide, SRON-S5P-LEV2-MA-002, 

http://www.tropomi.eu/sites/default/files/files/Sentinel-5P-Level-2-Product-User-Manual-Carbon-

Monoxide_v1.00.02_20180613.pdf, 2018. 

Apituley, A., Pedergnana, M., Sneep, M., Pepijn Veefkind, J., Loyola, D., Sanders, B., de Graaf, M.: Sentinel-5 

precursor/TROPOMI Level 2 Product User Manual Aerosol Layer Height, S5P-KNMI-L2-0022-MA, 485 

http://www.tropomi.eu/sites/default/files/files/publicS5P-KNMI-L2-0022-MA-

Product_User_Manual_for_the_Sentinel_5_precursor_Aerosol_layer_height-1.3.2-20190926_signed.pdf, 2019. 

Archer-Nicholls, S., Lowe, D., Darbyshire, E., Morgan, W.T., Bela, M.M., Pereira, G., Trembath, J., Kaiser, J.W., 

Longo, K.M., Freitas, S.R., Coe, H., and McFiggans, G.: Characterising Brazilian biomass burning emissiongs using 

WRF-Chem with MOSAIC sectional aerosol. Geosci. Model Dev., 8, 549-577, https://doi.org/10.5194/gmd-8-549-490 

2015, 2015. 

Barbuzano, J.: Wildfire smoke traps itself in valleys, Eos, 100, https://doi.org/10.1029/2019EO135955, 2019. 

Brown, T., Leach, S., Wachter, B., Gardunio, B.: The Northern California 2018 Extreme Fire Season [in “Explaining 

Extremes of 2018 from a Climate Perspective”]. Bull. Amer. Meteor. Soc., 101 (1), S1–S4, 

https://doi.org/10.1175/BAMS-D-19-0275.1, 2020. 495 

Campbell, P.C., Bash, J.O., Spero, T.L.: Updates to the Noah land surface model in WRF-CMAQ to improve 

simulated meteorology, air quality, and deposition. Journal of Advances in Modeling Earth Systems, 11(1), 231-256, 

https://doi.org/ 10.1029/2018MS001422, 2018. 

Cascio, W. E.: Wildland fire smoke and human health, Science of the Total Environment, 624, 586-595, 

https://.doi.org/10.1016/j.scitotenv.2017.12.086, 2018. 500 

Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 

modeling system, part I, model implementation and sensitivity. Mon. Wea. Rev., 129. 586-585. 

https://doi.org/10.1029/2000GB001382
http://www.tropomi.eu/sites/default/files/files/Sentinel-5P-Level-2-Product-User-Manual-Carbon-Monoxide_v1.00.02_20180613.pdf
http://www.tropomi.eu/sites/default/files/files/Sentinel-5P-Level-2-Product-User-Manual-Carbon-Monoxide_v1.00.02_20180613.pdf
http://www.tropomi.eu/sites/default/files/files/publicS5P-KNMI-L2-0022-MA-Product_User_Manual_for_the_Sentinel_5_precursor_Aerosol_layer_height-1.3.2-20190926_signed.pdf
http://www.tropomi.eu/sites/default/files/files/publicS5P-KNMI-L2-0022-MA-Product_User_Manual_for_the_Sentinel_5_precursor_Aerosol_layer_height-1.3.2-20190926_signed.pdf
https://doi.org/10.1029/2019EO135955


 16 

Copernicus Climate Change Service (C3S): ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global 

climate. Copernicus Climate Change Service Climate Data Store (CDS), 

https://cds.climate.copernicus.eu/cdsapp#!/home, last access: 22 May 2020, 2017. 505 

Copernicus Sentinel data processed by ESA, Koninklijk Nederlands Meteorologisch Instituut (KNMI), Sentinel-5P 

TROPOMI Aerosol Index 1-Orbit L2 7km x 3.5km, Greenbelt, MD, USA, Goddard Earth Sciences Data and 

Information Services Center (GES DISC), https://doi.org/10.5270/S5P-0wafvaf. 2018. 

