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Abstract. The Northern California Camp Fire that took place
in November 2018 was one of the most damaging environ-
mental events in California history. Here, we analyze ground-
based station observations of airborne particulate matter that
has a diameter < 2.5 µm (PM2.5) across Northern Califor-
nia and conduct numerical simulations of the Camp Fire us-
ing the Weather Research and Forecasting model online cou-
pled with chemistry (WRF-Chem). Simulations are evaluated
against ground-based observations of PM2.5, black carbon,
and meteorology, as well as satellite measurements, such
as Tropospheric Monitoring Instrument (TROPOMI) aerosol
layer height and aerosol index. The Camp Fire led to an
increase in Bay Area PM2.5 to over 50 µgm−3 for nearly
2 weeks, with localized peaks exceeding 300 µgm−3. Us-
ing the Visible Infrared Imaging Radiometer Suite (VIIRS)
high-resolution fire detection products, the simulations re-
produce the magnitude and evolution of surface PM2.5 con-
centrations, especially downwind of the wildfire. The over-
all spatial patterns of simulated aerosol plumes and their
heights are comparable with the latest satellite products from
TROPOMI. WRF-Chem sensitivity simulations are carried
out to analyze uncertainties that arise from fire emissions,
meteorological conditions, feedback of aerosol radiative ef-
fects on meteorology, and various physical parameteriza-
tions, including the planetary boundary layer model and the
plume rise model. Downwind PM2.5 concentrations are sen-
sitive to both flaming and smoldering emissions over the fire,
so the uncertainty in the satellite-derived fire emission prod-
ucts can directly affect the air pollution simulations down-

wind. Our analysis also shows the importance of land surface
and boundary layer parameterization in the fire simulation,
which can result in large variations in magnitude and trend of
surface PM2.5. Inclusion of aerosol radiative feedback mod-
erately improves PM2.5 simulations, especially over the most
polluted days. Results of this study can assist in the develop-
ment of data assimilation systems as well as air quality fore-
casting of health exposures and economic impact studies.

1 Introduction

Wildfires have become increasingly prevalent in Califor-
nia. It has been reported that, between 2007 and 2016,
as many as 3672 fires occurred in California, consuming
up to 1759 km−2 (Pimlott et al., 2016). Increasingly, the
population has expanded into high-fire-risk areas and near
wildland–urban interfaces (Brown et al., 2020). The intense
smoke consisting of airborne particulate matter of diame-
ter < 2.5 µm (PM2.5) associated with these fires leads to an
increased risk of morbidity and mortality (Cascio, 2018).
PM2.5 from wildfires consists of a spectrum of light scatter-
ing and absorptive particles largely comprising organic and
black carbon. It is increasingly important to understand the
cause and nature of wildfires as the number of extreme events
and the length of the wildfire season continue to grow (Kahn,
2020; Shi et al., 2019). Fire-related studies have estimated
exposures to PM2.5 based on ground-level monitoring-station
measurements (Shi et al., 2019; Herron-Thorpe et al., 2014;
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Archer-Nicholls et al., 2015). Spatial coverage of such mon-
itoring stations often tends to be scarce, especially in rural
areas. Satellite remote sensing offers a powerful method to
monitor air quality during fire events. One study used ra-
diance measurements from the Tropospheric Monitoring In-
strument (TROPOMI) to derive atmospheric carbon monox-
ide and assess the resulting air quality burden in major cities
due to emissions from the California wildfires from Novem-
ber 2018 (Schneising et al., 2020). Ideally, analysis of fire
events is based on a combination of satellite-based mea-
surements and ground-level observations to obtain spatial
and temporal distributions of emissions. The Camp Fire of
November 2018 was, to date, the deadliest and most de-
structive wildfire in California (Kahn, 2020; Brown et al.,
2020). Originating along the Sierra Nevada mountain range,
smoke from the fire spread across the Sacramento Valley to
the San Francisco Bay Area. Peak levels of PM2.5 in the San
Francisco area exceeded 200 µgm−3 and remained above
50 µgm−3 for nearly 2 weeks.

Numerous studies have addressed wildfire events using
a variety of model frameworks and data sources (Shi et
al., 2019; Herron-Thorpe et al., 2014; Archer-Nicholls et
al., 2015; Sessions et al., 2011). Shi et al. (2019) used
the Weather Research and Forecasting model online cou-
pled with chemistry (WRF-Chem) with Moderate Resolution
Imaging Spectroradiometer (MODIS) and Visible Infrared
Imaging Radiometer Suite (VIIRS) fire data to study the
wildfire of December 2017 in Southern California. Herron-
Thorpe et al. (2014) evaluated simulations of the 2007 and
2008 wildfires in the Pacific Northwest using the Commu-
nity Multi-scale Air Quality (CMAQ) model with fire emis-
sions generated by the BlueSky framework and fire locations
determined by the Satellite Mapping Automated Reanalysis
Tool for Fire Incident Reconciliation (SMART-FIRE). That
study suggested that underprediction of PM2.5 was the re-
sult of underestimated burned area as well as underpredicted
secondary organic aerosol (SOA) production and incom-
plete speciation of SOA precursors within the CMAQ model.
Archer-Nicholls et al. (2015) simulated biomass burning
aerosol during the 2012 dry season in Brazil using WRF-
Chem and fire emissions prepared from MODIS. That study
proposed that biases in the model were likely a result of
uncertainty in the plume injection height and emissions in-
ventory, as well as simulated aerosol sinks (e.g., wet de-
position), and lack of inclusion of SOA production in the
Model for Simulating Aerosol Interactions and Chemistry
(MOSAIC). Sessions et al. (2011) investigated methods for
injecting wildfire emissions using WRF-Chem. That study
tested two fire data preprocessors: PREP-CHEM-SRC (in-
cluded with WRF-Chem) and the Naval Research Labora-
tory’s Fire Locating and Monitoring of Burning Emissions
(FLAMBE), and three injection methods: the 1-D plume rise
model within WRF-Chem, releasing emissions only within
the planetary boundary layer, and releasing emissions be-
tween 3 and 5 km. That study compared results from sim-

ulating wildfires during the NASA Arctic Research of the
Composition of the Troposphere from Aircraft and Satellites
(ARCTAS) field campaign in 2008 with satellite data. Ses-
sions et al. (2011) found that differences in injection heights
result in different transport pathways.

The present study is a comprehensive investigation of
air quality impacts of the Camp Fire using a combined
analysis of ground-based and space-borne observations and
WRF-Chem simulations. Descriptions of the observation and
model are presented in Sect. 2; model evaluation is presented
in Sect. 3; results of analysis are given in Sect. 4, followed
by discussion and conclusion in Sect. 5.

