Articles | Volume 20, issue 17
https://doi.org/10.5194/acp-20-10757-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-10757-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Retrieving tropospheric NO2 vertical column densities around the city of Beijing and estimating NOx emissions based on car MAX-DOAS measurements
Xinghong Cheng
CORRESPONDING AUTHOR
State Key Lab of Severe Weather & Key Laboratory for Atmospheric
Chemistry, Chinese Academy of Meteorological Sciences, Beijing 100081, China
State Key Lab of Severe Weather & Key Laboratory for Atmospheric
Chemistry, Chinese Academy of Meteorological Sciences, Beijing 100081, China
Junli Jin
CMA Meteorological Observation Centre, Beijing 100081, China
Junrang Guo
State Key Lab of Severe Weather & Key Laboratory for Atmospheric
Chemistry, Chinese Academy of Meteorological Sciences, Beijing 100081, China
Yuelin Liu
College of Architecture and Environment, Sichuan University, Chengdu 610065, China
Jida Peng
Meteorological Institute of Fujian, Fuzhou 350001, China
Xiaodan Ma
Nanjing University of Information Science and Technology, Nanjing
210044, China
Minglong Qian
China National Huayun Technology Development Corporation, Beijing
100081, China
Qiang Xia
China National Huayun Technology Development Corporation, Beijing
100081, China
Peng Yan
CMA Meteorological Observation Centre, Beijing 100081, China
Related authors
Siyang Cheng, Xinghong Cheng, Jianzhong Ma, Xiangde Xu, Wenqian Zhang, Jinguang Lv, Gang Bai, Bing Chen, Siying Ma, Steffen Ziegler, Sebastian Donner, and Thomas Wagner
Atmos. Chem. Phys., 23, 3655–3677, https://doi.org/10.5194/acp-23-3655-2023, https://doi.org/10.5194/acp-23-3655-2023, 2023
Short summary
Short summary
We made mobile MAX-DOAS measurements in the background atmosphere over the Tibetan Plateau in summer 2021. We retrieved the tropospheric NO2 and HCHO vertical column densities (VCDs) along extended driving routes and found a decreasing trend of the VCDs with altitude. Elevated NO2 VCDs along the driving routes could be attributed to enhanced traffic emissions from the towns crossed. The spatio-temporal distribution of the HCHO VCDs correlated strongly with the surface temperature.
Xinghong Cheng, Zilong Hao, Zengliang Zang, Zhiquan Liu, Xiangde Xu, Shuisheng Wang, Yuelin Liu, Yiwen Hu, and Xiaodan Ma
Atmos. Chem. Phys., 21, 13747–13761, https://doi.org/10.5194/acp-21-13747-2021, https://doi.org/10.5194/acp-21-13747-2021, 2021
Short summary
Short summary
We develop a new inversion method of emission sources based on sensitivity analysis and the three-dimension variational technique. The novel explicit observation operator matrix between emission sources and the receptor’s concentrations is established. Then this method is applied to a typical heavy haze episode in North China, and spatiotemporal variations of SO2, NO2, and O3 concentrations simulated using a posterior emission sources are compared with results using an a priori inventory.
Chenghao Xu, Jintai Lin, Hao Kong, Junli Jin, Lulu Chen, and Xiaobin Xu
Atmos. Chem. Phys., 25, 9545–9560, https://doi.org/10.5194/acp-25-9545-2025, https://doi.org/10.5194/acp-25-9545-2025, 2025
Short summary
Short summary
We observed a strong increase in deseasonalized ozone at urban stations in the Tibetan Plateau from 2015 to 2019, far exceeding the trend at the baseline station Waliguan and the Tibetan Plateau average trend of four tropospheric ozone products. By combining multiple datasets and modeling approaches, we identified the main contributing factors as more frequent transport passing through the lower layers of high-emission regions and the increase in local and non-local anthropogenic emissions.
Qinghe Cai, Dongqing Fang, Junli Jin, Xiaoyu Hu, Yuxuan Cao, Tianyi Zhao, Yang Bai, and Yang Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-626, https://doi.org/10.5194/egusphere-2025-626, 2025
Short summary
Short summary
This study analyzed PM10 and oxidative potential (OP) in 12 Chinese regions (June 2022–May 2023) using Convolutional Neural Networks and Long Short-Term Memory networks (CNN-LSTM) and Positive Matrix Factorization(PMF). PM10 was higher in the northwest and lower in the northeast, with urban areas showing higher OP. Main sources included dust, biomass burning, traffic emissions, and agricultural activities, with traffic as the key OP contributor.
Weijun Quan, Zhenfa Wang, Lin Qiao, Xiangdong Zheng, Junli Jin, Yinruo Li, Xiaomei Yin, Zhiqiang Ma, and Martin Wild
Earth Syst. Sci. Data, 16, 961–983, https://doi.org/10.5194/essd-16-961-2024, https://doi.org/10.5194/essd-16-961-2024, 2024
Short summary
Short summary
Radiation components play important roles in various fields such as the Earth’s surface radiation budget, ecosystem productivity, and human health. In this study, a dataset consisting of quality-assured daily data of nine radiation components is presented based on the in situ measurements at the Shangdianzi regional GAW station in China during 2013–2022. The dataset can be applied in the validation of satellite products and numerical models and investigation of atmospheric radiation.