Copernicus Sentinel data processed by ESA, Koninklijk Nederlands Meteorologisch Instituut (KNMI), Sentinel-5P 

TROPOMI Aerosol Layer Height 1-Orbit L2 7km x 3.5km, Greenbelt, MD, USA, Goddard Earth Sciences Data and 510 

Information Services Center (GES DISC), https://doi.org/10.5270/S5P-j7aj4gr, 2019. 

Copernicus Sentinel data processed by ESA, Koninklijk Nederlands Meteorologisch Instituut (KNMI)/Netherlands 

Institute for Space Research (SRON), Sentinel-5P TROPOMI Carbon Monoxide CO Column 1-Orbit L2 7km x 7km, 

Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC), 

https://doi.org/10.5270/S5P-1hkp7rp, 2018. 515 

De Graaf, M., de Haan, J.F., and Sanders, A.F.J.: TROPOMI ATBD of the Aerosol Layer Height, S5P-KNMI-L2-

0006-RP, http://www.tropomi.eu/sites/default/files/files/publicSentinel-5P-TROPOMI-ATBD-Aerosol-Height.pdf, 

2019.  

Dudhia, J.: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two–

dimensional model, J. Atmos. Sci., 46, 3077–3107, https://doi.org/10.1175/1520-520 

0469(1989)046<3077:NSOCOD>2.0.CO;2, 1989. 

Emmons, L. K., Walters, S., Hess, P. G., Lamarque, J.-F., Pfister, G. G., Fillmore, D., Granier, C., Guenther, A., 

Kinnison, D., Laepple, T., Orlando, J., Tie, X., Tyndall, G., Wiedinmyer, C., Baughcum, S. L., and Kloster, S.: 

Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4), Geosci. 

Model Dev., 3, 43-67, https://doi.org/10.5194/gmd-3-43-2010, 2010. 525 

Freitas, S. R., Longo, K. M., Chatfield, R., Latham, D., Dias, M., Andreae, M. O., Prins, E., Santos, J. C., Gielow, R., 

and Carvalho, J. A.: Including the sub‐grid scale plume rise of vegetation fires in low resolution atmospheric transport 

models, Atmos. Chem. Phys., 7(13), 3385–3398. https://doi.org/10.5194/acp‐7‐3385‐2007, 2007. 

Freitas, S. R., Longo, K. M., Trentmann, J., and Latham, D.: Technical note: Sensitivity of 1‐D smoke plume rise 

models to the inclusion of environmental wind drag, Atmos. Chem. Phys., 10(2), 585–594. 530 

https://doi.org/10.5194/acp‐10‐585‐2010, 2010. 

Freitas, S. R., Longo, K. M., Alonso, M. F., Pirre, M., Marecal, V., Grell, G., Stockler, R., Mello, R. F., and Sánchez 

Gácita, M.: PREP-CHEM-SRC – 1.0: a preprocessor of trace gas and aerosol emission fields for regional and global 

atmospheric chemistry models, Geosci. Model Dev., 4, 419–433, https://doi.org/10.5194/gmd-4-419-2011, 2011. 

https://cds.climate.copernicus.eu/cdsapp#!/home
http://www.tropomi.eu/sites/default/files/files/publicSentinel-5P-TROPOMI-ATBD-Aerosol-Height.pdf
https://doi.org/10.1175/1520-0469(1989)046%3C3077:NSOCOD%3E2.0.CO;2
https://doi.org/10.1175/1520-0469(1989)046%3C3077:NSOCOD%3E2.0.CO;2
https://doi.org/10.5194/acp‐7‐3385‐2007
https://doi.org/10.5194/acp‐10‐585‐2010


 17 

Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P.I., and Geron, C.: Estimates of global terrestrial isoprene 535 

emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), Atmos. Chem. Phys., 6, 3181-

3210, https://doi.org/10.5194/acp-6-3181-2006, 2006. 