2 Model description and observational data

The present study employs WRF-Chem (version 3.8.1)
driven by the latest version of meteorological reanalysis data
for initialization and boundary conditions. Fire emissions are
determined by pairing active fire location data from the VI-
IRS satellite with the Brazilian Biomass Burning Emission
Model (3BEM), which calculates species mass emissions
from the burned biomass carbon density, combustion factors,
emission factors, and the burning area. WRF-Chem simu-
lations are evaluated against EPA surface observations and
TROPOMI satellite products.

2.1 WRF-Chem configuration

The WRF-Chem simulation time period is 7 November 2018
(a day before the fire began) to 22 November 2018 (when the
fire was 90 % contained). We carried out simulations over
two domains (Fig. 1): domain d01 includes all of Califor-
nia at 8km× 8km horizontal resolution, while domain d02
covers Northern California at 2km× 2km horizontal resolu-
tion. A total of 49 vertical layers are used from the surface to
100 hPa with 50 m vertical resolution in the planetary bound-
ary layer. The meteorological boundary and initial conditions
for the outer domain are generated from the fifth generation
of European Centre for Medium-range Weather Forecasts
(ECMWF) reanalysis dataset (ERA5) at 30km× 30km res-
olution (Copernicus Climate Change Service, 2017). Chem-
ical boundary and initial conditions for the outer domain are
generated from the Model for Ozone and Related Chemical
Tracers version 4 (MOZART-4).

We use physical options of the Noah Land-Surface Model
(Tewari et al., 2004), the Mellor–Yamada–Janjic (MYJ)
boundary layer scheme (Janjic, 1994), and the Rapid Radia-
tive Transfer Model (RRTM) (longwave) and Dudhia (short-
wave) radiative transfer schemes (Dudhia, 1989). Cumulus
parameterization is not included. The second-generation Re-
gional Acid Deposition Model (RADM2) chemical mech-
anism coupled with the Modal Aerosol Dynamics model
for Europe (MADE) and Secondary Organic Aerosol Model
(SORGAM) (Zhao et al., 2011) are employed. Aerosol opti-
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Figure 1. Study domain (a) and observation station locations (b, c). Domain d01 covers the western US with a horizontal resolution of
8 km. Domain d02 is centered over Northern California with a horizontal resolution of 2 km. AQS and NCDC observation sites are shown in
panels (b) and (c), where stations marked in green measure only PM2.5, stations in blue measure wind and temperature, stations in orange
measure both PM2.5 and meteorology, and stations in yellow measure temperature only. Additionally, BC and CO are measured at 8 and 12
sites in the Bay Area, respectively. © Google 2020.

cal properties are calculated based on the volume approxima-
tion, for which the volume average of each aerosol species is
used to calculate refractive indices (Jin et al., 2015). Aerosol
radiative feedbacks on meteorology and chemistry are in-
cluded in the simulations.

We use the National Emission Inventory for anthropogenic
emissions (US EPA, 2018). Biogenic emissions are calcu-
lated online using the Guenther scheme (Guenther et al.,
2006). Dust emissions are calculated online using the God-
dard Chemistry Aerosol Radiation and Transport (GOCART)
dust emission scheme with University of Cologne (UOC)
modifications (Shao et al., 2011). Sea salt emissions are ex-
cluded. Technical details of wildfire emissions and the plume
rise calculation are discussed in the next section.

2.2 Fire emissions inventory and plume rise model

Wildfire emissions are generated using the PREP-CHEM-
SRC v1.5 preprocessor (Freitas et al., 2011) employing
3BEM (Longo et al., 2010) with satellite data on detected
fires. For each pixel with fire detected, the mass of emitted
species is calculated by

M [η]
= αveg ·βveg ·EF[η]

veg · afire (1)

for a certain species η, where αveg is the carbon density
(the mass of burnable aboveground biomass per unit area
of vegetation), βveg is the combustion factor, EFveg is the
emission factor by species and vegetation type, and afire is
the burning area of each fire pixel. Vegetation type is gen-
erated from the MODIS data following the International
Geosphere-Biosphere Programme (IGBP) land cover clas-
sification. Vegetation-type-specific emission factors (EFveg)

and combustion factors (βveg) are derived from Ward et
al. (1992) and Andreae and Merlet (2001). Vegetation-type-
specific carbon density (αveg) is based on Olson et al. (2000)
and Houghton et al. (2001). Active fire detection is retrieved
from the VIIRS fire product with 375 m spatial resolution.
A limitation of the VIIRS fire count product is its relatively
low temporal resolution. As a polar-orbiting satellite, VIIRS
provides fire detection during the daytime only once (about
13:30 local time; LT) at each location.

The emission preprocessor generates a file formatted for
WRF-Chem containing the smoldering-phase surface emis-
sion fluxes of each species, the fire size for each vegeta-
tion type, and flaming factor. Flaming factor is the ratio of
biomass consumed in the flaming phase to biomass con-
sumed in the smoldering phase. The 17 IGBP land cover
classes are aggregated into four main types: tropical forest,
extratropical forest, savanna, and grassland. The size of the
wildfire and phase of combustion play important roles in the
structure of the plume and the vertical distribution of emis-
sions. Wildfire combustion is generally considered to occur
in two phases: smoldering and flaming. Emissions from the
smoldering phase are allotted to the first layer of the compu-
tational grid, while those from the flaming phase are released
at injection heights above the surface, as determined by the
plume rise model described below. Fire size determines the
total surface heat flux, as well as the entrainment radius of the
plume. Fire parameters are ascribed a daily temporal resolu-
tion and are distributed to the WRF-Chem domains. The fire
parameters are then input to the plume rise model (Freitas et
al., 2007, 2010). The plume rise model is a one-dimensional
model implemented in each WRF-Chem grid cell with an in-
dependent vertical grid resolution of 100 m. It calculates the
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Figure 2. Plume rise model schematic. For each grid cell in which
wildfire occurs, the plume rise model uses satellite fire products and
the surrounding WRF-Chem environmental conditions to calculate
two plume-top heights by using the land-type-dependent minimum
and maximum wildfire heat fluxes. Smoldering-phase emissions are
allotted to the surface layer, while flaming-phase emissions are dis-
tributed linearly aloft within the injection layers at a vertical resolu-
tion of 100 m.

maximum height to which a plume reaches and distributes
emissions therein (Fig. 2). The plume-top height, determined
by the surface heat flux from the fire and the thermody-
namic stability of the atmospheric environment, is defined
as the height at which the in-plume parcel vertical veloc-
ity < 1 ms−1. The plume rise model uses upper and lower
bounds of heat fluxes determined by each land type to calcu-
late the minimum and maximum plume-top height. Flaming
emissions are distributed equally to each vertical level within
the injection layer with the following calculation: flaming
emissions per level are equal to the smoldering emission mul-
tiplied by the flaming factor multiplied by DZ−1, where DZ
is the minimum plume-top height subtracted from the maxi-
mum plume-top height. The model also accounts for entrain-
ment, water balance, and internal gravity wave damping.