Yuhang Zhang, Jintai Lin, Jhoon Kim, Hanlim Lee, Junsung Park, Hyunkee Hong, Michel Van Roozendael, Francois Hendrick, Ting Wang, Pucai Wang, Qin He, Kai Qin, Yongjoo Choi, Yugo Kanaya, Jin Xu, Pinhua Xie, Xin Tian, Sanbao Zhang, Shanshan Wang, Siyang Cheng, Xinghong Cheng, Jianzhong Ma, Thomas Wagner, Robert Spurr, Lulu Chen, Hao Kong, and Mengyao Liu
Atmos. Meas. Tech., 16, 4643–4665, https://doi.org/10.5194/amt-16-4643-2023, https://doi.org/10.5194/amt-16-4643-2023, 2023
Short summary
Short summary
Our tropospheric NO2 vertical column density product with high spatiotemporal resolution is based on the Geostationary Environment Monitoring Spectrometer (GEMS) and named POMINO–GEMS. Strong hotspot signals and NO2 diurnal variations are clearly seen. Validations with multiple satellite products and ground-based, mobile car and surface measurements exhibit the overall great performance of the POMINO–GEMS product, indicating its capability for application in environmental studies.
Ka Lok Chan, Pieter Valks, Klaus-Peter Heue, Ronny Lutz, Pascal Hedelt, Diego Loyola, Gaia Pinardi, Michel Van Roozendael, François Hendrick, Thomas Wagner, Vinod Kumar, Alkis Bais, Ankie Piters, Hitoshi Irie, Hisahiro Takashima, Yugo Kanaya, Yongjoo Choi, Kihong Park, Jihyo Chong, Alexander Cede, Udo Frieß, Andreas Richter, Jianzhong Ma, Nuria Benavent, Robert Holla, Oleg Postylyakov, Claudia Rivera Cárdenas, and Mark Wenig
Earth Syst. Sci. Data, 15, 1831–1870, https://doi.org/10.5194/essd-15-1831-2023, https://doi.org/10.5194/essd-15-1831-2023, 2023
Short summary
Short summary
This paper presents the theoretical basis as well as verification and validation of the Global Ozone Monitoring Experiment-2 (GOME-2) daily and monthly level-3 products.
Siyang Cheng, Xinghong Cheng, Jianzhong Ma, Xiangde Xu, Wenqian Zhang, Jinguang Lv, Gang Bai, Bing Chen, Siying Ma, Steffen Ziegler, Sebastian Donner, and Thomas Wagner
Atmos. Chem. Phys., 23, 3655–3677, https://doi.org/10.5194/acp-23-3655-2023, https://doi.org/10.5194/acp-23-3655-2023, 2023
Short summary
Short summary
We made mobile MAX-DOAS measurements in the background atmosphere over the Tibetan Plateau in summer 2021. We retrieved the tropospheric NO2 and HCHO vertical column densities (VCDs) along extended driving routes and found a decreasing trend of the VCDs with altitude. Elevated NO2 VCDs along the driving routes could be attributed to enhanced traffic emissions from the towns crossed. The spatio-temporal distribution of the HCHO VCDs correlated strongly with the surface temperature.
Xiangde Xu, Wenyue Cai, Tianliang Zhao, Xinfa Qiu, Wenhui Zhu, Chan Sun, Peng Yan, Chunzhu Wang, and Fei Ge
Atmos. Chem. Phys., 21, 14131–14139, https://doi.org/10.5194/acp-21-14131-2021, https://doi.org/10.5194/acp-21-14131-2021, 2021
Short summary
Short summary
We found that the structure of atmospheric thermodynamics in the troposphere can be regarded as a strong forewarning signal for variations of surface PM2.5 concentration in heavy air pollution.
Xinghong Cheng, Zilong Hao, Zengliang Zang, Zhiquan Liu, Xiangde Xu, Shuisheng Wang, Yuelin Liu, Yiwen Hu, and Xiaodan Ma
Atmos. Chem. Phys., 21, 13747–13761, https://doi.org/10.5194/acp-21-13747-2021, https://doi.org/10.5194/acp-21-13747-2021, 2021
Short summary
Short summary
We develop a new inversion method of emission sources based on sensitivity analysis and the three-dimension variational technique. The novel explicit observation operator matrix between emission sources and the receptor’s concentrations is established. Then this method is applied to a typical heavy haze episode in North China, and spatiotemporal variations of SO2, NO2, and O3 concentrations simulated using a posterior emission sources are compared with results using an a priori inventory.
