Articles | Volume 20, issue 17
https://doi.org/10.5194/acp-20-10259-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-10259-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Inverse modeling of fire emissions constrained by smoke plume transport using HYSPLIT dispersion model and geostationary satellite observations
Air Resources Laboratory, National Oceanic and Atmospheric
Administration, College Park, MD 20740, USA
Cooperative Institute for Satellite Earth System Studies, University of Maryland, College Park, MD 20740, USA
Air Resources Laboratory, National Oceanic and Atmospheric
Administration, College Park, MD 20740, USA
Cooperative Institute for Satellite Earth System Studies, University of Maryland, College Park, MD 20740, USA
Ariel Stein
Air Resources Laboratory, National Oceanic and Atmospheric
Administration, College Park, MD 20740, USA
Shobha Kondragunta
National Environmental Satellite, Data and Information Service,
National Oceanic and Atmospheric Administration, College Park, MD 20740, USA
Related authors
Hyun Cheol Kim, Soontae Kim, Mark Cohen, Changhan Bae, Dasom Lee, Rick Saylor, Minah Bae, Eunhye Kim, Byeong-Uk Kim, Jin-Ho Yoon, and Ariel Stein
Atmos. Chem. Phys., 21, 10065–10080, https://doi.org/10.5194/acp-21-10065-2021, https://doi.org/10.5194/acp-21-10065-2021, 2021
Short summary
Short summary
Global outbreaks of COVID-19 offer rare opportunities of natural experiments in emission control and corresponding responses of tropospheric chemistry. This study's novel approach investigates (1) isolating the pandemic's impact from natural and anthropogenic variations, (2) emission adjustment to reproduce real-time emissions, and (3) brute-force modeling to investigate Chinese economic activities. Results provide characteristics of the region's chemistry and emissions.
Christopher D. Holmes, Joshua P. Schwarz, Charles H. Fite, Anxhelo Agastra, Holly K. Nowell, Katherine Ball, T. Paul Bui, Johnathan Dean-Day, Zachary C. J. Decker, Joshua P. DiGagni, Glenn S. Diskin, Emily M. Gargulinski, Hannah Halliday, Shobha Kondragunta, John B. Nowak, David A. Peterson, Michael A. Robinson, Amber J. Soja, Rebecca A. Washenfelder, Chuanyu Xu, and Robert J. Yokelson
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-307, https://doi.org/10.5194/essd-2025-307, 2025
Preprint under review for ESSD
Short summary
Short summary
Smoke age is an important factor in the chemical and physical evolution of smoke. Two methods for determining the age of smoke are applied to the NASA-NOAA FIREX-AQ field campaign: one based on wind speed and distance, and another using an ensemble of modeled air parcel trajectories. Both methods are evaluated, with the trajectory method, which includes plume rise and uncertainty estimates, proving more accurate.
Daniel L. Goldberg, M. Omar Nawaz, Congmeng Lyu, Jian He, Annmarie G. Carlton, Shobha Kondragunta, and Susan C. Anenberg
EGUsphere, https://doi.org/10.5194/egusphere-2025-1350, https://doi.org/10.5194/egusphere-2025-1350, 2025
Short summary
Short summary
This research investigates how air quality, specifically NO2 concentrations, is different under clear and cloudy skies. We find that in situ surface NO2 is, on average, +36 % larger during cloudy days versus clear sky days, with a wide distribution based on geographic region and roadway proximity: largest in the Northeast U.S. and smallest in the Southwest U.S. and near major roadways. This has implications for satellite data applications, which only use measurements in the absence of clouds.