Herron‐Thorpe, F. L., Mount, G. H., Emmons, L. K., Lamb, B. K., Jaffe, D. A., Wigder, N. L., Chung, S.H., Zhang, 

R., Woelfe, M.D., and Vaughan, J.K.: Air quality simulations of wildfires in the Pacific Northwest evaluated with 

surface and satellite observations during the summers of 2007 and 2008. Atmos. Chem. Phys., 14(22), 12,533–12,551. 540 

https://doi.org/10.5194/acp‐14‐12533‐2014, 2014. 

Houghton, R., Lawrence, K., Hackler, J., and Brown, S.: The spatial distribution of forest biomass in the Brazilian 

Amazon: A comparison of estimates, Global Change Biology, 7(7), 731–746. https://doi.org/10.1046/j.1365‐

2486.2001.00426.x, 2001. 

Hu, Z., Zhong-Feng, X., Ning-Feng, Z., Ma, Z., Guo-Ping, L.: Evaluation of the WRF model with different land 545 

surface schemes: a drought event simulation in southwest China during 2009-10. Atmospheric and Oceanic Science 

Letters, 7(2) 168-173, doi: 10.3878/j.issn.1674-2834.13.007, 2014. 

Janjic, Zavisa I.: The Step–Mountain Eta Coordinate Model: Further developments of the convection, viscous 

sublayer, and turbulence closure schemes, Mon. Wea. Rev., 122, 927–945, https://doi.org/10.1175/1520-

0493(1994)122<0927:TSMECM>2.0.CO;2, 1994. 550 

Janjic, Z. I.,: Nonsingular implementation of the Mellor-Yamada Level 2.5 Scheme in the NCEP Meso model. NCEP 

Office Note No. 437, 61 pp., 2002. 

Jin, Q., Wei Z.-L., Yang B., Huang J.: Consistent response of Indian summer monsoon to Middle East dust in 

observations and simulations, Atmos. Chem. Phys., 15, 9897-9915 https://doi.org/10.5194/acp-15-9897-2015, 2015.  

Lyapustin, A., Wang, Y., Korkin, S., Kahn, R., Winker, D., MAIAC Thermal Technique for Smoke Injection Height 555 

From MODIS, IEEE Geoscience and Remote Sensing Letters, 7(5) 730 - 734, 2020. 

Li, Z., et al., East Asian Study of Tropospheric Aerosols and Impact on Regional Cloud, Precipitation, and Climate 

(EAST-AIRCPC), J. Geophys. Res. 124 (23) 13026-13054, 2019. 

Longo, K. M., Freitas, S. R., Andreae, M. O., Setzer, A., Prins, E., and Artaxo, P.: The Coupled Aerosol and Tracer 

Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT‐BRAMS)—560 

Part 2: Model sensitivity to the biomass burning. Atmospheric Chemistry and Physics, 10(13), 5785–5795. 

https://doi.org/10.5194/acp‐10‐5785‐2010, 2010.  

Kahn, R. (2020), A global perspective on wildfires, Eos, 101, https://doi.org/10.1029/2020EO138260, 2020. 

Kochanski, A., Beezley, D., Mandel, J., Clements, B.: Air pollution forecasting by coupled atmosphere-fire model 

WRF and SFIRE with WRF-Chem. ArXiv: 1304.7703 [physics.ao-ph], 2013.  565 

https://doi.org/10.5194/acp‐14‐12533‐2014
https://doi.org/10.1046/j.1365‐2486.2001.00426.x
https://doi.org/10.1046/j.1365‐2486.2001.00426.x
https://doi.org/10.5194/acp-15-9897-2015
https://doi.org/10.5194/acp‐10‐5785‐2010


 18 

Mlawer, E.J., Taubman, S.J., Brown, P.D., Iacono, M.J. and Clough, S.A.: Radiative transfer for inhomogeneous 

atmospheres: RRTM, a validated correlated–k model for the longwave, J. Geophys. Res., 102, 16663–16682, 

https://doi.org/10.1029/97JD00237, 1997. 