Rongmin Ren, Zhanqing Li, Peng Yan, Yuying Wang, Hao Wu, Maureen Cribb, Wei Wang, Xiao'ai Jin, Yanan Li, and Dongmei Zhang
Atmos. Chem. Phys., 21, 9977–9994, https://doi.org/10.5194/acp-21-9977-2021, https://doi.org/10.5194/acp-21-9977-2021, 2021
Short summary
Short summary
We analyzed the effect of the proportion of components making up the chemical composition of aerosols on f(RH) in southern Beijing in 2019. Nitrate played a more significant role in affecting f(RH) than sulfate. The ratio of the sulfate mass fraction to the nitrate mass fraction (mostly higher than ~ 4) was a sign of the deliquescence of aerosol. A piecewise parameterized scheme was proposed, which could better describe deliquescence and reduce uncertainties in simulating aerosol hygroscopicity.
Yuying Wang, Zhanqing Li, Qiuyan Wang, Xiaoai Jin, Peng Yan, Maureen Cribb, Yanan Li, Cheng Yuan, Hao Wu, Tong Wu, Rongmin Ren, and Zhaoxin Cai
Atmos. Chem. Phys., 21, 915–926, https://doi.org/10.5194/acp-21-915-2021, https://doi.org/10.5194/acp-21-915-2021, 2021
Short summary
Short summary
The unexpected increase in surface ozone concentration was found along with the reduced anthropogenic emissions during the 2019 Chinese Spring Festival in Beijing. The enhanced atmospheric oxidation capacity could promote the formation of secondary aerosols, especially sulfate, which offset the decrease in PM2.5 mass concentration. This phenomenon was likely to exist throughout the entire Beijing–Tianjin–Hebei (BTH) region to be a contributing factor to the haze during the COVID-19 lockdown.
Jan-Lukas Tirpitz, Udo Frieß, François Hendrick, Carlos Alberti, Marc Allaart, Arnoud Apituley, Alkis Bais, Steffen Beirle, Stijn Berkhout, Kristof Bognar, Tim Bösch, Ilya Bruchkouski, Alexander Cede, Ka Lok Chan, Mirjam den Hoed, Sebastian Donner, Theano Drosoglou, Caroline Fayt, Martina M. Friedrich, Arnoud Frumau, Lou Gast, Clio Gielen, Laura Gomez-Martín, Nan Hao, Arjan Hensen, Bas Henzing, Christian Hermans, Junli Jin, Karin Kreher, Jonas Kuhn, Johannes Lampel, Ang Li, Cheng Liu, Haoran Liu, Jianzhong Ma, Alexis Merlaud, Enno Peters, Gaia Pinardi, Ankie Piters, Ulrich Platt, Olga Puentedura, Andreas Richter, Stefan Schmitt, Elena Spinei, Deborah Stein Zweers, Kimberly Strong, Daan Swart, Frederik Tack, Martin Tiefengraber, René van der Hoff, Michel van Roozendael, Tim Vlemmix, Jan Vonk, Thomas Wagner, Yang Wang, Zhuoru Wang, Mark Wenig, Matthias Wiegner, Folkard Wittrock, Pinhua Xie, Chengzhi Xing, Jin Xu, Margarita Yela, Chengxin Zhang, and Xiaoyi Zhao
Atmos. Meas. Tech., 14, 1–35, https://doi.org/10.5194/amt-14-1-2021, https://doi.org/10.5194/amt-14-1-2021, 2021
Short summary
Short summary
Multi-axis differential optical absorption spectroscopy (MAX-DOAS) is a ground-based remote sensing measurement technique that derives atmospheric aerosol and trace gas vertical profiles from skylight spectra. In this study, consistency and reliability of MAX-DOAS profiles are assessed by applying nine different evaluation algorithms to spectral data recorded during an intercomparison campaign in the Netherlands and by comparing the results to colocated supporting observations.
Xiaodan Ma, Jianping Huang, Tianliang Zhao, Cheng Liu, Kaihui Zhao, Jia Xing, and Wei Xiao
Atmos. Chem. Phys., 21, 1–16, https://doi.org/10.5194/acp-21-1-2021, https://doi.org/10.5194/acp-21-1-2021, 2021
Short summary
Short summary
The present work aims at identifying and quantifying the relative contributions of the key factors in driving a rapid increase in summertime surface O3 over the North China Plain during 2013–2019. In addition to anthropogenic emission reduction and meteorological variabilities, our study highlights the importance of inclusion of aerosol absorption and scattering properties rather than aerosol abundance only in accurate assessment of aerosol radiative effect on surface O3 formation and change.