Figure 3 shows the fire size and particulate matter emis-
sions produced from MODIS and VIIRS data. The Camp Fire
burned primarily extratropical forest vegetation (which com-
prised 68 % of the total burned area), followed by savanna
(23 % of total area). The flaming emission rate for species n

from vegetation type v, is calculated by

flaming-phase raten,v =
∑

fire cells
areav

· smoldering-phase fluxn
·flaming factorv. (2)

At maximum, the carbon monoxide (CO) emission flux
was 4.1× 107 molkm−2 h−1, and PM2.5 flux was 3.7×
104 µgm−2 s−1. On average, 46 % of the fuel burned is es-
timated to have been consumed during the flaming phase.

The Fire Inventory from NCAR (FINN) version 1.5
(Wiedinmyer, 2011) is another fire emissions product that
we will test in a sensitivity analysis. It is assembled for at-
mospheric chemistry models with a daily temporal resolu-
tion and a 1 km horizontal resolution. FINN is generated
using satellite observations of active fires and land cover
paired with emission factors and fuel loading estimates. The
emissions are allocated to a diurnal cycle following WRAP
(2005). FINN outputs the total wildfire emission flux, fire
size, and land type fraction. As FINN does not include a
smoldering- to flaming-phase ratio, the plume rise model cal-
culates a ratio based on CO emissions.

2.3 Surface and satellite observations

The observational data include both ground-based measure-
ments and satellite observations. Meteorological and surface
concentration data were obtained from the NOAA’s National
Climatic Data Center (NCDC) and EPA Air Quality System
(AQS), respectively. We focus on three areas: the region clos-
est to the fire, the Sacramento Metro Area (population of
2.5 million), and the San Francisco Bay Area (population of
7 million). Hourly observations of wind speed at 10 m, wind
direction at 10 m, temperature at 2 m, PM2.5, black carbon
(BC), and CO are available for the sites shown in Fig. 1. We
use level-2 products from the TROPOMI aboard the Coper-
nicus Sentinel-5 Precursor (S5P) satellite to evaluate the
spatial and vertical distribution of predictions. We compare
TROPOMI aerosol layer height retrievals (3.5km× 7km)
with the predicted WRF-Chem height of maximum PM2.5,
and ultraviolet aerosol index (UVAI, 3.5km×7km) with the
predicted WRF-Chem BC columns. The model results are
sampled around 13:30 LT when S5P passes over California.

2.4 Control and sensitivity simulations

To investigate the effects of key model parameters on the
ability to predict the atmospheric impact of the wildfire,
we conduct a range of sensitivity simulations. As meteorol-
ogy and atmospheric structure play important roles in plume
dynamics and the transport of particulate matter, we sep-
arately perturb the aerosol radiative feedback to meteorol-
ogy, the planetary boundary layer parameterization, and the
plume entrainment coefficient. To understand further the ex-
tent to which fire characteristics provided by satellite data
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Figure 3. Wildfire area by vegetation type in m2 (a) and PM2.5 emission rate in µgs−1 by combustion phase and species (b) input into WRF-
Chem. The base inventory is produced from VIIRS and MODIS fire products using the PREP-CHEM-SRC processor and is employed by
S_EMRAW. The control and remaining sensitivity simulations use an inventory with triple emission flux of all species on 13 November and
double during 13–16 November, shown here. About 59 % of total PM2.5 emissions occur in the smoldering phase (darker colors in panel b).
The total PM2.5 emitted is composed of 69.5 % organic carbon and 4.5 % black carbon. The Camp Fire burned primarily extratropical forest
(purple) followed by savanna (yellow). Burning of extratropical forest generated the greatest fraction of emissions in the flaming phase at
44.2 %, followed by savanna at 22.9 % and tropical forest at 17.4 %. Grassland emits only in the smoldering phase.

can affect the simulations, we analyze the influence of fire
data sources, the emission rate, and partitioning between
smoldering-phase and flaming-phase emissions. A summary
of these simulations is provided in Table 1.

Our evaluation focuses on the control simulation
(S_CTRL). S_CTRL applies a factor of 3 to the smolder-
ing emissions on 13 November and a factor of 2 to the
smoldering emissions on 14–16 November due to the inter-
mittent cloudy conditions over the Northern California on
those days. S_CTRL uses the native flaming factor and fire
size products, the default entrainment constant of 0.05, and
the MYJ planetary boundary layer scheme. In the follow-
ing scenarios, one parameter is individually perturbed from
this configuration. S_EMRAW uses the native emissions in-
put with unaltered smoldering-phase emissions, S_NOAERO
turns off the aerosol radiative feedback to meteorological
fields, S_FCTX2 doubles the flaming factor for the entire
simulation period (thus increasing flaming-phase emissions
without changing the smoldering phase), S_ENTR reduces
the entrainment coefficient within the plume rise model from
0.05 to 0.02, and S_LSM employs an alternative land surface
model and planetary boundary layer scheme. We perform an-

other sensitivity simulation using FINN in place of VIIRS
(S_FINN).

3 Evaluation of fire simulations

3.1 Meteorology

The three spatial areas of our interest differ significantly in
topography and meteorology. Figure 4 shows the averaged
wind observations and S_CTRL predictions. S_CTRL cap-
tures general wind patterns and achieves strong correlation
with observed temperatures in each of the areas (Fig. 5). In
the first few days of the Camp Fire, the foothills and the
Sacramento area experienced strong northerly winds, while
the Bay Area experienced northeasterly winds, both pre-
dicted by the simulation. Other distinct features like those on
11 November near the fire and in the Bay Area are also repro-
duced by S_CTRL with some bias in timing. In the Bay Area,
winds were typically southerly at speeds less than 2 ms−1

and consistent through most of the simulation duration. In the
relatively dry Sacramento Valley inland, winds were also pre-
dominantly southerly but were calmer (< 1 ms−1) and var-
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Figure 4. Comparison of AQS and NCDC wind observations (black) with S_CTRL predictions (red) averaged over the three areas of study:
(a) near the wildfire (N = 4), (b) Sacramento (N = 6), and (c) the Bay Area (N = 12). Arrows indicate the wind direction and their length
represents wind speed. For reference, S_CTRL predicts maximum wind speeds of 8.7, 7.5, and 7.1 ms−1 near the source, in Sacramento,
and in the Bay Area, respectively. Paradise and the Sacramento areas experienced strong northerly winds during the first few days of the fire.
S_CTRL generally predicted faster and more variable winds, but broader trends in Sacramento and the Bay Area were represented well.
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Table 1. Summary of sensitivity simulation setup.