Nanda, S., de Graaf, M., Veefkind, J. P., Sneep, M., ter Linden, M., Sun, J., and Levelt, P. F.: A first comparison of 

TROPOMI aerosol layer height (ALH) to CALIOP data, Atmos. Meas. Tech., 13, 3043–3059, 570 

https://doi.org/10.5194/amt-13-3043-2020, 2020. 

Olson, J., Watts, J., and Allison, L.: Major world ecosystem complexes ranked by carbon in live vegetation: A 

database, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA. 2000. 

Pimlott, K., Laird, J., and Brown, E.G.: 2015 Wildfire Activity Statistics. California Department of Forestry and Fire 

Protection. Available at: https://www.fire.ca.gov/media/10061/2015_redbook_final.pdf. 575 

Pleim, Jonathan E.: A Combined Local and Nonlocal Closure Model for the Atmospheric Boundary Layer. Part I: 

Model Description and Testing, J. Appl. Meteor. Climatol., 46, 1383–1395. doi:10.1175/JAM2539.1, 2007. 

Pleim, J., A. and Xiu.: Development and testing of a surface flux and planetary boundary layer model for application 

in mesoscale models. Journal of Applied Meteorology, 34, 16-34, https://doi.org/10.1175/1520-0450-34.1.16, 1995. 

Sessions, W.R., Fuelberg, H.E., Kahn, R.A., and Winker, D.M.: An investigation of methods for injecting emissions 580 

from boreal wildfires using WRF-Chem during ARCTAS. Atmos. Chem. Phys., 11, 5719-5744, https://doi.org/ 

10.5194/acp-11-5719-2011, 2011. 

Shao, Y., Ishizuka, M., Mikami, M., and Leys, J.: Parameterization of size-resolved dust emission and validation with 

measurements, J. Geophys. Res. Atmos., 116, D08203, doi:10.1029/2010JD014527, 2011. 

Shi, H., Jiang, Z., Zhao, B., Li, Z., Chen, Y., Gu, Y., Jiang, J.H., Lee, M., Liou, K.N., Neu, J., Payne, V., Su, H., 585 

Wang, Y., Marcin, W., and Worden, J.: Modeling study of the air quality impact of record‐breaking Southern 

California wildfires in December 2017. Journal of Geophysical Research: Atmospheres, 124. 

https://doi.org/10.1029/2019JD030472, 2019. 

Schneising, O., Buchwitz, M., Reuter, M., Bovensmann, H., and Burrows, J. P.: Severe Californian wildfires in 

November 2018 observed from space: the carbon monoxide perspective, Atmos. Chem. Phys., 20, 3317–3332, 590 

https://doi.org/10.5194/acp-20-3317-2020, 2020. 

Strahler, A., Muchoney, D., Borak, J., Friedl, M., Gopal, S., Lambin, E., & Moody, A.: MODIS Land Cover Product 

Algorithm Theoretical Basis Document (ATBD). Version 5.0, available at  

https://modis.gsfc.nasa.gov/data/atbd/atbd_mod12.pdf, 1999. 

Stein Zweers, D.: TROPOMI ATBD of the UV aerosol index, S5P-KNMI-L2-0008-RP, available at 595 

http://www.tropomi.eu/sites/default/files/files/S5P-KNMI-L2-0008-RP-TROPOMI_ATBD_UVAI-1.1.0-

20180615_signed.pdf, 2018. 

https://doi.org/10.1029/2019JD030472
https://modis.gsfc.nasa.gov/data/atbd/atbd_mod12.pdf
http://www.tropomi.eu/sites/default/files/files/S5P-KNMI-L2-0008-RP-TROPOMI_ATBD_UVAI-1.1.0-20180615_signed.pdf
http://www.tropomi.eu/sites/default/files/files/S5P-KNMI-L2-0008-RP-TROPOMI_ATBD_UVAI-1.1.0-20180615_signed.pdf


 19 

Tewari, M., Chen, F., Wang, W., Dudhia, J., LeMone, M.A., Mitchell, K., Ek, M., Gayno, G, Wegiel, J., and Cuenca, 

R.H.: Implementation and verification of the unified NOAH land surface model in the WRF model. 20th conference 

on weather analysis and forecasting/16th conference on numerical weather prediction, pp. 11–15. 2004. 600 

University Corporation for Atmospheric Research: MOZART DOWNLOAD. https://www.acom.ucar.edu/wrf‐

chem/mozart.shtml, 2018. 