Yanfei Liang, Zengliang Zang, Dong Liu, Peng Yan, Yiwen Hu, Yan Zhou, and Wei You
Geosci. Model Dev., 13, 6285–6301, https://doi.org/10.5194/gmd-13-6285-2020, https://doi.org/10.5194/gmd-13-6285-2020, 2020
Gaia Pinardi, Michel Van Roozendael, François Hendrick, Nicolas Theys, Nader Abuhassan, Alkiviadis Bais, Folkert Boersma, Alexander Cede, Jihyo Chong, Sebastian Donner, Theano Drosoglou, Anatoly Dzhola, Henk Eskes, Udo Frieß, José Granville, Jay R. Herman, Robert Holla, Jari Hovila, Hitoshi Irie, Yugo Kanaya, Dimitris Karagkiozidis, Natalia Kouremeti, Jean-Christopher Lambert, Jianzhong Ma, Enno Peters, Ankie Piters, Oleg Postylyakov, Andreas Richter, Julia Remmers, Hisahiro Takashima, Martin Tiefengraber, Pieter Valks, Tim Vlemmix, Thomas Wagner, and Folkard Wittrock
Atmos. Meas. Tech., 13, 6141–6174, https://doi.org/10.5194/amt-13-6141-2020, https://doi.org/10.5194/amt-13-6141-2020, 2020
Short summary
Short summary
We validate several GOME-2 and OMI tropospheric NO2 products with 23 MAX-DOAS and 16 direct sun instruments distributed worldwide, highlighting large horizontal inhomogeneities at several sites affecting the validation results. We propose a method for quantification and correction. We show the application of such correction reduces the satellite underestimation in almost all heterogeneous cases, but a negative bias remains over the MAX-DOAS and direct sun network ensemble for both satellites.
Yang Wang, Arnoud Apituley, Alkiviadis Bais, Steffen Beirle, Nuria Benavent, Alexander Borovski, Ilya Bruchkouski, Ka Lok Chan, Sebastian Donner, Theano Drosoglou, Henning Finkenzeller, Martina M. Friedrich, Udo Frieß, David Garcia-Nieto, Laura Gómez-Martín, François Hendrick, Andreas Hilboll, Junli Jin, Paul Johnston, Theodore K. Koenig, Karin Kreher, Vinod Kumar, Aleksandra Kyuberis, Johannes Lampel, Cheng Liu, Haoran Liu, Jianzhong Ma, Oleg L. Polyansky, Oleg Postylyakov, Richard Querel, Alfonso Saiz-Lopez, Stefan Schmitt, Xin Tian, Jan-Lukas Tirpitz, Michel Van Roozendael, Rainer Volkamer, Zhuoru Wang, Pinhua Xie, Chengzhi Xing, Jin Xu, Margarita Yela, Chengxin Zhang, and Thomas Wagner
Atmos. Meas. Tech., 13, 5087–5116, https://doi.org/10.5194/amt-13-5087-2020, https://doi.org/10.5194/amt-13-5087-2020, 2020
Cited articles
Albers, S. C., McGinley, J. A., Birkenheuer, D., and Smart, J. R.: The
local analysis and prediction system (LAPS): Analyses of clouds,
precipitation, and temperature, Weather Forecast., 11, 273–287, 1996.
Brinksma, E. J., Pinardi, G., Volten, H., Braak, R., Richter, A.,
Schoenhardt, A., van Roozendael, M., Fayt, C., Hermans, C., Dirksen, R. J.,
Vlemmix, T., Berkhout, A. J. C., Swart, D. P. J., Oetjen, H., Wittrock, F.,
Wagner, T., Ibrahim, O. W., de Leeuw, G., Moerman, M., Curier, R. L.,
Celarier, E. A., Cede, A., Knap, W. H., Veefkind, J. P., Eskes, H. J.,
Allaart, M., Rothe, R., Piters, A. J. M., and Levelt, P. F.: The 2005 and
2006 DANDELIONS NO2 and aerosol intercomparison campaigns, J. Geophys.
Res.-Atmos., 113, D16S46, https://doi.org/10.1029/2007JD008808, 2008.
Burrows, J. P., Richter, A., Dehn, A., Deters, B., Himmelmann, S., Voigt,
S., and Orphal, J.: Atmospheric remote sensing reference data from GOME-2.
temperature-dependent absorption cross-sections of O3 in the 231–794 nm
range, J. Quant. Spectrosc. Ra., 61, 509–517, 1999.
Cao, C., Jiang, W., Wang, B., Fang, J., Lang, J., Tian, G., Jiang, J., and
Zhu, T. F.: Inhalable microorganisms in Beijing's PM2.5 and PM10
pollutants during a severe smog event, Environ. Sci. Technol., 48, 1499–1507,
https://doi.org/10.1021/es4048472, 2014.
Cheng, X., Sun, Z., Li, D., Xu, X., Jia, M., and Cheng, S.: Short-term
aerosol radiative effects and their regional difference during heavy haze
episodes in January 2013 in China, Atmos. Environ., 165, 248-263,
https://doi.org/10.1016/j.atmosenv.2017.06.040, 2017.
China National Environmental Monitoring Centre: Real-time National Air Quality data, available at: http://www.cnemc.cn/en and http://data.cma.cn/, last access: September 2020.