Name Fire Smoldering Flaming Entrainment Land surface Aerosol radiative
data emissions factor constant model feedback

S_CTRL∗ VIIRS ×3 13 Nov, Native 0.05 Noah/MYJ Yes
×2 14–16 Nov

S_EMRAW VIIRS Native Native 0.05 Noah/MYJ Yes

S_NOAERO VIIRS ×3 13 Nov, Native 0.05 Noah/MYJ No
×2 14–16 Nov

S_FCTX2 VIIRS ×3 13 Nov, ×2 0.05 Noah/MYJ Yes
×2 14–16 Nov

S_ENTR VIIRS ×3 13 Nov, Native 0.02 Noah/MYJ Yes
×2 14–16 Nov

S_LSM VIIRS ×3 13 Nov, Native 0.05 P-X/ACM2 Yes
×2 14–16 Nov

S_FINN FINN – – 0.05 Noah/MYJ Yes

S_FCTX2andNOAERO VIIRS ×3 13 Nov, ×2 0.05 Noah/MYJ No
×2 14–16 Nov

∗ Scenario that agrees best with surface observations and is of primary focus in this study. Bold denotes parameters perturbed from the S_CTRL scenario.

Figure 5. Comparison of AQS and NCDC temperature observations versus S_CTRL predictions: (a) near the wildfire (N = 10), (b) Sacra-
mento (N = 7), and (c) the Bay Area (N = 13). The solid red lines show a linear regression fit, while the dotted black lines denote 1 : 1
simulations versus observations. The simulations achieved a correlation coefficient R2 of 0.61 near the fire, 0.72 in Sacramento, and 0.75 in
the Bay Area.

ied more than those on the coast. After 11 November, the
wind speeds were much slower. Coastal air regulates Bay
Area temperatures, whereas the drier Sacramento area expe-
riences a greater temperature range. S_CTRL also produced
these relative characteristics but, in general, generated faster
winds and higher temperatures than those observed. A sum-
mary of model performance statistics is provided in Table 2.
The complex terrain of the Bay Area and the Sierra Nevada
foothills near the fire location likely contribute to uncertainty
in predicting meteorological parameters. Note that the 4–5 K
mean biases in the regional surface temperature (T ) are non-

negligible. Figure 5 shows that the largest biases mainly oc-
cur during the night when the hourly temperature reaches the
minimum during the day (deviation from the 1 : 1 line), while
the daytime temperature matches relatively well with the ob-
servations (close to the 1 : 1 line). However, it is important to
realize that the nighttime temperature biases have little influ-
ence on the PM simulations we focus on. The temporal evo-
lutions of observed PM near Sacramento and the Bay Area
do not show a clear diurnal cycle (Fig. 6), nor do the modeled
PM biases, as shown in the next section.

https://doi.org/10.5194/acp-20-14597-2020 Atmos. Chem. Phys., 20, 14597–14616, 2020
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Table 2. Summary of meteorological model performance metrics for the simulation duration.

Variable Parameter Near sourcea Sacramentoa Bay Areaa Station 27

Wind speedb (ms−1) Observation mean 1.4 (0.2) 1.0 (0.2) 1.6 (0.7) 1.5
S_CTRL mean 2.6 (0.3) 1.4 (0.4) 2.0 (0.7) 2.3
Mean bias 1.2 0.5 0.5 0.9

Wind directionc (◦) Observation mean 360.0 338.2 73.9 68.9
S_CTRL mean 356.9 325.9 26.7 72.8
Mean bias 2.9 11.0 0.2 2.8

Temp (◦C) Observation mean 8.2 (2.3) 10.1 (1.7) 10.8 (1.9) 9.9
S_CTRL mean 12.5 (3.6) 13.7 (1.4) 15.7 (1.2) 15.5
Mean bias 4.4 3.6 4.9 5.6

a Area winds are averaged for 4 stations near source, 6 stations in Sacramento, and 12 stations in the Bay Area. Area temperatures are
averaged for 10 stations near source, 7 in Sacramento, and 13 in the Bay Area. Standard deviation of station averages is noted in
parentheses.
b Mean wind speed is calculated as the average of the magnitude of the wind vector.
c Mean wind direction is calculated assuming a unity vector.

Figure 6. Comparison of AQS surface PM2.5 observations (black) with S_CTRL predictions (red) averaged over the three areas of study:
(a) near the wildfire (N = 5), (b) Sacramento (N = 7), and (c) the Bay Area (N = 13). Shading indicates the standard deviation of the
sampled stations. S_CTRL overpredicted PM2.5 in the region in the vicinity of the fire but performed well in the areas downwind.

Atmos. Chem. Phys., 20, 14597–14616, 2020 https://doi.org/10.5194/acp-20-14597-2020
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3.2 Surface-level particulate matter

Figure 6 shows the predicted evolution of surface PM2.5 from
AQS observations and S_CTRL over the period of the wild-
fire. Within hours of the onset of the Camp Fire, observed
PM2.5 concentrations in Sacramento and the San Francisco
Bay Area (130 and 240 km downwind) increased from below
the National Ambient Air Quality Standard (NAAQS) 24 h
average of 35 to 50 µgm−3. Both areas remained above the
standard for more than a week, reaching values of 3 times the
standard for multiple days. The region near the fire, Sacra-
mento, and the San Francisco Bay Area were each out of at-
tainment of the NAAQS 24 h average of PM2.5 for 11, 11, and
12 d, respectively, during 7–20 November, while S_CTRL
predicted 12, 11, and 11 d, respectively. Much of Northern
California did not return to attainment until 22 November
when the wildfire reached 90 % containment. Table 3 sum-
marizes the ability of S_CTRL to reproduce observed values
of surface PM2.5 in the three focus areas and at Stations 27
and 28 in the Bay Area. The model prediction exhibits a
mean bias of 64.8 µgm−3 in the region of the Camp Fire,
−11.4 µgm−3 in Sacramento, and −16.8 µgm−3 in the Bay
Area. Mean bias was smaller at some individual monitor-
ing stations, such as Stations 27 and 28, which have a mean
bias of −9.9 and −6.2 µgm−3, respectively. In the broader
area near the fire, S_CTRL significantly overestimates sur-
face PM2.5, reaching nearly 1 mgm−3, while observed con-
centrations peaked closer to 300 µgm−3. However, S_CTRL
shows a similar temporal trend to that observed, capturing
many peak times. The Sacramento area experienced max-
ima near 300 µgm−3, while the Bay Area reached around
200 µgm−3. S_CTRL shows good agreement of the mag-
nitude and temporal evolution of surface PM2.5 in the Bay
Area and Sacramento for most days, with the exception of
10 November and 14–16 November (to be discussed subse-
quently). Time series of observed and predicted surface CO
and BC in the Bay Area are shown in Fig. 7. Again, S_CTRL
shows good agreement with the magnitude and trend of both
species. While PM2.5 is largely underpredicted in the period
of 14–16 November, BC is overpredicted by 5–10 µgm−3 at
peaks. S_CTRL also produces positive bias in surface CO
over 16–18 November.