Sina Voshtani, Dylan B. A. Jones, Debra Wunch, Drew C. Pendergrass, Paul O. Wennberg, David F. Pollard, Isamu Morino, Hirofumi Ohyama, Nicholas M. Deutscher, Frank Hase, Ralf Sussmann, Damien Weidmann, Rigel Kivi, Omaira García, Yao Té, Jack Chen, Kerry Anderson, Robin Stevens, Shobha Kondragunta, Aihua Zhu, Douglas Worthy, Senen Racki, Kathryn McKain, Maria V. Makarova, Nicholas Jones, Emmanuel Mahieu, Andrea Cadena-Caicedo, Paolo Cristofanelli, Casper Labuschagne, Elena Kozlova, Thomas Seitz, Martin Steinbacher, Reza Mahdi, and Isao Murata
EGUsphere, https://doi.org/10.5194/egusphere-2025-858, https://doi.org/10.5194/egusphere-2025-858, 2025
Short summary
Short summary
We assess the complementarity of the greater temporal coverage provided by ground-based remote sensing data with the spatial coverage of satellite observations when these data are used together to quantify CO emissions from extreme wildfires in 2023. Our results reveal that the commonly used biomass burning emission inventories significantly underestimate the fire emissions and emphasize the importance of the ground-based remote sensing data in reducing uncertainties in the estimated emissions.
Li Pan, Partha S. Bhattacharjee, Li Zhang, Raffaele Montuoro, Barry Baker, Jeff McQueen, Georg A. Grell, Stuart A. McKeen, Shobha Kondragunta, Xiaoyang Zhang, Gregory J. Frost, Fanglin Yang, and Ivanka Stajner
Geosci. Model Dev., 17, 431–447, https://doi.org/10.5194/gmd-17-431-2024, https://doi.org/10.5194/gmd-17-431-2024, 2024
Short summary
Short summary
A GEFS-Aerosols simulation was conducted from 1 September 2019 to 30 September 2020 to evaluate the model performance of GEFS-Aerosols. The purpose of this study was to understand how aerosol chemical and physical processes affect ambient aerosol concentrations by placing aerosol wet deposition, dry deposition, reactions, gravitational deposition, and emissions into the aerosol mass balance equation.
Tianfeng Chai, Xinrong Ren, Fong Ngan, Mark Cohen, and Alice Crawford
Atmos. Chem. Phys., 23, 12907–12933, https://doi.org/10.5194/acp-23-12907-2023, https://doi.org/10.5194/acp-23-12907-2023, 2023
Short summary
Short summary
The SO2 emissions of three power plants are estimated using aircraft observations and an ensemble of HYSPLIT dispersion simulations with different plume rise parameters. The emission estimates using the runs with the lowest root mean square errors (RMSEs) and the runs with the best correlation coefficients between the predicted and observed mixing ratios both agree well with the Continuous Emissions Monitoring Systems (CEMS) data. The RMSE-based plume rise appears to be more reasonable.
Yunyao Li, Daniel Tong, Siqi Ma, Saulo R. Freitas, Ravan Ahmadov, Mikhail Sofiev, Xiaoyang Zhang, Shobha Kondragunta, Ralph Kahn, Youhua Tang, Barry Baker, Patrick Campbell, Rick Saylor, Georg Grell, and Fangjun Li
Atmos. Chem. Phys., 23, 3083–3101, https://doi.org/10.5194/acp-23-3083-2023, https://doi.org/10.5194/acp-23-3083-2023, 2023
Short summary
Short summary
Plume height is important in wildfire smoke dispersion and affects air quality and human health. We assess the impact of plume height on wildfire smoke dispersion and the exceedances of the National Ambient Air Quality Standards. A higher plume height predicts lower pollution near the source region, but higher pollution in downwind regions, due to the faster spread of the smoke once ejected, affects pollution exceedance forecasts and the early warning of extreme air pollution events.
Sebastien Garrigues, Samuel Remy, Julien Chimot, Melanie Ades, Antje Inness, Johannes Flemming, Zak Kipling, Istvan Laszlo, Angela Benedetti, Roberto Ribas, Soheila Jafariserajehlou, Bertrand Fougnie, Shobha Kondragunta, Richard Engelen, Vincent-Henri Peuch, Mark Parrington, Nicolas Bousserez, Margarita Vazquez Navarro, and Anna Agusti-Panareda
Atmos. Chem. Phys., 22, 14657–14692, https://doi.org/10.5194/acp-22-14657-2022, https://doi.org/10.5194/acp-22-14657-2022, 2022
Short summary
Short summary
The Copernicus Atmosphere Monitoring Service (CAMS) provides global monitoring of aerosols using the ECMWF forecast model constrained by the assimilation of satellite aerosol optical depth (AOD). This work aims at evaluating two new satellite AODs to enhance the CAMS aerosol global forecast. It highlights the spatial and temporal differences between the satellite AOD products at the model spatial resolution, which is essential information to design multi-satellite AOD data assimilation schemes.