Davis, Z. Y. W., Baray, S., McLinden, C. A., Khanbabakhani, A., Fujs, W., Csukat,
C., Debosz, J., and McLaren, R.: Estimation of NOx and SO2
emissions from Sarnia, Ontario, using a mobile MAX-DOAS (Multi-AXis Differential Optical Absorption Spectroscopy) and a NOx analyzer, Atmos. Chem. Phys., 19, 13871–13889, https://doi.org/10.5194/acp-19-13871-2019, 2019.
Dennis, R., Byun, D., and Novak, J.: The next generation of integrated air
quality modeling: EPA's Models-3, Atmos. Environ., 30, 1925–1938, 1996.
Dickerson, R. R., Stedman, D. H., and Delany, A. C.: Direct measurements of
ozone and nitrogen dioxide photolysis rates in the troposphere, J.
Geophys. Res., 87, 4933–4946, https://doi.org/10.1029/JC087iC07p04933, 1982.
European Centre for Medium-Range Weather Forecasts: ERA Interim data, available at:
https://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc, last access: August 2019.
Fayt, C. and Van Roozendael, M.: WinDOAS 2.1 software user manual,
IASB/BIRA Uccle, Belgium, 2011.
Greenblatt, G. D., Orlando, J. J., Burkholder, J. B., and Ravishankara, A.
R.: Absorption measurements of oxygen between 330 and 1140 nm, J. Geophys.
Res., 95, 18577–18582, https://doi.org/10.1029/JD095iD11p18577, 1990.
Hönninger, G. and Platt, U.: Observations of BrO and its vertical
distribution during surface ozone depletion at Alert, Atmos. Environ., 36,
2481–2489, https://doi.org/10.1016/S1352-2310(02)00104-8, 2002.
Hönninger, G., von Friedeburg, C., and Platt, U.: Multi axis differential optical absorption spectroscopy (MAX-DOAS), Atmos. Chem. Phys., 4, 231–254, https://doi.org/10.5194/acp-4-231-2004, 2004.
Hao, J., Tian, H., and Lu, Y.: Emission inventories of NOx from
commercial energy consumption in China, 1995–1998, Environ. Sci.
Technol., 36, 552–560, 2002.
He, H., Wang, X. M., Wang, Y. S., Wang, Z. F., Liu, J. G., and Chen, Y. F.:
Formation Mechanism and Control Strategies of Haze in China, Bull. Chin.
Acad. Sci., 28, 344–352, 2013.
Hendrick, F., Müller, J.-F., Clémer, K., Wang, P., De Mazière, M., Fayt, C., Gielen, C., Hermans, C., Ma, J. Z., Pinardi, G., Stavrakou, T., Vlemmix, T., and Van Roozendael, M.: Four years of ground-based MAX-DOAS observations of HONO and NO2 in the Beijing area, Atmos. Chem. Phys., 14, 765–781, https://doi.org/10.5194/acp-14-765-2014, 2014.
Huang, R. J., Zhang, Y., Bozzetti, C., Ho, K. F., Cao, J. J., Han, Y.,
Daellenbach, K. R., Slowik, J. G., Platt, S. M., Canonaco, F., Zotter, P.,
Wolf, R., Pieber, S. M., Bruns, E. A., Crippa, M., Ciarelli, G.,
Piazzalunga, A., Schwikowski, M., Abbaszade, G., Schnelle-Kreis, J.,
Zimmermann, R., An, Z., Szidat, S., Baltensperger, U., El Haddad, I., and
Prevot, A. S.: High secondary aerosol contribution to particulate pollution
during haze events in China, Nature, 514, 218–222, https://doi.org/10.1038/nature13774,
2014.
Ibrahim, O., Shaiganfar, R., Sinreich, R., Stein, T., Platt, U., and Wagner, T.: Car MAX-DOAS measurements around entire cities: quantification of NOx emissions from the cities of Mannheim and Ludwigshafen (Germany), Atmos. Meas. Tech., 3, 709–721, https://doi.org/10.5194/amt-3-709-2010, 2010.
Irie, H., Kanaya, Y., Akimoto, H., Tanimoto, H., Wang, Z., Gleason, J. F., and Bucsela, E. J.: Validation of OMI tropospheric NO2 column data using MAX-DOAS measurements deep inside the North China Plain in June 2006: Mount Tai Experiment 2006, Atmos. Chem. Phys., 8, 6577–6586, https://doi.org/10.5194/acp-8-6577-2008, 2008.
Jaeglé, L., Steinberger, L., Martin, R. V., and Chance, K.: Global
partitioning of NOx sources using satellite observations: relative roles of
fossil fuel combustion, biomass burning and soil emissions, Roy.
Soc. Chem., 130, 407–423, 2005.
Jin, J., Ma, J., Lin, W., Zhao, H., Shaiganfar, R., Beirle, S., and Wagner,
T.: MAX-DOAS measurements and satellite validation of tropospheric NO2
and SO2 vertical column densities at a rural site of North China,
Atmos. Environ., 133, 12–25, https://doi.org/10.1016/j.atmosenv.2016.03.031, 2016.