Error in surface PM2.5 can, in part, be attributed to error
in the predicted wind fields. In the latter hours of 8 Novem-
ber near the Camp Fire, S_CTRL predicts southerly winds,
while observations are steadily northerly, leading to some re-
turn of initially transported plume. Again, on 11 November,
predicted winds show a dramatic reversal, and surface PM2.5
spikes. In Sacramento on 10 November, observed and pre-
dicted northerly winds at midday initially lead to increased
PM2.5 concentrations, but winds swing southerly in the later
hours. On 13 November, observed winds blow south and
transport emissions to Sacramento, while S_CTRL predicts
winds in the opposing direction, leading to an underpre-
diction in PM2.5. However, error in predicted wind fields

does not explain the substantial underprediction of surface
PM2.5 in the Bay Area over 14–16 November, as the station-
averaged winds of the area do not show significant devia-
tion from observations. We tested the four-dimensional data
assimilation (FDDA) of large-scale horizontal wind from
ERA5, but it could not reduce the aforementioned biases in
wind, possibly due to the fact that the observed wind patterns
are driven by some mesoscale or even local-scale dynamics.

To study the structural evolution of the wildfire plume,
we compare simulated total black carbon column with
TROPOMI UVAI satellite retrievals (Fig. 8). TROPOMI
UVAI is based on the difference between wavelength-
dependent Rayleigh scattering observed in an atmosphere
with aerosols and that of a modeled molecular atmosphere
(Stein Zweers et al., 2018). This difference is measured in
the UV spectral range where ozone absorption is small. A
positive residual (red coloring) indicates the presence of UV-
absorbing aerosols, like black carbon (BC), while a negative
residual (blue coloring) indicates presence of non-absorbing
aerosols. As WRF-Chem does not generate an aerosol in-
dex parameter, we compare UVAI to total BC column, a sig-
nificantly absorbing aerosol. Over the period of the simula-
tion, broad characteristics and shape, as well as some more
distinct features, of the Camp Fire plume are reproduced
by S_CTRL. Using similar input data sources and WRF-
Chem configuration but a simpler plume rise model, Shi et
al. (2019) also capture the general shape of the plume but
underestimate aerosol magnitude. Discrepancies in S_CTRL
plume transport correlate to bias in surface PM2.5. On the
first day of the fire, observations show that strong winds
in Northern California drag the plume west, where steady
coastal winds transported the plume south and inland again
(Fig. 8). The dynamics creates a dense plume with two nar-
row stretches. S_CTRL predictions of total BC column fail
to capture the hook shape present in the UVAI retrievals
but reflect the two separate stretches of narrow plume. The
simulation constrains one stretch to the valley, leading to
overprediction of surface PM2.5 in Sacramento on 8 Novem-
ber (Fig. 6b). On 11 November, the simulation does not re-
produce the second band of the plume which wraps along
the coast and towards San Francisco; rather, the plume re-
mains more concentrated to the Sacramento Valley again.
This leads to underprediction of surface PM2.5 in the Bay
Area and overprediction in Sacramento (Fig. 6b and c). The
narrow PM2.5 peaks of S_CTRL on 14–16 November in
Sacramento can likely be attributed to the more pronounced
plume on 14 and 16 November. A stark horizontal gradient of
fire emissions could restrict accumulation of PM2.5 averaged
over the Sacramento region.

To investigate the predicted decrease of surface PM2.5 in
the Bay Area on the afternoon of 14 November, we individ-
ually analyze Station 27 (Fig. 9). Figure 9 shows the verti-
cal profile of S_CTRL PM2.5 concentrations, the observed
and predicted surface PM2.5, and the observed and predicted
wind fields. Additionally, Fig. 10 shows the spatial distribu-
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Table 3. Summary of model performance metrics for surface PM2.5 (µgm−3) for the simulation duration.

Parameter Near source∗ Sacramento∗ Bay Area∗ Station 27

Observation mean 98.3 (39.7) 77.2 (24.9) 74.1 (5.4) 77.9
S_CTRL mean 163.1 (108.5) 65.8 (16.3) 57.2 (6.4) 68.1
Mean bias 64.8 −11.4 −16.8 −9.9
Normalized mean bias 76.5 % −17.4 % −23.1 % −12.7 %

∗ Area values are averaged for 5 stations near source, 7 stations in Sacramento, and 13 stations in the Bay Area.
Standard deviation of station averages is noted in parentheses.

Figure 7. Comparison of AQS surface black carbon (a, N = 5) and carbon monoxide (b, N = 12) observations (black) with S_CTRL
predictions (red) at monitoring sites in the Bay Area. S_CTRL captures the temporal evolution of BC and CO and is close to observed
values. BC peaks are often overpredicted. The greatest bias of BC and CO occurs during 16–18 November, likely due to the scale factor
applied to emissions during 13–16 November.

tion of PM2.5 and surface winds of observations (Fig. 10a)
and predictions (Fig. 10b) at four times on 14 November. In
the late morning at Station 27, observed winds become north-
easterly and PM2.5 spikes as more particle-laden air flows
westward (Fig. 9). At the same time, S_CTRL winds also be-
come northeasterly and PM2.5 increases accordingly. How-
ever, predicted winds reverse, and PM2.5 levels remain rela-
tively low from midday 14 November to midday 15 Novem-
ber. This behavior emerges as part of a larger flow pattern in
Fig. 10. Throughout the morning of 14 November, the sim-
ulated wildfire plume approaches the Bay Area and is then
driven back inland by a strong sea breeze in the afternoon,
not present in the observational data. This behavior is demon-
strated in the vertical profile of PM2.5 (Fig. 9a). A column of
clean air flushing the Bay Area leads to a predicted bias of
−50 µgm−3 on 15 November.

3.3 Aerosol vertical profile

The TROPOMI aerosol layer height (ALH) retrieval repre-
sents vertically localized aerosol layers within the free tro-
posphere in cloud-free conditions and is designed to capture
aerosol layers produced by biomass burning aerosol (such
as wildfires), volcanic ash, and desert dust (Apituley et al.,
2018). ALH is retrieved based on the significant effect of
aerosol vertical structure on the high-spectral-resolution ob-
servations in the O2 A band in the near-infrared spectrum
(759 to 770 nm). The ALH algorithm includes a spectral fit
estimation of reflectance across the O2 A band using the opti-
mal estimation retrieval method with primary fit parameters
of aerosol layer middle pressure and aerosol optical thick-
ness (de Graaf et al., 2019). The assumed aerosol profile is
a single uniform scattering layer with a fixed pressure thick-
ness, constant aerosol volume extinction coefficient, and con-
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Figure 8. Comparison of TROPOMI UV aerosol index and S_CTRL total BC column during 8–18 November at 13:30 LT as a proxy for
plume structure and motion. Due to cloud coverage, no data for 15 November are shown. Positive aerosol index (warm colors) indicates
aerosols that absorb radiation like black and brown carbon. The spatial distribution of the plume is generally captured on most days. The
simulation also captures some of the finer structures seen by the satellite, though they are somewhat displaced.

stant aerosol single scatter albedo. The middle pressure of the
layer, defined as the average of the top and bottom pressures,
is converted to altitude with a temperature profile. This pa-
rameterization is best suited for aerosol profiles dominated
by a sole elevated and optically thick aerosol layer, which is
characteristic of wildfire plumes.