US Environmental Protection Agency: Air Quality System Data Mart [internet database] available via 

https://www.epa.gov/airdata, last access: 17 May 2020. 

US Environmental Protection Agency: National Emissions Inventory (NEI). https://www.epa.gov/air‐emissions‐605 

inventories/national‐emissions‐inventory‐nei, 2018. 

Wang, Y., Le, T., Chen, G., Yung, Y.L., Su, H., Seinfeld, J.H., Jiang, J.H.: Reduced European aerosol emissions 

suppress winter extremes over northern Eurasia, Nat. Climate Change, 10, 225–230, https://doi.org/10.1038/s41558-

020-0693-4, 2020. 

Wang, Y., Ma, P.-L., Jiang, J., Su, H., and Rasch, P.: Towards Reconciling the Influence of Atmospheric Aerosols 610 

and Greenhouse Gases on Light Precipitation Changes in Eastern China, J. Geophys. Res. Atmos. 121(10), 5878–

5887, https://doi.org/10.1002/2016JD024845, 2016. 

Wang, Y., Khalizov. A., Levy, M., and Zhang, R.: New Directions: Light Absorbing Aerosols and Their Atmospheric 

Impacts, Atmos. Environ., 81, 713-715, https://doi.org/10.1016/j.atmosenv.2013.09.034, 2013. 

Ward, D., Susott, R., Kauffman, J., Babbitt, R., Cummings, D., Dias, B., Holben, B.N., Kaufman, Y.J., Rasmussen, 615 

R.A., and Setzer, A.W.: Smoke and fire characteristics for cerrado and deforestation burns in Brazil: BASE‐B 

experiment. J. Geophys. Res., 97(D13), 14,601–14,619. https://doi.org/10.1029/92JD01218, 1992. 

Wiedinmyer, C., Akagi, S. K., Yokelson, R. J., Emmons, L. K., Al‐Saadi, J. A., Orlando, J. J., and Soja, A. J.: The 

Fire INventory from NCAR (FINN): A high resolution global model to estimate the emissions from open burning. 

Geoscientific Model Development, 4(3), 625–641. https://doi.org/10.5194/gmd‐4‐625‐2011, 2011. 620 

WRAP (Western Regional Air Partnership): 2002 Fire Emission Inventory for the WRAP Region- Phase II, Project 

No. 178-6, available at: http://www.wrapair.org/forums/fejf/tasks/FEJFtask7PhaseII.html, 2005. 

Zhao, C., Liu, X., Leung, L., and Hagos, S.: Radiative impact of mineral dust on monsoon precipitation variability 

over West Africa. Atmos Chem. Phys., 11, 1879-1893, https://doi.org/10.5194/acp-11-1879-2011, 2011. 

 625 

 

  

https://www.acom.ucar.edu/wrf‐chem/mozart.shtml
https://www.acom.ucar.edu/wrf‐chem/mozart.shtml
https://www.epa.gov/airdata
https://www.epa.gov/air‐emissions‐inventories/national‐emissions‐inventory‐nei
https://www.epa.gov/air‐emissions‐inventories/national‐emissions‐inventory‐nei
https://doi.org/10.1002/2016JD024845
https://doi.org/10.1016/j.atmosenv.2013.09.034
https://doi.org/10.1029/92JD01218
https://doi.org/10.5194/gmd‐4‐625‐2011
https://ui.adsabs.harvard.edu/link_gateway/2011ACP....11.1879Z/doi:10.5194/acp-11-1879-2011


 20 

Table 1. Summary of sensitivity simulation setup. 