Johansson, M., Galle, B., Yu, T., Tang, L., Chen, D., Li, H., Li, J. X., and
Zhang, Y.: Quantification of total emission of air pollutants from Beijing
using mobile mini-DOAS, Atmos. Environ., 42, 6926–6933, https://doi.org/10.1016/j.atmosenv.2008.05.025, 2008.
Johansson, M., Rivera, C., de Foy, B., Lei, W., Song, J., Zhang, Y., Galle, B., and Molina, L.: Mobile mini-DOAS measurement of the outflow of NO2 and HCHO from Mexico City, Atmos. Chem. Phys., 9, 5647–5653, https://doi.org/10.5194/acp-9-5647-2009, 2009.
Konovalov, I. B., Beekmann, M., Richter, A., and Burrows, J. P.: Inverse modelling of the spatial distribution of NOx emissions on a continental scale using satellite data, Atmos. Chem. Phys., 6, 1747–1770, https://doi.org/10.5194/acp-6-1747-2006, 2006.
Kraus, S.: DOASIS, DOAS for Windows software [CD-ROM], in: Proceedings of
the 1st International DOAS-Workshop, 13–14 September
2001, Heidelberg, Germany, 2001.
Li, M., Liu, H., Geng, G., Hong, C., Liu, F., Song, Y., Tong, D., Zheng, B.,
Cui, H., Man, H., Zhang, Q., and He, K.: Anthropogenic emission inventories
in China: a review, Natl. Sci. Rev., 4, 834–866, https://doi.org/10.1093/nsr/nwx150,
2017.
Li, X., Brauers, T., Hofzumahaus, A., Lu, K., Li, Y. P., Shao, M., Wagner, T., and Wahner, A.: MAX-DOAS measurements of NO2, HCHO and CHOCHO at a rural site in Southern China, Atmos. Chem. Phys., 13, 2133–2151, https://doi.org/10.5194/acp-13-2133-2013, 2013.
Liao, L., Lou, S. J., Fu, Y., Chang, W. J., and Liao, H.: Radiative forcing
of aerosols and its impact on surface air temperature on the synoptic scale
in eastern China, Chin. J. Atmos. Sci., 39, 68–82, 2015.
Lin, J.-T., Liu, Z., Zhang, Q., Liu, H., Mao, J., and Zhuang, G.: Modeling uncertainties for tropospheric nitrogen dioxide columns affecting satellite-based inverse modeling of nitrogen oxides emissions, Atmos. Chem. Phys., 12, 12255–12275, https://doi.org/10.5194/acp-12-12255-2012, 2012.
Ma, J. and van Aardenne, J. A.: Impact of different emission inventories on simulated tropospheric ozone over China: a regional chemical transport model evaluation, Atmos. Chem. Phys., 4, 877–887, https://doi.org/10.5194/acp-4-877-2004, 2004.
Ma, J. Z., Wang, W., Chen, Y., Liu, H. J., Yan, P., Ding, G. A., Wang, M. L., Sun, J., and Lelieveld, J.: The IPAC-NC field campaign: a pollution and oxidization pool in the lower atmosphere over Huabei, China, Atmos. Chem. Phys., 12, 3883–3908, https://doi.org/10.5194/acp-12-3883-2012, 2012.
Ma, J. Z., Beirle, S., Jin, J. L., Shaiganfar, R., Yan, P., and Wagner, T.: Tropospheric NO2 vertical column densities over Beijing: results of the first three years of ground-based MAX-DOAS measurements (2008–2011) and satellite validation, Atmos. Chem. Phys., 13, 1547–1567, https://doi.org/10.5194/acp-13-1547-2013, 2013a.
Ma, J. Z., Wang, W., Liu, H., Chen, Y., Xu, X., and Lelieveld, J.: Pollution
plumes observed by aircraft over North China during the IPAC-NC field
campaign, Chinese Sci. Bull., 58, 4329–4336,
https://doi.org/10.1007/s11434-013-5978-9, 2013b.
Martin, R. V.: An improved retrieval of tropospheric nitrogen dioxide from
GOME, J. Geophys. Res., 107, ACH 9-1–ACH 9-21, https://doi.org/10.1029/2001jd001027, 2002.
McGinley, J. A., Albers, S., and Stamus, P.: Validation of a composite
convective index as defined by a real-time local analysis system,
Weather Forecast., 6, 337–356, 1991.
Meng, K., Xu, X., Cheng, X., Xu, X., Qu, X., Zhu, W., Ma, C., Yang, Y., and
Zhao, Y.: Spatio-temporal variations in SO2 and NO2 emissions caused by
heating over the Beijing-Tianjin-Hebei Region constrained by an adaptive
nudging method with OMI data, Sci. Total Environ., 642,
543–552, https://doi.org/10.1016/j.scitotenv.2018.06.021, 2018.