We compare the satellite-derived aerosol layer height to
WRF-Chem predictions of PM2.5 using two methods. We de-
fine the smoke aerosol layer with a PM2.5 threshold concen-
tration of 3 µgm−3. For the first method, the layer height is
calculated as the average of heights at which PM2.5 is greater
than the threshold. For the second method, these heights
are weighted by BC mass. Figure 11 shows the satellite-
derived layer height (Fig. 11a) and the S_CTRL model bias
of average heights (Fig. 11b) and mass-weighted average

heights (Fig. 11c). TROPOMI layer heights are generally
1 to 2 km and reach higher than 6 km in some instances.
Using purely averaged heights, S_CTRL typically overpre-
dicts ALH by 100 to 400 m and remains within a smaller
range than TROPOMI. S_CTRL layer heights weighted by
BC mass are lower, thus improving agreement with the satel-
lite. Note that the reported retrieval bias in TROPOMI ALH
is about 780 m for wildfire emission plumes and 1.75 km over
land generally (Nanda et al., 2020), so the above model–
satellite differences in ALH are within the uncertainty range.
Archer-Nicholls et al. (2015) and Sessions et al. (2011) also
reported overpredicted aerosol layer heights using WRF-
Chem when compared to airborne data and Multi-angle
Imaging SpectroRadiometer (MISR) stereo heights, respec-
tively. Using CMAQ, however, Herron-Thorpe et al. (2014)
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Figure 9. Vertical profile of PM2.5 (a), time series of surface PM2.5 (b), and winds (c; observations in black and predictions in red) at
Station 27 in the Bay Area. The gray box highlights the time frame of greatest model bias of surface PM2.5. Sharp increases in PM2.5
correlate with a switch to northeasterly winds that import fire emissions to the Bay Area. A large negative PM2.5 bias on 15 November
occurs when S_CTRL deviates from observations and produces southerly winds which bring in clean air. This can be seen in the column of
low-level PM on 15 November in panel (a).

reported underpredicted heights when compared to Cloud-
Aerosol Lidar with Orthogonal Polarization (CALIOP) prod-
ucts. Archer-Nicholls et al. (2015) found that error in plume
injection height can contribute to error in surface PM, and
that PM biases were dependent on vegetation type as carbon
density and heat release vary by vegetation. Location of the
aerosol layer within the column likely also contributes to er-
ror in surface predictions of PM2.5 in this study; however, the
current analysis is inconclusive. The assumption of a single,
elevated aerosol layer used in the TROPOMI ALH derivation
may not be characteristic of the vertical structure predicted
by WRF-Chem. As seen in Figs. 9 and 10 and in the verti-
cal profile near the wildfire, layers of aerosol are commonly
present at the surface and exist as multiple non-localized lay-
ers. Sessions et al. (2011) also found that using the FLAMBE
fire data preprocessor with emission injection heights not
constrained to the boundary layer resulted in better agree-

ment with satellite products than PREP-CHEM-SRC. Con-
sideration of the WRF vertical grid is also necessary when
comparing surface level values. Further development of the
analytic method used to evaluate WRF-Chem aerosol layer
heights may provide insight into the behavior of the plume
rise model and its vertical structure.

4 Sensitivity simulation analysis

We conduct sensitivity simulations to investigate the effects
of various parameters on the ability of the WRF-Chem model
to accurately predict downwind PM concentrations from
wildfires. As meteorological conditions and related bound-
ary structure play important roles in plume dynamics and the
transport of PM, we separately test the aerosol feedback to
meteorology and the land surface model. To understand the
extent to which fire characteristics provided by satellite data
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Figure 10. Surface PM2.5 and wind field of observations (a) and S_CTRL predictions (b) on 14 November in the Bay Area. Note that the
reference wind vector for S_CTRL is 2 ms−1, while the reference is 1 ms−1 for observations. While the plume encroaches on the Bay Area,
a strong sea breeze develops midday, driving plumes back inland. This sea breeze is not present in observational data, leading to a large
underprediction of surface PM2.5.

Figure 11. Comparison of TROPOMI aerosol layer height (a) and bias where S_CTRL layer height is calculated as the average of heights
where PM2.5 > 3 µgm−3 (b) and the average weighted by PM2.5 mass (c) for select days at 13:30 LT. In panels (b) and (c), warm colors
indicate positive bias where S_CTRL overpredicts the height of the aerosol layer.
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can affect the simulation, we analyze the fire product sources
(VIIRS versus FINN), the total fire emissions, and the di-
vision between smoldering-phase and flaming-phase emis-
sions. To examine the influence of the plume rise model, we
perturb a key parameter: the entrainment coefficient.

4.1 Aerosol radiative feedback to meteorology

By absorbing and scattering solar radiation, aerosols can im-
pact the radiative fluxes, cloud formation, and precipitation
in the atmosphere (Wang et al., 2016, 2020), and, in turn,
the meteorological conditions for aerosol formation, trans-
port, and removal (Li et al., 2019). WRF-Chem has the op-
tion to couple aerosol–radiative direct effects with meteo-
rology simulation. S_NOAERO uses the same input data
and configuration as S_CTRL but disables the aerosol ra-
diative feedback. Figure 12 shows the evolution of surface
wind speed and temperature throughout the wildfire near
the source (Fig. 12a), in Sacramento (Fig. 12b), and in the
Bay Area (Fig. 12c). The aerosol radiative impact on simu-
lated meteorology is more pronounced for surface tempera-
ture than wind. When aerosol radiative feedbacks are notice-
able, colder temperatures and calmer winds are found near
the surface. Generally, feedbacks are more evident in the re-
gion closer to the fire sources with larger PM concentrations.
Also, in the Bay Area, the largest changes in meteorology co-
incide with the largest differences in surface PM2.5 between
the two scenarios (Fig. 13), which occurs when higher con-
centrations are predicted (10–11 November, 14–16 Novem-
ber). Consequently, the aerosol radiative feedback in WRF-
Chem acts to stabilize the atmosphere, presumably due to the
solar absorption by smoke aerosols and reduction of radiation
reaching the surface (Wang et al., 2013). When taking the
entire time period into account, the overall smoke radiative
effect on meteorology is relatively small in the downwind re-
gion, like the Bay Area, even when aerosol concentrations
are high.