Youhua Tang, Patrick C. Campbell, Pius Lee, Rick Saylor, Fanglin Yang, Barry Baker, Daniel Tong, Ariel Stein, Jianping Huang, Ho-Chun Huang, Li Pan, Jeff McQueen, Ivanka Stajner, Jose Tirado-Delgado, Youngsun Jung, Melissa Yang, Ilann Bourgeois, Jeff Peischl, Tom Ryerson, Donald Blake, Joshua Schwarz, Jose-Luis Jimenez, James Crawford, Glenn Diskin, Richard Moore, Johnathan Hair, Greg Huey, Andrew Rollins, Jack Dibb, and Xiaoyang Zhang
Geosci. Model Dev., 15, 7977–7999, https://doi.org/10.5194/gmd-15-7977-2022, https://doi.org/10.5194/gmd-15-7977-2022, 2022
Short summary
Short summary
This paper compares two meteorological datasets for driving a regional air quality model: a regional meteorological model using WRF (WRF-CMAQ) and direct interpolation from an operational global model (GFS-CMAQ). In the comparison with surface measurements and aircraft data in summer 2019, these two methods show mixed performance depending on the corresponding meteorological settings. Direct interpolation is found to be a viable method to drive air quality models.
Alice Crawford, Tianfeng Chai, Binyu Wang, Allison Ring, Barbara Stunder, Christopher P. Loughner, Michael Pavolonis, and Justin Sieglaff
Atmos. Chem. Phys., 22, 13967–13996, https://doi.org/10.5194/acp-22-13967-2022, https://doi.org/10.5194/acp-22-13967-2022, 2022
Short summary
Short summary
This study describes the development of a workflow which produces probabilistic and quantitative forecasts of volcanic ash in the atmosphere. The workflow includes methods of incorporating satellite observations of the ash cloud into a modeling framework as well as verification statistics that can be used to guide further model development and provide information for risk-based approaches to flight planning.
Li Zhang, Raffaele Montuoro, Stuart A. McKeen, Barry Baker, Partha S. Bhattacharjee, Georg A. Grell, Judy Henderson, Li Pan, Gregory J. Frost, Jeff McQueen, Rick Saylor, Haiqin Li, Ravan Ahmadov, Jun Wang, Ivanka Stajner, Shobha Kondragunta, Xiaoyang Zhang, and Fangjun Li
Geosci. Model Dev., 15, 5337–5369, https://doi.org/10.5194/gmd-15-5337-2022, https://doi.org/10.5194/gmd-15-5337-2022, 2022
Short summary
Short summary
The NOAA’s air quality predictions contribute to protecting lives and health in the US, which requires sustainable development and improvement of forecast systems. GEFS-Aerosols v1 has been developed in a collaboration between the NOAA research laboratories for operational forecast since September 2020 in the NCEP. The predictions demonstrate substantial improvements for both composition and variability of aerosol distributions over those from the former operational system.
Patrick C. Campbell, Youhua Tang, Pius Lee, Barry Baker, Daniel Tong, Rick Saylor, Ariel Stein, Jianping Huang, Ho-Chun Huang, Edward Strobach, Jeff McQueen, Li Pan, Ivanka Stajner, Jamese Sims, Jose Tirado-Delgado, Youngsun Jung, Fanglin Yang, Tanya L. Spero, and Robert C. Gilliam
Geosci. Model Dev., 15, 3281–3313, https://doi.org/10.5194/gmd-15-3281-2022, https://doi.org/10.5194/gmd-15-3281-2022, 2022
Short summary
Short summary
NOAA's National Air Quality Forecast Capability (NAQFC) continues to protect Americans from the harmful effects of air pollution, while saving billions of dollars per year. Here we describe and evaluate the development of the most advanced version of the NAQFC to date, which became operational at NOAA on 20 July 2021. The new NAQFC is based on a coupling of NOAA's operational Global Forecast System (GFS) version 16 with the Community Multiscale Air Quality (CMAQ) model version 5.3.1.