Michalakes, J., Dudhia, J., Gill, D., Henderson, T., Klemp, J., Skamarock,
W., and Wang, W.: The weather research and forecast model: software
architecture and performance, the 11th ECMWFWorkshop on the Use of High
Performance Computing In Meteorology, World Scientific Publishing Co Pte Ltd, Singapore, George Mozdzynski, 2004.
National Center for Atmospheric Research: NCEP FNL Operational Model Global Tropospheric Analyses data, available at:
https://doi.org/10.5065/D6M043C6, last access: September 2020.
Otte, T. L. and Pleim, J. E.: The Meteorology-Chemistry Interface Processor (MCIP) for the CMAQ modeling system: updates through MCIPv3.4.1, Geosci. Model Dev., 3, 243–256, https://doi.org/10.5194/gmd-3-243-2010, 2010.
Platt, U.: Differential optical absorption spectroscopy (DOAS), in: Air
Monitoring by Spectroscopic Techniques, edited by: Sigrist, M. W., Chemical
Analysis Series, Vol. 127, John Wiley, New York, 27–84, 1994.
Platt, U. and Stutz, J.: Differential Optical Absorption Spectroscopy
Principles and Applications, Physics of Earth and Space Environments,
Springer, Heidelberg, 2008.
Shaiganfar, R., Beirle, S., Sharma, M., Chauhan, A., Singh, R. P., and Wagner, T.: Estimation of NOx emissions from Delhi using Car MAX-DOAS observations and comparison with OMI satellite data, Atmos. Chem. Phys., 11, 10871–10887, https://doi.org/10.5194/acp-11-10871-2011, 2011.
Shaiganfar, R., Beirle, S., Denier van der Gon, H., Jonkers, S., Kuenen, J., Petetin, H., Zhang, Q., Beekmann, M., and Wagner, T.: Estimation of the Paris NOx emissions from mobile MAX-DOAS observations and CHIMERE model simulations during the MEGAPOLI campaign using the closed integral method, Atmos. Chem. Phys., 17, 7853–7890, https://doi.org/10.5194/acp-17-7853-2017, 2017.
Streets, D. G., Canty, T., Carmichael, G. R., de Foy, B., Dickerson, R. R.,
Duncan, B. N., Edwards, D. P., Haynes, J. A., Henze, D. K., Houyoux, M. R.,
Jacob, D. J., Krotkov, N. A., Lamsal, L. N., Liu, Y., Lu, Z., Martin, R. V.,
Pfister, G. G., Pinder, R. W., Salawitch, R. J., and Wecht, K. J.: Emissions
estimation from satellite retrievals: A review of current capability,
Atmos. Environ., 77, 1011–1042, https://doi.org/10.1016/j.atmosenv.2013.05.051,
2013.
Tan, T., Hu, M., Li, M., Guo, Q., Wu, Y., Fang, X., Gu, F., Wang, Y., and
Wu, Z.: New insight into PM2.5 pollution patterns in Beijing based on
one-year measurement of chemical compositions, Sci. Total
Environ., 621, 734–743, https://doi.org/10.1016/j.scitotenv.2017.11.208, 2018.
UNC: SMOKE v3.6 user's manual, The institute for the
Environment, Chapel Hill, 2014.
Valin, L. C., Russell, A. R., and Cohen, R. C.: Variations of OH radical in
an urban plume inferred from NO2 column measurements, Geophys. Res. Lett.,
40, 1856–1860, https://doi.org/10.1002/grl.50267, 2013.
Vandaele, A. C., Hermans, C., Simon, P. C., Carleer, M., Colin, R., Fally,
S., Mérienne, M. F., Jenouvrier, A., and Coquart, B.: Measurements of
the NO2 absorption cross-section from 42 000 cm−1
to 10 000 cm−1 (238–1000 nm) at 220 K and 294 K, J. Quant. Spectrosc.
Ra., 59, 171–184, 1998.
Vlemmix, T., Piters, A. J. M., Stammes, P., Wang, P., and Levelt, P. F.: Retrieval of tropospheric NO2 using the MAX-DOAS method combined with relative intensity measurements for aerosol correction, Atmos. Meas. Tech., 3, 1287–1305, https://doi.org/10.5194/amt-3-1287-2010, 2010.
Wagner, T., Dix, B., Friedeburg, C. v., Frieß, U., Sanghavi, S.,
Sinreich, R., and Platt, U.: MAX-DOAS O4 measurements: A new technique
to derive information on atmospheric aerosols – Principles and information
content, J. Geophys. Res., 109, D22205, https://doi.org/10.1029/2004jd004904, 2004.
Wagner, T., Ibrahim, O., Shaiganfar, R., and Platt, U.: Mobile MAX-DOAS observations of tropospheric trace gases, Atmos. Meas. Tech., 3, 129–140, https://doi.org/10.5194/amt-3-129-2010, 2010a.
Wagner, T., Ibrahim, O., Shaiganfar, R., and Platt, U.: Mobile MAX-DOAS observations of tropospheric trace gases, Atmos. Meas. Tech., 3, 129–140, https://doi.org/10.5194/amt-3-129-2010, 2010b.