4.2 Fire emission inventory

Currently, fire emission inventories generally have large un-
certainty. Although wildfires have been studied for decades
and there is vast literature characterizing biomass combus-
tion emissions, there are large knowledge gaps in the com-
position of these emissions when a nontrivial fraction of the
burnt area includes built environment comprising a vast array
of non-biomass-related materials. For the Camp Fire, there
is a paucity of the types of burned land cover and fire emis-
sions data required to incorporate these considerations into
model simulations. WRF-Chem input fire files produced with
VIIRS and PREP-CHEM-SRC include fire size, smoldering
emission flux, and flaming factor. Here, we test the sensitivity
of predictions to different emission dataset (FINN (S_FINN)
versus VIIRS/MODIS), as well as emission injection param-
eters, such as the smoldering emission flux (S_EMRAW)

and flaming factor (S_FCTX2). S_FINN produces very lit-
tle aerosol, though it captures the timing of some peaks. The
aerosol underestimation may be a result of bias in the emis-
sion inventory or an issue of its implementation in the plume
rise model code, as FINN specifies total wildfire emissions
rather than a smoldering and flaming distribution.

When the VIIRS emission inventory is used, the total wild-
fire emission flux can be altered through two parameters: the
smoldering emission flux at the surface and the flaming fac-
tor. Directly increasing the smoldering emission flux adds
emissions to the surface layer and increases flaming-phase
emissions proportionally. Figure 13 shows the impact of dou-
bling smoldering emissions on 13 November and tripling
them during 14–16 November. These changes to the inven-
tory more than double concentrations of surface PM2.5 in the
area of the wildfire and increase concentrations in the Bay
Area by 20 to 60 µgm−3 during 14–16 November. Conse-
quently, increasing input of total wildfire emissions improves
the agreement of predictions with observations in Sacra-
mento and the Bay Area, suggesting that some uncertainty
may stem from satellite fire products. This finding is sup-
ported by Archer-Nicholls et al. (2015), as they applied a
factor of 5 to scale up the wildfire emissions in their simu-
lations. By modifying the flaming factor, we perturb only the
emissions injected aloft by the plume, as emissions higher in
the atmosphere may allow for greater transport downwind.
By doubling the flaming factor over the full simulation dura-
tion, S_FCTX2 recovers 10–35 µgm−3 in the Bay Area 14–
16 November (Fig. 13c), when S_CTRL substantially under-
predicts PM2.5.

4.3 Plume rise parameterization – entrainment
coefficient

The plume rise model parameterizes entrainment as propor-
tional to the plume vertical velocity and inversely propor-
tional to the plume radius (Freitas et al., 2010). Greater en-
trainment causes rapid cooling, such that near-surface plume
temperatures are only slightly warmer than the environment,
lowering buoyancy and reducing the plume height. Larger
wildfires generate less entrainment and reach higher injection
heights. The parameterization also includes the effect of hori-
zontal winds on entrainment. Strong wind shear can enhance
entrainment and increase boundary layer mixing (Freitas et
al., 2010). Archer-Nicholls et al. (2015) decreased the origi-
nal entrainment coefficient (Freitas et al., 2007) from 0.1 to
0.05 to improve their simulations of a wildfire. As the Camp
Fire developed rapidly and intensely, we performed the sen-
sitivity simulation S_ENTR with a lower entrainment coeffi-
cient of 0.02 to allow for higher injection heights. However,
entrainment perturbation resulted in less than 1 % change in
surface PM2.5 from S_CTRL. A possible reason is that the
background winds were quite strong already, for which the
entrainment coefficient played a limited role.
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Figure 12. Comparison of meteorology generated by S_CTRL (solid red line) and S_NOAERO (in which aerosol effects do not feed back to
the meteorology; dashed blue line) over the three areas of study: (a) near the wildfire, (b) Sacramento, and (c) the San Francisco Bay Area.
Exclusion of the aerosol feedback has the greatest effect nearest the fire, where S_NOAERO increased wind and temperature by 9.8 % and
9.7 %, respectively, on average. The aerosol feedback mechanism has the least significance in the Bay Area, where S_NOAERO wind speed
differs less than 2 % and temperature differs 3.1 % on average. The most pronounced changes occur during 14–16 November when S_CTRL
significantly underpredicts surface PM2.5. In WRF-Chem, the feedback of aerosol–radiation interactions on meteorology acts to stabilize the
atmosphere, slow wind speeds, and increase PM concentrations.
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Figure 13. Time series of surface PM2.5 (µgm−3) predicted by the sensitivity simulations (Table 1) averaged for the three areas of study:
(a) near the wildfire (N = 5), (b) Sacramento (N = 7), and (c) the Bay Area (N = 13). S_ENTR is omitted from the figure as it resulted
in less than 1 % change from S_CTRL. In the Bay Area, S_FCTX2 generally predicted more surface PM2.5, recovering 10–35 µgm−3

on 14–16 November when S_CTRL significantly underpredicted PM2.5 compared to observations. S_EMRAW demonstrates the impact
of increasing the emissions inventory for 13–16 November. In the Bay Area, using the unperturbed emissions inventory reduces PM2.5
by more than 30 % over 14–16 November. The impact of the aerosol feedback mechanism on PM2.5 (S_NOAERO) is location dependent.
Excluding the feedback to meteorology generally reduces PM2.5 near the wildfire and in the Bay Area, while increasing PM2.5 in Sacramento.
Employing the ACM2 PBL scheme results in a vastly different temporal evolution with a distinct diurnal pattern (S_LSM). FINN input fire
data produce very little PM2.5.

We compare simulations using two different land surface
models (LSMs) which include the planetary boundary layer
(PBL) schemes: the Noah LSM with MYJ PBL and the
Pleim–Xiu LSM (referred to here as P-X) with the Asymmet-
ric Convection Model 2 (ACM2) PBL (Janjic, 1994; Pleim
and Xiu, 1995; Chen and Dudhia, 2001; Pleim, 2007). Land
surface models simulate the heat and radiative fluxes be-
tween the ground and the atmosphere (Campbell et al., 2018).
The Noah LSM has four soil moisture and temperature lay-
ers, while the P-X LSM has two (Hu et al., 2014; Campbell
et al., 2018). Both include a vegetation canopy model and
vegetative evapotranspiration. The PBL scheme provides the
boundary layer fluxes (heat, moisture, and momentum) and

the vertical diffusion within the column. It uses boundary
layer eddy fluxes to distribute surface fluxes and grows the
PBL by entrainment. A key feature of PBL schemes is the in-
clusion of local mixing (between adjacent layers) and/or non-
local mixing (from the surface layer to higher layers). The
MYJ scheme is a turbulent kinetic energy prediction, while
the ACM2 scheme is a member of the diagnostic non-local
class. MYJ solves for the total kinetic energy in each col-
umn from buoyancy and shear production, dissipation, and
vertical mixing. ACM2 has two main components: a term for
local transport by small eddies and a term for non-local trans-
port by large eddies. Coniglio et al. (2013) showed that the
MYJ scheme can undermix the PBL in locations upstream
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Figure 14. Comparison of surface PM2.5 (µgm−3) predicted by the joint perturbation experiment S_FCTX2andNOAERO with individual
perturbation experiments (Table 1). 1S_* is the difference between each perturbation experiment (S_FCTX2 in dotted blue, S_NOAERO in
dotted yellow, S_FCTX2andNOAERO in solid black) and the control experiment (S_CTRL). Black circles plot the sum of the effects from
S_FCTX2 and S_NOAERO. Generally, the impact of the joint perturbation is similar to the sum of the two individual effects.

of convection in the presence of overly cool and moist con-
ditions near the ground in the daytime, whereas ACM2 can
result in an excessively deep PBL in evening. Pleim (AMS,
2007) also noted that ACM2 predicts the PBL profile of po-
tential temperature and velocity with greater accuracy.