Siqi Ma, Daniel Tong, Lok Lamsal, Julian Wang, Xuelei Zhang, Youhua Tang, Rick Saylor, Tianfeng Chai, Pius Lee, Patrick Campbell, Barry Baker, Shobha Kondragunta, Laura Judd, Timothy A. Berkoff, Scott J. Janz, and Ivanka Stajner
Atmos. Chem. Phys., 21, 16531–16553, https://doi.org/10.5194/acp-21-16531-2021, https://doi.org/10.5194/acp-21-16531-2021, 2021
Short summary
Short summary
Predicting high ozone gets more challenging as urban emissions decrease. How can different techniques be used to foretell the quality of air to better protect human health? We tested four techniques with the CMAQ model against observations during a field campaign over New York City. The new system proves to better predict the magnitude and timing of high ozone. These approaches can be extended to other regions to improve the predictability of high-O3 episodes in contemporary urban environments.
Xinxin Ye, Pargoal Arab, Ravan Ahmadov, Eric James, Georg A. Grell, Bradley Pierce, Aditya Kumar, Paul Makar, Jack Chen, Didier Davignon, Greg R. Carmichael, Gonzalo Ferrada, Jeff McQueen, Jianping Huang, Rajesh Kumar, Louisa Emmons, Farren L. Herron-Thorpe, Mark Parrington, Richard Engelen, Vincent-Henri Peuch, Arlindo da Silva, Amber Soja, Emily Gargulinski, Elizabeth Wiggins, Johnathan W. Hair, Marta Fenn, Taylor Shingler, Shobha Kondragunta, Alexei Lyapustin, Yujie Wang, Brent Holben, David M. Giles, and Pablo E. Saide
Atmos. Chem. Phys., 21, 14427–14469, https://doi.org/10.5194/acp-21-14427-2021, https://doi.org/10.5194/acp-21-14427-2021, 2021
Short summary
Short summary
Wildfire smoke has crucial impacts on air quality, while uncertainties in the numerical forecasts remain significant. We present an evaluation of 12 real-time forecasting systems. Comparison of predicted smoke emissions suggests a large spread in magnitudes, with temporal patterns deviating from satellite detections. The performance for AOD and surface PM2.5 and their discrepancies highlighted the role of accurately represented spatiotemporal emission profiles in improving smoke forecasts.
Hyun Cheol Kim, Soontae Kim, Mark Cohen, Changhan Bae, Dasom Lee, Rick Saylor, Minah Bae, Eunhye Kim, Byeong-Uk Kim, Jin-Ho Yoon, and Ariel Stein
Atmos. Chem. Phys., 21, 10065–10080, https://doi.org/10.5194/acp-21-10065-2021, https://doi.org/10.5194/acp-21-10065-2021, 2021
Short summary
Short summary
Global outbreaks of COVID-19 offer rare opportunities of natural experiments in emission control and corresponding responses of tropospheric chemistry. This study's novel approach investigates (1) isolating the pandemic's impact from natural and anthropogenic variations, (2) emission adjustment to reproduce real-time emissions, and (3) brute-force modeling to investigate Chinese economic activities. Results provide characteristics of the region's chemistry and emissions.
Yilin Chen, Huizhong Shen, Jennifer Kaiser, Yongtao Hu, Shannon L. Capps, Shunliu Zhao, Amir Hakami, Jhih-Shyang Shih, Gertrude K. Pavur, Matthew D. Turner, Daven K. Henze, Jaroslav Resler, Athanasios Nenes, Sergey L. Napelenok, Jesse O. Bash, Kathleen M. Fahey, Gregory R. Carmichael, Tianfeng Chai, Lieven Clarisse, Pierre-François Coheur, Martin Van Damme, and Armistead G. Russell
Atmos. Chem. Phys., 21, 2067–2082, https://doi.org/10.5194/acp-21-2067-2021, https://doi.org/10.5194/acp-21-2067-2021, 2021
Short summary
Short summary
Ammonia (NH3) emissions can exert adverse impacts on air quality and ecosystem well-being. NH3 emission inventories are viewed as highly uncertain. Here we optimize the NH3 emission estimates in the US using an air quality model and NH3 measurements from the IASI satellite instruments. The optimized NH3 emissions are much higher than the National Emissions Inventory estimates in April. The optimized NH3 emissions improved model performance when evaluated against independent observation.