Wagner, T., Beirle, S., Brauers, T., Deutschmann, T., Frieß, U., Hak, C., Halla, J. D., Heue, K. P., Junkermann, W., Li, X., Platt, U., and Pundt-Gruber, I.: Inversion of tropospheric profiles of aerosol extinction and HCHO and NO2 mixing ratios from MAX-DOAS observations in Milano during the summer of 2003 and comparison with independent data sets, Atmos. Meas. Tech., 4, 2685–2715, https://doi.org/10.5194/amt-4-2685-2011, 2011.
Wang, S., Zhou, B., Wang, Z., Yang, S., Hao, N., Valks, P., Trautmann, T.,
and Chen, L.: Remote sensing of NO2 emission from the central urban
area of Shanghai (China) using the mobile DOAS technique, J.
Geophys. Res.-Atmos., 117, D13305, https://doi.org/10.1029/2011jd016983, 2012.
Wang, Y., McElroy, M. B., Martin, R. V., Streets, D. G., Zhang, Q., and Fu,
T.-M.: Seasonal variability of NOx emissions over east China constrained by
satellite observations: Implications for combustion and microbial sources,
J. Geophys. Res., 112, D06301, https://doi.org/10.1029/2006jd007538, 2007.
Wittrock, F., Oetjen, H., Richter, A., Fietkau, S., Medeke, T., Rozanov, A., and Burrows, J. P.: MAX-DOAS measurements of atmospheric trace gases in Ny-Ålesund – Radiative transfer studies and their application, Atmos. Chem. Phys., 4, 955–966, https://doi.org/10.5194/acp-4-955-2004, 2004.
Wu, F., Xie, P., Li, A., Mou, F., Chen, H., Zhu, Y., Zhu, T., Liu, J., and Liu, W.: Investigations of temporal and spatial distribution of precursors SO2 and NO2 vertical columns in the North China Plain using mobile DOAS, Atmos. Chem. Phys., 18, 1535–1554, https://doi.org/10.5194/acp-18-1535-2018, 2018.
Zhang, Q., Streets, D. G., He, K., Wang, Y., Richter, A., Burrows, J. P.,
Uno, I., Jang, C. J., Chen, D., Yao, Z., and Lei, Y.: NOx emission trends for
China, 1995–2004: The view from the ground and the view from space, J. Geophys. Res., 112, D22306, https://doi.org/10.1029/2007jd008684, 2007.
Zhang, Q., Streets, D. G., Carmichael, G. R., He, K. B., Huo, H., Kannari, A., Klimont, Z., Park, I. S., Reddy, S., Fu, J. S., Chen, D., Duan, L., Lei, Y., Wang, L. T., and Yao, Z. L.: Asian emissions in 2006 for the NASA INTEX-B mission, Atmos. Chem. Phys., 9, 5131–5153, https://doi.org/10.5194/acp-9-5131-2009, 2009.
Zhang, Q., Geng, G., Wang, S., Richter, A., and He, K.: Satellite remote
sensing of changes in NOx
emissions over China during 1996–2010, Chinese Science Bulletin, 57,
2857–2864, https://doi.org/10.1007/s11434-012-5015-4, 2012.
Zhang, X. Y., Sun, J. Y., Wang, Y. Q., Li, W. J., Zhang, Q., Wang, W. G.,
Quan, J. N., Cao, G. L., Wang, J. Z., Yang, Y. Q., and Zhang, Y. M.: Factors
contributing to haze and fog in China, Chinese Sci. Bull., 58,
1178–1187, 2013.
Zhao, B., Wang, P., Ma, J. Z., Zhu, S., Pozzer, A., and Li, W.: A high-resolution emission inventory of primary pollutants for the Huabei region, China, Atmos. Chem. Phys., 12, 481–501, https://doi.org/10.5194/acp-12-481-2012, 2012.
Zyrichidou, I., Koukouli, M. E., Balis, D., Markakis, K., Poupkou,
A., Katragkou, E., Kioutsioukis, I., Melas, D., Boersma, K. F., and van
Roozendael, M.: Identification of surface NOx emission sources on a regional
scale using OMI NO2, Atmos. Environ., 101, 82–93,
https://doi.org/10.1016/j.atmosenv.2014.11.023, 2015.
Short summary
We carried out 19 city-circle-around Car MAX-DOAS experiments on the 6th Ring Road of Beijing in Jan, Sep, and Oct 2014. The tropospheric VCDs of NO2 are retrieved and their temporal and spatial distributions are investigated. Then the NOx emission rates in urban Beijing are estimated using the measured NO2 VCDs together with the refined wind fields, NO2-to-NOx ratios, and NO2 lifetimes simulated by the LAPS-WRF-CMAQ model system, and results are compared with the MEIC inventory in 2012.
We carried out 19 city-circle-around Car MAX-DOAS experiments on the 6th Ring Road of Beijing in...
Altmetrics
Final-revised paper
Preprint