Articles | Volume 20, issue 21
https://doi.org/10.5194/acp-20-13011-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-13011-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
On the role of trend and variability in the hydroxyl radical (OH) in the global methane budget
Yuanhong Zhao
CORRESPONDING AUTHOR
Laboratoire des Sciences du Climat et de l'Environnement, LSCE-IPSL
(CEA-CNRS-UVSQ), Université Paris-Saclay, 91191 Gif-sur-Yvette, France
Marielle Saunois
Laboratoire des Sciences du Climat et de l'Environnement, LSCE-IPSL
(CEA-CNRS-UVSQ), Université Paris-Saclay, 91191 Gif-sur-Yvette, France
Philippe Bousquet
Laboratoire des Sciences du Climat et de l'Environnement, LSCE-IPSL
(CEA-CNRS-UVSQ), Université Paris-Saclay, 91191 Gif-sur-Yvette, France
Laboratoire des Sciences du Climat et de l'Environnement, LSCE-IPSL
(CEA-CNRS-UVSQ), Université Paris-Saclay, 91191 Gif-sur-Yvette, France
now at: Climate and Space Sciences and Engineering, University
of Michigan, Ann Arbor, MI, USA
Antoine Berchet
Laboratoire des Sciences du Climat et de l'Environnement, LSCE-IPSL
(CEA-CNRS-UVSQ), Université Paris-Saclay, 91191 Gif-sur-Yvette, France
Michaela I. Hegglin
Department of Meteorology, University of Reading, Earley Gate,
Reading, RG6 6BB, United Kingdom
Josep G. Canadell
Global Carbon Project, CSIRO Oceans and Atmosphere, Canberra,
Australian Capital Territory 2601, Australia
Robert B. Jackson
Department of Earth System Science, Woods Institute for the Environment, and Precourt Institute for Energy, Stanford University, Stanford, CA, USA
Makoto Deushi
Meteorological Research Institute, 1-1 Nagamine, Tsukuba, Ibaraki,
305-0052, Japan
Patrick Jöckel
Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
Douglas Kinnison
Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, 3090 Center Green Drive, Boulder, CO, USA
Ole Kirner
Steinbuch Centre for Computing, Karlsruhe Institute of Technology,
Karlsruhe, Germany
Sarah Strode
NASA Goddard Space Flight Center, Greenbelt, MD, USA
GESTAR, Universities Space Research Association (USRA), Columbia,
MD, USA
Simone Tilmes
Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, 3090 Center Green Drive, Boulder, CO, USA
Edward J. Dlugokencky
Global Monitoring Division, NOAA Earth System Research Laboratory,
Boulder, CO, USA
Laboratoire des Sciences du Climat et de l'Environnement, LSCE-IPSL
(CEA-CNRS-UVSQ), Université Paris-Saclay, 91191 Gif-sur-Yvette, France
Viewed
Total article views: 4,019 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 24 Apr 2020)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
2,837 | 1,109 | 73 | 4,019 | 380 | 71 | 72 |
- HTML: 2,837
- PDF: 1,109
- XML: 73
- Total: 4,019
- Supplement: 380
- BibTeX: 71
- EndNote: 72
Total article views: 2,934 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 06 Nov 2020)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
2,144 | 733 | 57 | 2,934 | 232 | 59 | 57 |
- HTML: 2,144
- PDF: 733
- XML: 57
- Total: 2,934
- Supplement: 232
- BibTeX: 59
- EndNote: 57
Total article views: 1,085 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 24 Apr 2020)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
693 | 376 | 16 | 1,085 | 148 | 12 | 15 |
- HTML: 693
- PDF: 376
- XML: 16
- Total: 1,085
- Supplement: 148
- BibTeX: 12
- EndNote: 15
Viewed (geographical distribution)
Total article views: 4,019 (including HTML, PDF, and XML)
Thereof 4,061 with geography defined
and -42 with unknown origin.
Total article views: 2,934 (including HTML, PDF, and XML)
Thereof 3,150 with geography defined
and -216 with unknown origin.
Total article views: 1,085 (including HTML, PDF, and XML)
Thereof 911 with geography defined
and 174 with unknown origin.
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Cited
29 citations as recorded by crossref.