Liqiang Wang, Shaocai Yu, Pengfei Li, Xue Chen, Zhen Li, Yibo Zhang, Mengying Li, Khalid Mehmood, Weiping Liu, Tianfeng Chai, Yannian Zhu, Daniel Rosenfeld, and John H. Seinfeld
Atmos. Chem. Phys., 20, 14787–14800, https://doi.org/10.5194/acp-20-14787-2020, https://doi.org/10.5194/acp-20-14787-2020, 2020
Short summary
Short summary
The Chinese government has made major strides in curbing anthropogenic emissions. In this study, we constrain a state-of-the-art CTM by a reliable data assimilation method with extensive chemical and meteorological observations. This comprehensive technical design provides a crucial advance in isolating the influences of emission changes and meteorological perturbations over the Yangtze River Delta (YRD) from 2016 to 2019, thus establishing the first map of the PM2.5 mitigation across the YRD.
Hai Zhang, Shobha Kondragunta, Istvan Laszlo, and Mi Zhou
Atmos. Meas. Tech., 13, 5955–5975, https://doi.org/10.5194/amt-13-5955-2020, https://doi.org/10.5194/amt-13-5955-2020, 2020
Short summary
Short summary
Geostationary Operational Environmental Satellites (GOES) retrieve high temporal resolution aerosol optical depth, which is a measure of the aerosol quantity within the atmospheric column. This work introduces an algorithm that improves the accuracy of the aerosol optical depth retrievals from GOES. The resulting data product can be used in monitoring the air quality and climate change research.
Cited articles
Ahmadov, R., Grell, G., James, E., Csiszar, I., Tsidulko, M., Pierce, B.,
McKeen, S., Benjamin, S., Alexander, C., Pereira, G., Freitas, S., and
Goldberg, M.: Using VIIRS fire radiative power data to simulate biomass
burning emissions, plume rise and smoke transport in a real-time air quality
modeling system, in: 2017 IEEE International Geoscience and Remote Sensing
Symposium (IGARSS), 23–28 July 2017,
Fort Worth, TX, USA, 2806–2808, 2017.
Andreae, M. O.: Emission of trace gases and aerosols from biomass burning –
An updated assessment, Atmos. Chem. Phys., 19, 8523–8546,
https://doi.org/10.5194/acp-19-8523-2019, 2019.
Arya, S. P.: Air Pollution Meteorology and Dispersion, Oxford University Press, Oxford, 1998.
Boichu, M., Clarisse, L., Khvorostyanov, D., and Clerbaux, C.: Improving
volcanic sulfur dioxide cloud dispersal forecasts by progressive assimilation of satellite observations, Geophys. Res. Lett., 41, 2637–2643, https://doi.org/10.1002/2014GL059496, 2014.
Bowman, D. M. J. S. D., Balch, J. J. K., Artaxo, P., Bond, W. J., Carlson, J. M., Cochrane, M. A., D'Antonio, C. M., DeFries, R. S., Doyle, J. C., Harrison, S. P., Johnston, F. H., Keeley, J. E., Krawchuk, M. A., Kull, C. A., Marston, J. B., Moritz, M. A., Prentice, I. C., Roos, C. I., Scott, A.
C., Swetnam, T. W., Van Der Werf, G. R., and Pyne, S. J.: Fire in the Earth
system, Science, 324, 481–484, https://doi.org/10.1126/science.1163886, 2009.
Briggs, G. A.: Plume rise, Report for US Atomic Energy Commission, Critical Review Series, Technical Information Division report TID-25075, Oak
Ridge, available at: https://www.osti.gov/servlets/purl/4743102 (last access: 29 August 2020), 1969.
Carvalho, A., Monteiro, A., Flannigan, M., Solman, S., Miranda, A. I. I., and
Borrego, C.: Forest fires in a changing climate and their impacts on air
quality, Atmos. Environ., 45, 5545–5553, https://doi.org/10.1016/j.atmosenv.2011.05.010, 2011.