Name 
Fire 

Data 

Smoldering 

Emissions 

Flaming 

Factor 

Entrainment 

Constant 

Land 

Surface 

Model 

Aerosol 

Radiative 

Feedback 

S_CTRL1 VIIRS 
x3 Nov. 13,  

x2 Nov. 14-16 
Native 0.05 Noah/MYJ Yes 

S_EMRAW VIIRS Native Native 0.05 Noah/MYJ Yes 

S_NOAERO VIIRS 
x3 Nov. 13,  

x2 Nov. 14-16 
Native 0.05 Noah/MYJ No 

S_FCTX2 VIIRS 
x3 Nov. 13,  

x2 Nov. 14-16 
x2 0.05 Noah/MYJ Yes 

S_ENTR VIIRS 
x3 Nov. 13,  

x2 Nov. 14-16 
Native 0.02 Noah/MYJ Yes 

S_LSM VIIRS 
x3 Nov. 13,  

x2 Nov. 14-16 
Native 0.05 P-X/ACM2 Yes 

S_FINN FINN - - 0.05 Noah/MYJ Yes 

S_FCTX2andNOAERO VIIRS 
x3 Nov. 13,  

x2 Nov. 14-16 
x2 0.05 Noah/MYJ No 

1Scenario that agrees best with surface observations and is of primary focus in this study. Bold denotes parameter 

perturbed from the S_CTRL scenario.  630 
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Table 2. Summary of meteorological model performance metrics for the simulation duration. 

Variable Parameter Near Source1 Sacramento1 Bay Area1 Station 27 

Wind 

Speed2  

(m s-1) 

Observation 

Mean 
1.4 (0.2) 1.0 (0.2) 1.6 (0.7) 1.5 

S_CTRL 

Mean 
2.6 (0.3) 1.4 (0.4) 2.0 (0.7) 2.3 

Mean Bias 1.2 0.5 0.5 0.9 

Wind 

Direction3 

(deg) 

Observation 

Mean 
360.0 338.2 73.9 68.9 

S_CTRL 

Mean 
356.9 325.9 26.7 72.8 

Mean Bias 2.9 11.0 0.2 2.8 

Temp 

(°C) 
Observation 

Mean 
8.2 (2.3) 10.1 (1.7) 10.8 (1.9) 9.9 

S_CTRL 

Mean 
12.5 (3.6) 13.7 (1.4) 15.7 (1.2) 15.5 

Mean Bias 4.4 3.6 4.9 5.6 

1Area winds are averaged for 4 stations near source, 6 stations in Sacramento, and 12 stations in the Bay Area. Area 

temperatures are averaged for 10 stations near source, 7 in Sacramento, and 13 in the Bay Area. Standard deviation of 

station averages is noted in parenthesis. 635 
2Mean wind speed is calculated as the average of the magnitude of the wind vector.  
3Mean wind direction is calculated assuming a unity vector. 
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Table 3. Summary of model performance metrics for surface PM2.5 (µg m-3 ) for the simulation duration.  

Parameter Near Source* Sacramento* Bay Area* Station 27 

Observation Mean 98.3 (39.7) 77.2 (24.9) 74.1 (5.4) 77.9 

S_CTRL Mean 163.1 (108.5) 65.8 (16.3) 57.2 (6.4) 68.1 

Mean Bias 64.8 -11.4 -16.8 -9.9 

Normalized Mean Bias 76.5% -17.4% -23.1% -12.7% 

*Area values are averaged for 5 stations near source, 7 stations in Sacramento, and 13 stations in the Bay Area. 640 
Standard deviation of station averages is noted in parenthesis. 