- Local and regional enhancements of CH4, CO, and CO2 inferred from TCCON column measurements K. Mottungan et al. 10.5194/amt-17-5861-2024
- Anomalies of O3, CO, C2H2, H2CO, and C2H6 detected with multiple ground-based Fourier-transform infrared spectrometers and assessed with model simulation in 2020: COVID-19 lockdowns versus natural variability I. Ortega et al. 10.1525/elementa.2023.00015
- Changes in tropospheric air quality related to the protection of stratospheric ozone in a changing climate S. Madronich et al. 10.1007/s43630-023-00369-6
- Interannual changes in atmospheric oxidation over forests determined from space J. Shutter et al. 10.1126/sciadv.adn1115
- Exploring the drivers of tropospheric hydroxyl radical trends in the Geophysical Fluid Dynamics Laboratory AM4.1 atmospheric chemistry–climate model G. Chua et al. 10.5194/acp-23-4955-2023
- Investigation of the renewed methane growth post-2007 with high-resolution 3-D variational inverse modeling and isotopic constraints J. Thanwerdas et al. 10.5194/acp-24-2129-2024
- Characterizing Aircraft Exhaust Emissions and Impact Factors at Tianjin Binhai International Airport via Open-Path Fourier-Transform Infrared Spectrometer J. Zhao et al. 10.3390/toxics12110782
- Trends in atmospheric methane concentrations since 1990 were driven and modified by anthropogenic emissions R. Skeie et al. 10.1038/s43247-023-00969-1
- COVID-19 lockdown emission reductions have the potential to explain over half of the coincident increase in global atmospheric methane D. Stevenson et al. 10.5194/acp-22-14243-2022
- Long-term evolution of carbonaceous aerosols in PM2.5 during over a decade of atmospheric pollution outbreaks and control in polluted central China Z. Dong et al. 10.1016/j.scitotenv.2024.173089
- Large and increasing methane emissions from eastern Amazonia derived from satellite data, 2010–2018 C. Wilson et al. 10.5194/acp-21-10643-2021
- Half of global methane emissions come from highly variable aquatic ecosystem sources J. Rosentreter et al. 10.1038/s41561-021-00715-2
- A three-dimensional-model inversion of methyl chloroform to constrain the atmospheric oxidative capacity S. Naus et al. 10.5194/acp-21-4809-2021
- Radiocarbon monoxide indicates increasing atmospheric oxidizing capacity O. Morgenstern et al. 10.1038/s41467-024-55603-1
- Integrated Analysis of Methane Cycles and Trends at the WMO/GAW Station of Lamezia Terme (Calabria, Southern Italy) F. D’Amico et al. 10.3390/atmos15080946
- Plant gross primary production, plant respiration and carbonyl sulfide emissions over the globe inferred by atmospheric inverse modelling M. Remaud et al. 10.5194/acp-22-2525-2022
- Impact of interannual and multidecadal trends on methane-climate feedbacks and sensitivity C. Cheng & S. Redfern 10.1038/s41467-022-31345-w
- Atmospheric Methane: Comparison Between Methane's Record in 2006–2022 and During Glacial Terminations E. Nisbet et al. 10.1029/2023GB007875
- Climate and Tropospheric Oxidizing Capacity A. Fiore et al. 10.1146/annurev-earth-032320-090307
- Mitigating climate change by abating coal mine methane: A critical review of status and opportunities C. Karacan et al. 10.1016/j.coal.2024.104623
- Removal of Atmospheric Methane by Increasing Hydroxyl Radicals via a Water Vapor Enhancement Strategy Y. Liu et al. 10.3390/atmos15091046
- Reconciling the bottom-up and top-down estimates of the methane chemical sink using multiple observations Y. Zhao et al. 10.5194/acp-23-789-2023
- Space-based Earth observation in support of the UNFCCC Paris Agreement M. Hegglin et al. 10.3389/fenvs.2022.941490
- Enhancing long-term trend simulation of the global tropospheric hydroxyl (TOH) and its drivers from 2005 to 2019: a synergistic integration of model simulations and satellite observations A. Souri et al. 10.5194/acp-24-8677-2024
- Adoption of cleaner technologies and reduction in fire events in the hotspots lead to global decline in carbon monoxide A. Joshi et al. 10.1016/j.chemosphere.2023.139259
- Investigating the global OH radical distribution using steady-state approximations and satellite data M. Pimlott et al. 10.5194/acp-22-10467-2022
- Assimilation of GOSAT Methane in the Hemispheric CMAQ; Part II: Results Using Optimal Error Statistics S. Voshtani et al. 10.3390/rs14020375
- Estimation of the atmospheric hydroxyl radical oxidative capacity using multiple hydrofluorocarbons (HFCs) R. Thompson et al. 10.5194/acp-24-1415-2024
- Influences of hydroxyl radicals (OH) on top-down estimates of the global and regional methane budgets Y. Zhao et al. 10.5194/acp-20-9525-2020
28 citations as recorded by crossref.