Chai, T., Draxler, R., and Stein, A.: Source term estimation using air
concentration measurements and a Lagrangian dispersion model – Experiments
with pseudo and real cesium-137 observations from the Fukushima nuclear
accident, Atmos. Environ., 106, 241–251, https://doi.org/10.1016/j.atmosenv.2015.01.070, 2015.
Chai, T., Crawford, A., Stunder, B., Pavolonis, M. J., Draxler, R., and Stein, A.: Improving volcanic ash predictions with the HYSPLIT dispersion
model by assimilating MODIS satellite retrievals, Atmos. Chem. Phys., 17,
2865–2879, https://doi.org/10.5194/acp-17-2865-2017, 2017.
Chand, D., Guyon, P., Artaxo, P., Schmid, O., Frank, G. P., Rizzo, L. V.,
Mayol-Bracero, O. L., Gatti, L. V., and Andreae, M. O.: Optical and physical
properties of aerosols in the boundary layer and free troposphere over the
Amazon Basin during the biomass burning season, Atmos. Chem. Phys., 6,
2911–2925, https://doi.org/10.5194/acp-6-2911-2006, 2006.
Chen, J., Anderson, K., Pavlovic, R., Moran, M. D., Englefield, P., Thompson, D. K., Munoz-Alpizar, R., and Landry, H.: The FireWork v2.0 air quality forecast system with biomass burning emissions from the Canadian Forest Fire Emissions Prediction System v2.03, Geosci. Model Dev., 12, 3283–3310, https://doi.org/10.5194/gmd-12-3283-2019, 2019.
Chen, Y., Randerson, J. T., Morton, D. C., DeFries, R. S., Collatz, G. J.,
Kasibhatla, P. S., Giglio, L., Jin, Y., and Marlier, M. E.: Forecasting Fire
Season Severity in South America Using Sea Surface Temperature Anomalies,
Science, 334, 787–791, https://doi.org/10.1126/science.1209472, 2011.
Crutzen, P. J. and Andreae, M. O.: Biomass burning in the tropics: impact on
atmospheric chemistry and biogeochemical cycles, Science, 250, 1669–1678, https://doi.org/10.1126/science.250.4988.1669, 1990.
Draxler, R. R. and Rolph, G. D.: Evaluation of the Transfer Coefficient
Matrix (TCM) approach to model the atmospheric radionuclide air concentrations from Fukushima, J. Geophys. Res.-Atmos., 117, D05107, https://doi.org/10.1029/2011JD017205, 2012.
Dreessen, J., Sullivan, J., and Delgado, R.: Observations and impacts of
transported Canadian wildfire smoke on ozone and aerosol air quality in the
Maryland region on June 9–12, 2015, J. Air Waste Manage. Assoc., 66, 842–862, https://doi.org/10.1080/10962247.2016.1161674, 2016.
Ellicott, E., Vermote, E., Giglio, L., and Roberts, G.: Estimating biomass
consumed from fire using MODIS FRE, Geophys. Res. Lett., 36, L13401,
https://doi.org/10.1029/2009GL038581, 2009.
Flannigan, M. D., Logan, K. A., Amiro, B. D., Skinner, W. R., and Stocks, B. J.: Future Area Burned in Canada, Climatic Change, 72, 1–16,
https://doi.org/10.1007/s10584-005-5935-y, 2005.
Freeborn, P. H., Wooster, M. J., Roberts, G., Malamud, B. D., and Xu, W.:
Development of a virtual active fire product for Africa through a synthesis of geostationary and polar orbiting satellite data, Remote Sens. Environ.,
113, 1700–1711, https://doi.org/10.1016/j.rse.2009.03.013, 2009.
Giglio, L., Descloitres, J., Justice, C. O., and Kaufman, Y. J.: An enhanced
contextual fire detection algorithm for MODIS, Remote Sens. Environ., 87, 273–282, https://doi.org/10.1016/S0034-4257(03)00184-6, 2003.
Green, M., Kondragunta, S., Ciren, P., and Xu, C.: Comparison of GOES and
MODIS Aerosol Optical Depth (AOD) to Aerosol Robotic Network (AERONET) AOD
and IMPROVE PM2.5 Mass at Bondville, Illinois, J. Air Waste Manage. Assoc., 59, 1082–1091, https://doi.org/10.3155/1047-3289.59.9.1082, 2009.