  



 23 

 

Figure 1. Study domain (a) and observation station locations (b,c). Domain d01 covers the western US with a 

horizontal resolution of 8 km. Domain d02 is centered over northern California with a horizontal resolution of 2 km. 645 
AQS and NCDC observation sites are shown in panel b and panel c, where stations marked in green measure only 

PM2.5, stations in blue measure wind and temperature, stations in orange measure both PM2.5 and meteorology, and 

stations in yellow measure temperature only. Additionally, BC and CO are measured at 8 and 12 sites in the Bay Area, 

respectively.   
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 650 

Figure 2. Plume rise model schematic. For each grid cell in which wildfire occurs, the plume rise model uses satellite 

fire products and the surrounding WRF-Chem environmental conditions to calculate two plume top heights by using 

the land-type dependent minimum and maximum wildfire heat fluxes. Smoldering phase emissions are allotted to the 

surface layer, while flaming phase emissions are distributed linearly aloft within the injection layers at a vertical 

resolution of 100 m.   655 
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Figure 3. Wildfire area by vegetation type in m2 (a) and PM2.5 emission rate in µg s-1 by combustion phase and species 

(b) input into WRF-Chem. The base inventory is produced from VIIRS and MODIS fire products using the PREP-

CHEM-SRC processor and is employed by S_EMRAW. The control and remaining sensitivity simulations use an 

inventory with triple emission flux of all species on 13 November and double during 13-16 November, shown here. 660 
About 59% of total PM2.5 emissions occur in the smoldering phase (darker colors in panel b). The total PM2.5 emitted 

is composed of 69.5% organic carbon and 4.5% black carbon. The Camp Fire burned primarily extratropical forest 

(purple) followed by savanna (yellow). Burning of extratropical forest generated the greatest fraction of emissions in 

the flaming phase at 44.2%, followed by savanna at 22.9% and tropical forest at 17.4%. Grassland emits only in the 

smoldering phase.    665 
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Figure 4. Comparison of AQS and NCDC wind observations (black) with S_CTRL predictions (red) averaged over 

the three areas of study: a) near the wildfire (N = 4), b) Sacramento (N = 6), and c) the Bay Area (N = 12). Arrows 

indicate the wind direction and their length represents wind speed. For reference, S_CTRL predicts maximum wind 

speeds of 8.7, 7.5, and 7.1 m s-1 near the source, in Sacramento, and in the Bay Area, respectively. Paradise and the 670 
Sacramento areas experienced strong northerly winds during the first few days of the fire. S_CTRL generally predicted 

faster and more variable winds, but broader trends in Sacramento and the Bay Area were represented well. 
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Figure 5. Comparison of AQS and NCDC temperature observations versus S_CTRL predictions: a) near the wildfire 

(N = 10), b) Sacramento (N = 7), and c) the Bay Area (N = 13). The solid red lines show a linear regression fit, while 675 
the dotted black lines denote 1:1 simulations vs. observations. The simulations achieved a correlation coefficient R2 

of 0.61 near the fire, 0.72 in Sacramento, and 0.75 in the Bay Area.   
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Figure 6. Comparison of AQS surface PM2.5 observations (black) with S_CTRL predictions (red) averaged over the 

three areas of study: a) near the wildfire (N = 5), b) Sacramento (N = 7), and c) the Bay Area (N = 13). Shading 680 
indicates the standard deviation of the sampled stations. S_CTRL overpredicted PM2.5 in the region in the vicinity of 

the fire but performed well in the areas downwind.  
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Figure 7. Comparison of AQS surface black carbon (a, N = 5) and carbon monoxide (b, N = 12) observations (black) 

with S_CTRL predictions (red) at monitoring sites in the Bay Area. S_CTRL captures the temporal evolution of BC 685 
and CO and is close to observed values. BC peaks are often overpredicted. The greatest bias of BC and CO occurs 

during 16-18 November, likely due to the scale factor applied to emissions during 13-16 November.   
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Figure 8. Comparison of TROPOMI UV aerosol index and S_CTRL total BC column during 8-18 November at 13:30 

local time as a proxy for plume structure and motion. Due to cloud coverage, no data for 15 November are shown. 690 
Positive aerosol index (warm colors) indicates aerosols that absorb radiation like black and brown carbon. The spatial 

distribution of the plume is generally captured on most days. The simulation also captures some of the finer structures 

seen by the satellite, though somewhat displaced.