The use of P-X and ACM2 results in substantially different
aerosol trends and plume evolution, the effects of which are
largely location-dependent (Fig. 13). Near the fire and in the
Bay Area, S_LSM produces little similarity in surface PM2.5
magnitude and trend as compared to S_CTRL. S_LSM re-
duces PM2.5 concentrations by more than 50 % in both areas
for the majority of the simulation period. However, S_CTRL
overpredicts PM2.5 near the wildfire, while S_LSM under-
predicts but produces a more muted temporal pattern, sim-
ilar to observations. In the Sacramento area, S_LSM gen-
erally predicts higher PM2.5 values with a distinct diurnal
trend. Peaks are of similar magnitude to S_CTRL but dis-
placed temporally. The topography of the Sacramento area
is more uniform than the complex terrain of the Bay area
as well as the foothills and canyons near the wildfire, likely
contributing to the distinctions in the behavior of the two
schemes. Moreover, the current sensitivity study stresses the
importance of the parameterization of the land surface and
the boundary layer. As shown here, the Noah LSM and MYJ
scheme perform well for the broader region of Northern Cal-
ifornia, whereas improvement near the wildfire itself may be
attained with altered PBL parameterization.

4.4 Joint perturbation

To test the linearity of different factors in regulating the fire-
related PM pollution, we choose two factors, emission flam-
ing factor and aerosol radiative feedback, and conduct a new
experiment by jointly perturbing these two. We compare the
results from this joint perturbing experiment with those from
each individual perturbing experiment and the linear sum of
the two in Fig. 14. It shows that for the most times, the ef-
fect of joint perturbation is close to the sum of the two in-

dividual effects (the black line follows well with the black
circles), indicating that the relatively good linearity and ad-
ditivity hold between those two factors in a general sense.
The exception occurs under the extreme conditions. During
14–18 November when the plume was thick and PM2.5 con-
centration was highest in the Bay Area, the aerosol radiative
feedback dominates, and the effect of joint perturbation is
close to the aerosol radiative effect (the black line follows
well with the dotted blue line).

5 Conclusions and discussion

The record-breaking Camp Fire ravaged Northern California
for nearly 2 weeks. At a distance of 240 km downwind of
the wildfire, Bay Area surface PM2.5 levels reached nearly
200 µgm−3 and remained over 70 µgm−3 over 7–22 Novem-
ber 2018. It is uncertain to what extent the current chemi-
cal transport models can reproduce the key features of this
historical event. Here, we employ the WRF-Chem model
to characterize the spatiotemporal PM concentrations across
Northern California and to investigate the sensitivity of pre-
dictions to key parameters of the model. The model utilizes
satellite fire detection products with a resolution of 375 m
and a biomass burning model to generate the fire emission
inventory in near-real time. We conduct model simulations
at 2 km resolution. A wide range of observational data is em-
ployed to evaluate the model performance, including ground-
based observations of PM2.5, black carbon, and meteorology
from EPA and NOAA stations, as well as satellite measure-
ments, such as TROPOMI aerosol layer height and aerosol
index.

We focus on three geographic areas: the vicinity of the
wildfire, Sacramento, and the San Francisco Bay Area. The
control experiment was able to simulate the general transport
and extent of the plume as well as the magnitude and tem-
poral evolution of surface PM2.5 in Sacramento and the Bay
Area. Meanwhile, the control experiment substantially over-
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predicted surface PM2.5 near the fire but captured the gen-
eral evolution of the fire development. On the Pacific coast,
the Bay Area was subject to significant sea breezes not ob-
served during the time period of simulation. Due to strong
winds predicted from the ocean, a large negative bias existed
in surface PM2.5. Increasing total wildfire emissions (smol-
dering and flaming) and increasing flaming-phase emissions
alone each recovered some PM2.5 biases. Aerosol radiative
feedback on meteorology acted to stabilize the atmosphere
and slightly increased the PM2.5 concentration near the sur-
face during most severe episodes. Hence, its inclusion mod-
estly improves model performance. Our study shows that
sources of downwind PM error stem primarily from the local-
ized structure of the plume and uncertainty in fire emissions.
Uncertainty of partitioning between smoldering and flaming
phases may also contribute to uncertainty in plume horizon-
tal transport.

Future studies are needed to further improve the present
modeling framework to simulate wildfires. Some wildfires
exhibit a distinct diurnal cycle, but the current fire prepara-
tion module has not utilized the time information of the fire
radiative power measurements by the polar-orbiting satel-
lites. Also, the current land cover and vegetation type data are
still relatively coarse in spatial resolution and classification
accuracy, which cannot fully resolve a small town in a rural
area. In fact, the Camp Fire reportedly burned the town of
Paradise, California, between 8 and 10 November 2018. The
town of Paradise covered 47 km2 which corresponds to about
7.6 % of the total burned area. This contributes to the uncer-
tainty in the fire emission preparation. Additional verification
of input fire data sources, such as FINN, and their implemen-
tation in the WRF-Chem plume rise model is needed for stud-
ies of the vertical structure. Deeper understanding of the role
of plume dynamics and boundary layer parameterization on
aerosol concentrations downwind from wildfires will inform
updates to forecast models like WRF-SFIRE-CHEM, which
couples WRF with a fire spread model and smoke dispersion
simulation (Barbuzano, 2019; Kochanski et al., 2013). Given
the complexity of the problem, we only perturb individual
factors in this study. Future studies can test different com-
binations of the main factors identified by the present study,
which can yield additional insights about non-linear interac-
tions among different processes related to fire emission and
transport.

The recent TROPOMI aerosol layer height product shows
promise as an analytical tool but requires further devel-
opment of the method by which it can be directly com-
pared to WRF-Chem. Given the assumptions required to
perform the TROPOMI ALH retrieval, more research is
needed to compare that product with any height retrievals
from MODIS/MAIAC (Lyapustin et al. 2020), MISR, and
CALIPSO. The intercomparison can help quantify measure-
ment uncertainty. Herron-Thorpe et al. (2014) noted that
careful consideration must also be given to the vertical coor-
dinates across models and satellite products, as discrepancies

in reporting heights in reference to sea level, ground level, or
the geoid can influence analyses.
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