Hobbs, P. V., Reid, J. S., Herring, J. A., Nance, J. D., and Weiss, R. E.:
Particle and Trace-Gas Measurements in the Smoke from Prescribed Burns of
Forest Products in the Pacific Northwest, in: Biomass Burning and Global
Change, edited by: Levine, J. S., MIT Press, New York, 697–715, 1996.
Ichoku, C. and Ellison, L.: Global top-down smoke-aerosol emissions estimation using satellite fire radiative power measurements, Atmos. Chem.
Phys., 14, 6643–6667, https://doi.org/10.5194/acp-14-6643-2014, 2014.
In, H.-J. J., Byun, D. W., Park, R. J., Moon, N.-K. K., Kim, S., and Zhong, S.: Impact of transboundary transport of carbonaceous aerosols on the regional air quality in the United States: A case study of the South American wildland fire of May 1998, J. Geophys. Res., 112, 1–16,
https://doi.org/10.1029/2006JD007544, 2007.
Jaffe, D. A. and Wigder, N. L.: Ozone production from wildfires: A critical
review, Atmos. Environ., 51, 1–10, https://doi.org/10.1016/j.atmosenv.2011.11.063,
2012.
Jordan, N. S., Ichoku, C., and Hoff, R. M.: Estimating smoke emissions over
the US Southern Great Plains using MODIS fire radiative power and aerosol
observations, Atmos. Environ., 42, 2007–2022, https://doi.org/10.1016/j.atmosenv.2007.12.023, 2008.
Kaiser, J. W., Heil, A., Andreae, M. O., Benedetti, A., Chubarova, N., Jones, L., Morcrette, J.-J. J., Razinger, M., Schultz, M. G., Suttie, M., and
van der Werf, G. R.: Biomass burning emissions estimated with a global fire
assimilation system based on observed fire radiative power, Biogeosciences,
9, 527–554, https://doi.org/10.5194/bg-9-527-2012, 2012.
Katata, G., Chino, M., Kobayashi, T., Terada, H., Ota, M., Nagai, H., Kajino, M., Draxler, R., Hort, M. C., Malo, A., Torii, T., and Sanada, Y.: Detailed source term estimation of the atmospheric release for the Fukushima Daiichi Nuclear Power Station accident by coupling simulations of an atmospheric dispersion model with an improved deposition scheme and oceanic dispersion model, Atmos. Chem. Phys., 15, 1029–1070, https://doi.org/10.5194/acp-15-1029-2015, 2015.
Kaufman, Y. J., Justice, C. O., Flynn, L. P., Kendall, J. D., Prins, E. M.,
Giglio, L., Ward, D. E., Menzel, W. P., and Setzer, A. W.: Potential global
fire monitoring from EOS-MODIS, J. Geophys. Res.-Atmos., 103, 32215–32238, https://doi.org/10.1029/98JD01644, 1998.
Kondragunta, S., Lee, P., McQueen, J., Kittaka, C., Prados, A. I., Ciren, P., Laszlo, I., Pierce, R. B., Hoff, R., and Szykman, J. J.: Air Quality Forecast Verification Using Satellite Data, J. Appl. Meteorol. Clim., 47, 425–442, https://doi.org/10.1175/2007JAMC1392.1, 2008.
Kunik, L., Mallia, D. V., Gurney, K. R., Mendoza, D. L., Oda, T., and Lin, J.
C.: Bayesian inverse estimation of urban CO2 emissions: Results from a synthetic data simulation over Salt Lake City, UT, Elem. Sci. Anth., 7, 36, https://doi.org/10.1525/elementa.375, 2019.
Larkin, N. K., O'Neill, S. M., Solomon, R., Raffuse, S., Strand, T., Sullivan, D. C., Krull, C., Rorig, M., Peterson, J., and Ferguson, S. A.: The
BlueSky smoke modeling framework, Int. J. Wildl. Fire, 18, 906–920, https://doi.org/10.1071/WF07086, 2009.