 31 

 
Figure 9. Vertical profile of PM2.5 (a), time series of surface PM2.5 (b), winds (c; observations in black and predictions 695 
in red) at Station 27 in the Bay Area. The gray box highlights the timeframe of greatest model bias of surface PM2.5. 

Sharp increases in PM2.5 correlate with a switch to northeasterly winds that import fire emissions to the Bay Area. 

Large negative PM2.5 bias on 15 November occurs when S_CTRL deviates from observations and produces southerly 

winds which bring in clean air. This can be seen with the column of low level of PM on 15 November in (a).   



 32 

 700 
Figure 10. Surface PM2.5 and wind field on 14 November in the Bay Area of observations (a) and S_CTRL predictions 

(b). Note that the reference wind vector for S_CTRL is 2 m s-1 while the reference is 1 m s-1 for observations. While 

the plume encroaches on the Bay Area, a strong sea breeze develops midday, driving plumes back inland. This sea 

breeze is not present in observational data, leading to a large underprediction of surface PM2.5. 

  705 
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Figure 11. Comparison of TROPOMI aerosol layer height (a) and bias where S_CTRL layer height is calculated as 

the average of heights where PM2.5 > 3 µg m-3
 
(b) and the average weighted by PM2.5 mass (c) for select days at 13:30 

local time. In panels b and c, warm colors indicate positive bias where S_CTRL overpredicts the height of the aerosol 

layer.  710 
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Figure 12. Comparison of meteorology generated by S_CTRL (solid red) and S_NOAERO (in which aerosol effects 

do not feed back to the meteorology, dashed blue) over the three areas of study: a) near the wildfire, b) Sacramento, 

and c) the San Francisco Bay Area. Exclusion of the aerosol feedback has the greatest effect nearest the fire, where 

S_NOAERO increased wind and temperature by 9.8% and 9.7%, respectively, on average. The aerosol feedback 715 
mechanism has the least significance in the Bay Area, where S_NOAERO wind speed differs less than 2% and 

temperature differs 3.1% on average. The most pronounced changes occur during 14-16 November when S_CTRL 

significantly underpredicts surface PM2.5. In WRF-Chem, the feedback of aerosol-radiation interactions on 

meteorology act to stabilize the atmosphere, slow wind speeds, and increase PM concentrations.  
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 720 
Figure 13. Time series of surface PM2.5 (µg m-3) predicted by the sensitivity simulations (Table 1) averaged for the 

three areas of study: a) near the wildfire (N = 5), b) Sacramento (N = 7), and c) the Bay Area (N = 13). S_ENTR is 

omitted from the figure as it resulted in less than 1% change from S_CTRL. In the Bay Area, S_FCTX2 generally 

predicted more surface PM2.5, recovering 10-35 µg m-3 14-16 November when S_CTRL significantly underpredicts 

PM2.5 compared to observations. S_EMRAW demonstrates the impact of increasing the emissions inventory for 13-725 
16 November. In the Bay Area, using the unperturbed emissions inventory reduces PM2.5 by more than 30% over 14-

16 November. The impact of the aerosol feedback mechanism on PM2.5 (S_NOAERO) is location dependent. 

Excluding the feedback to meteorology generally reduces PM2.5 near the wildfire and in the Bay Area, while increasing 

PM2.5 in Sacramento. Employing the ACM2 PBL scheme results in a vastly different temporal evolution with a distinct 

diurnal pattern (S_LSM). FINN input fire data produces very little PM2.5.  730 
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Figure 14. Comparison of surface PM2.5 (µg m-3) predicted by the joint perturbation experiment 

S_FCTX2andNOAERO with individual perturbation experiments (Table 1). ΔS_* is the difference between each 

perturbation experiment (S_FCTX2 in dotted blue, S_NOAERO in dotted yellow, S_FCTX2andNOAERO in solid 735 
black) and the control experiment (S_CTRL). Black circles plot the sum of the effects from S_FCTX2 and 

S_NOAERO. Generally, the impact of the joint perturbation is similar to the sum of the two individual effects.  


