Articles | Volume 20, issue 19
Atmos. Chem. Phys., 20, 11287–11304, 2020
https://doi.org/10.5194/acp-20-11287-2020
Atmos. Chem. Phys., 20, 11287–11304, 2020
https://doi.org/10.5194/acp-20-11287-2020

Measurement report 02 Oct 2020

Measurement report | 02 Oct 2020

Measurement report: Leaf-scale gas exchange of atmospheric reactive trace species (NO2, NO, O3) at a northern hardwood forest in Michigan

Wei Wang et al.

Related authors

Ozone Reactivity Measurement of Biogenic Volatile Organic Compound Emissions
Detlev Helmig, Alex Guenther, Jacques Hueber, Ryan Daly, Jeong-Hoo Park, Anssi Liikanen, and Arnaud P. Praplan
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-354,https://doi.org/10.5194/amt-2021-354, 2021
Preprint under review for AMT
Short summary
Temporary pause in the growth of atmospheric ethane and propane in 2015–2018
Hélène Angot, Connor Davel, Christine Wiedinmyer, Gabrielle Pétron, Jashan Chopra, Jacques Hueber, Brendan Blanchard, Ilann Bourgeois, Isaac Vimont, Stephen A. Montzka, Ben R. Miller, James W. Elkins, and Detlev Helmig
Atmos. Chem. Phys., 21, 15153–15170, https://doi.org/10.5194/acp-21-15153-2021,https://doi.org/10.5194/acp-21-15153-2021, 2021
Short summary
Ozone deposition impact assessments for forest canopies require accurate ozone flux partitioning on diurnal timescales
Auke J. Visser, Laurens N. Ganzeveld, Ignacio Goded, Maarten C. Krol, Ivan Mammarella, Giovanni Manca, and K. Folkert Boersma
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-670,https://doi.org/10.5194/acp-2021-670, 2021
Revised manuscript accepted for ACP
Short summary
Role of oceanic ozone deposition in explaining temporal variability in surface ozone at High Arctic sites
Johannes G. M. Barten, Laurens N. Ganzeveld, Gert-Jan Steeneveld, and Maarten C. Krol
Atmos. Chem. Phys., 21, 10229–10248, https://doi.org/10.5194/acp-21-10229-2021,https://doi.org/10.5194/acp-21-10229-2021, 2021
Short summary
Biogenic volatile organic compound ambient mixing ratios and emission rates in the Alaskan Arctic tundra
Hélène Angot, Katelyn McErlean, Lu Hu, Dylan B. Millet, Jacques Hueber, Kaixin Cui, Jacob Moss, Catherine Wielgasz, Tyler Milligan, Damien Ketcherside, M. Syndonia Bret-Harte, and Detlev Helmig
Biogeosciences, 17, 6219–6236, https://doi.org/10.5194/bg-17-6219-2020,https://doi.org/10.5194/bg-17-6219-2020, 2020
Short summary

Related subject area

Subject: Gases | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Limitations of the Radon Tracer Method (RTM) to estimate regional Greenhouse Gases (GHG) emissions – a case study for methane in Heidelberg
Ingeborg Levin, Ute Karstens, Samuel Hammer, Julian DellaColetta, Fabian Maier, and Maksym Gachkivskyi
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-661,https://doi.org/10.5194/acp-2021-661, 2021
Revised manuscript accepted for ACP
Short summary
Spatial and temporal variations of CO2 mole fractions observed at Beijing, Xianghe, and Xinglong in North China
Yang Yang, Minqiang Zhou, Ting Wang, Bo Yao, Pengfei Han, Denghui Ji, Wei Zhou, Yele Sun, Gengchen Wang, and Pucai Wang
Atmos. Chem. Phys., 21, 11741–11757, https://doi.org/10.5194/acp-21-11741-2021,https://doi.org/10.5194/acp-21-11741-2021, 2021
Short summary
Positive and negative influences of landfalling typhoons on tropospheric ozone over southern China
Zhixiong Chen, Jane Liu, Xugeng Cheng, Mengmiao Yang, and Hong Wang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-573,https://doi.org/10.5194/acp-2021-573, 2021
Revised manuscript accepted for ACP
Short summary
The CO2 integral emission by the megacity of St Petersburg as quantified from ground-based FTIR measurements combined with dispersion modelling
Dmitry V. Ionov, Maria V. Makarova, Frank Hase, Stefani C. Foka, Vladimir S. Kostsov, Carlos Alberti, Thomas Blumenstock, Thorsten Warneke, and Yana A. Virolainen
Atmos. Chem. Phys., 21, 10939–10963, https://doi.org/10.5194/acp-21-10939-2021,https://doi.org/10.5194/acp-21-10939-2021, 2021
Short summary
Anthropogenic and natural controls on atmospheric δ13C-CO2 variations in the Yangtze River delta: insights from a carbon isotope modeling framework
Cheng Hu, Jiaping Xu, Cheng Liu, Yan Chen, Dong Yang, Wenjing Huang, Lichen Deng, Shoudong Liu, Timothy J. Griffis, and Xuhui Lee
Atmos. Chem. Phys., 21, 10015–10037, https://doi.org/10.5194/acp-21-10015-2021,https://doi.org/10.5194/acp-21-10015-2021, 2021
Short summary

Cited articles

Altimir, N., Tuovinen, J.-P., Vesala, T., Kulmala, M., and Hari, P.: Measurements of ozone removal by Scots pine shoots: calibration of a stomatal uptake model including the non-stomatal component, Atmos. Environ., 38, 2387–2398, https://doi.org/10.1016/j.atmosenv.2003.09.077, 2004. 
Astier, J., Gross, I., and Durner, J.: Nitric oxide production in plants: an update, J. Exp. Bot., 69, 3401–3411, https://doi.org/10.1093/jxb/erx420, 2017. 
Bison, J. V., Cardoso-Gustavson, P., Moraes, R. M. de, Silva Pedrosa, G. da, Cruz, L. S., Freschi, L., and Souza, S. R. de: Volatile organic compounds and nitric oxide as responses of a Brazilian tropical species to ozone: the emission profile of young and mature leaves, Environ. Sci. Pollut. Res., 25, 3840–3848, https://doi.org/10.1007/s11356-017-0744-1, 2018. 
Breuninger, C., Oswald, R., Kesselmeier, J., and Meixner, F. X.: The dynamic chamber method: trace gas exchange fluxes (NO, NO2, O3) between plants and the atmosphere in the laboratory and in the field, Atmos. Meas. Tech., 5, 955–989, https://doi.org/10.5194/amt-5-955-2012, 2012. 
Breuninger, C., Meixner, F. X., and Kesselmeier, J.: Field investigations of nitrogen dioxide (NO2) exchange between plants and the atmosphere, Atmos. Chem. Phys., 13, 773–790, https://doi.org/10.5194/acp-13-773-2013, 2013. 
Download
Short summary
Trees exchange with the atmosphere nitrogen oxides and ozone, affecting the tropospheric composition and consequently air quality and ecosystem health. We examined the leaf-level gas exchanges for four typical tree species (pine, maple, oak, aspen) found in northern Michigan, US. The leaves largely absorb the gases, showing little evidence of emission. We measured the uptake rates that can be used to improve model studies of the source and sink processes controlling these gases in forests.
Altmetrics
Final-revised paper
Preprint