- Local and regional enhancements of CH4, CO, and CO2 inferred from TCCON column measurements K. Mottungan et al. 10.5194/amt-17-5861-2024
- Anomalies of O3, CO, C2H2, H2CO, and C2H6 detected with multiple ground-based Fourier-transform infrared spectrometers and assessed with model simulation in 2020: COVID-19 lockdowns versus natural variability I. Ortega et al. 10.1525/elementa.2023.00015
- Changes in tropospheric air quality related to the protection of stratospheric ozone in a changing climate S. Madronich et al. 10.1007/s43630-023-00369-6
- Interannual changes in atmospheric oxidation over forests determined from space J. Shutter et al. 10.1126/sciadv.adn1115
- Exploring the drivers of tropospheric hydroxyl radical trends in the Geophysical Fluid Dynamics Laboratory AM4.1 atmospheric chemistry–climate model G. Chua et al. 10.5194/acp-23-4955-2023
- Investigation of the renewed methane growth post-2007 with high-resolution 3-D variational inverse modeling and isotopic constraints J. Thanwerdas et al. 10.5194/acp-24-2129-2024
- Characterizing Aircraft Exhaust Emissions and Impact Factors at Tianjin Binhai International Airport via Open-Path Fourier-Transform Infrared Spectrometer J. Zhao et al. 10.3390/toxics12110782
- Trends in atmospheric methane concentrations since 1990 were driven and modified by anthropogenic emissions R. Skeie et al. 10.1038/s43247-023-00969-1
- COVID-19 lockdown emission reductions have the potential to explain over half of the coincident increase in global atmospheric methane D. Stevenson et al. 10.5194/acp-22-14243-2022
- Long-term evolution of carbonaceous aerosols in PM2.5 during over a decade of atmospheric pollution outbreaks and control in polluted central China Z. Dong et al. 10.1016/j.scitotenv.2024.173089
- Large and increasing methane emissions from eastern Amazonia derived from satellite data, 2010–2018 C. Wilson et al. 10.5194/acp-21-10643-2021
- Half of global methane emissions come from highly variable aquatic ecosystem sources J. Rosentreter et al. 10.1038/s41561-021-00715-2
- A three-dimensional-model inversion of methyl chloroform to constrain the atmospheric oxidative capacity S. Naus et al. 10.5194/acp-21-4809-2021
- Radiocarbon monoxide indicates increasing atmospheric oxidizing capacity O. Morgenstern et al. 10.1038/s41467-024-55603-1
- Integrated Analysis of Methane Cycles and Trends at the WMO/GAW Station of Lamezia Terme (Calabria, Southern Italy) F. D’Amico et al. 10.3390/atmos15080946
- Plant gross primary production, plant respiration and carbonyl sulfide emissions over the globe inferred by atmospheric inverse modelling M. Remaud et al. 10.5194/acp-22-2525-2022
- Impact of interannual and multidecadal trends on methane-climate feedbacks and sensitivity C. Cheng & S. Redfern 10.1038/s41467-022-31345-w
- Atmospheric Methane: Comparison Between Methane's Record in 2006–2022 and During Glacial Terminations E. Nisbet et al. 10.1029/2023GB007875
- Climate and Tropospheric Oxidizing Capacity A. Fiore et al. 10.1146/annurev-earth-032320-090307
- Mitigating climate change by abating coal mine methane: A critical review of status and opportunities C. Karacan et al. 10.1016/j.coal.2024.104623
- Removal of Atmospheric Methane by Increasing Hydroxyl Radicals via a Water Vapor Enhancement Strategy Y. Liu et al. 10.3390/atmos15091046
- Reconciling the bottom-up and top-down estimates of the methane chemical sink using multiple observations Y. Zhao et al. 10.5194/acp-23-789-2023
- Space-based Earth observation in support of the UNFCCC Paris Agreement M. Hegglin et al. 10.3389/fenvs.2022.941490
- Enhancing long-term trend simulation of the global tropospheric hydroxyl (TOH) and its drivers from 2005 to 2019: a synergistic integration of model simulations and satellite observations A. Souri et al. 10.5194/acp-24-8677-2024
- Adoption of cleaner technologies and reduction in fire events in the hotspots lead to global decline in carbon monoxide A. Joshi et al. 10.1016/j.chemosphere.2023.139259
- Investigating the global OH radical distribution using steady-state approximations and satellite data M. Pimlott et al. 10.5194/acp-22-10467-2022
- Assimilation of GOSAT Methane in the Hemispheric CMAQ; Part II: Results Using Optimal Error Statistics S. Voshtani et al. 10.3390/rs14020375
- Estimation of the atmospheric hydroxyl radical oxidative capacity using multiple hydrofluorocarbons (HFCs) R. Thompson et al. 10.5194/acp-24-1415-2024
1 citations as recorded by crossref.
Latest update: 21 Jan 2025
Download
- Article
(2539 KB) - Full-text XML
Short summary
Decadal trends and variations in OH are critical for understanding atmospheric CH4 evolution. We quantify the impacts of OH trends and variations on the CH4 budget by conducting CH4 inversions on a decadal scale with an ensemble of OH fields. We find the negative OH anomalies due to enhanced fires can reduce the optimized CH4 emissions by up to 10 Tg yr−1 during El Niño years and the positive OH trend from 1986 to 2010 results in a ∼ 23 Tg yr−1 additional increase in optimized CH4 emissions.
Decadal trends and variations in OH are critical for understanding atmospheric CH4 evolution. We...
Altmetrics
Final-revised paper
Preprint