Lee, B., Cho, S., Lee, S.-K., Woo, C., and Park, J.: Development of a Smoke
Dispersion Forecast System for Korean Forest Fires, Forests, 10, 219, https://doi.org/10.3390/f10030219, 2019.
Lee, P., McQueen, J., Stajner, I., Huang, J., Pan, L., Tong, D., Kim, H., Tang, Y., Kondragunta, S., Ruminski, M., Lu, S., Rogers, E., Saylor, R.,
Shafran, P., Huang, H.-C., Gorline, J., Upadhayay, S., and Artz, R.: NAQFC
Developmental Forecast Guidance for Fine Particulate Matter (PM2.5),
Weather Forecast., 32, 343–360, https://doi.org/10.1175/WAF-D-15-0163.1, 2017.
Li, X., Sun, S., Hu, X., Huang, H., Li, H., Morino, Y., Wang, S., Yang, X.,
Shi, J., and Fang, S.: Source inversion of both long- and short-lived
radionuclide releases from the Fukushima Daiichi nuclear accident using on-site gamma dose rates, J. Hazard. Mater., 379, 120770,
https://doi.org/10.1016/j.jhazmat.2019.120770, 2019a.
Li, Y., Liu, J., Han, H., Zhao, T., Zhang, X., Zhuang, B., Wang, T., Chen, H., Wu, Y., and Li, M.: Collective impacts of biomass burning and synoptic
weather on surface PM2.5 and CO in Northeast China, Atmos. Environ., 213, 64–80, https://doi.org/10.1016/j.atmosenv.2019.05.062, 2019b.
Liu, Y., Goodrick, S., and Heilman, W.: Wildland fire emissions, carbon, and
climate: Wildfire-climate interactions, Forest Ecol. Manage., 317, 80–96,
https://doi.org/10.1016/j.foreco.2013.02.020, 2014.
Mok, J., Krotkov, N. A., Arola, A., Torres, O., Jethva, H., Andrade, M.,
Labow, G., Eck, T. F., Li, Z., Dickerson, R. R., Stenchikov, G. L., Osipov,
S., and Ren, X.: Impacts of brown carbon from biomass burning on surface UV
and ozone photochemistry in the Amazon Basin, Sci. Rep., 6, 36940,
https://doi.org/10.1038/srep36940, 2016.
Nickless, A., Rayner, P. J., Engelbrecht, F., Brunke, E.-G., Erni, B., and
Scholes, R. J.: Estimates of CO2 fluxes over the city of Cape Town, South Africa, through Bayesian inverse modelling, Atmos. Chem. Phys., 18,
4765–4801, https://doi.org/10.5194/acp-18-4765-2018, 2018.
Nikonovas, T., North, P. R. J., and Doerr, S. H.: Particulate emissions from
large North American wildfires estimated using a new top-down method, Atmos.
Chem. Phys., 17, 6423–6438, https://doi.org/10.5194/acp-17-6423-2017, 2017.
Paciorek, C. J., Liu, Y., Moreno-Macias, H., and Kondragunta, S.: Spatiotemporal Associations between GOES Aerosol Optical Depth Retrievals and Ground-Level PM2.5, Environ. Sci. Technol., 42, 5800–5806,
https://doi.org/10.1021/es703181j, 2008.
Pan, X., Ichoku, C., Chin, M., Bian, H., Darmenov, A., Colarco, P., Ellison,
L., Kucsera, T., da Silva, A., Wang, J., Oda, T., and Cui, G.: Six global
biomass burning emission datasets: intercomparison and application in one
global aerosol model, Atmos. Chem. Phys., 20, 969–994,
https://doi.org/10.5194/acp-20-969-2020, 2020.
Pavlovic, R., Chen, J., Anderson, K., Moran, M. D., Beaulieu, P.-A., Davignon, D., and Cousineau, S.: The FireWork air quality forecast system with near-real-time biomass burning emissions: Recent developments and
evaluation of performance for the 2015 North American wildfire season, J.
Air Waste Manage. Assoc., 66, 819–841, https://doi.org/10.1080/10962247.2016.1158214, 2016.
Prados, A. I., Kondragunta, S., Ciren, P., and Knapp, K. R.: GOES Aerosol/Smoke Product (GASP) over North America: Comparisons to AERONET and
MODIS observations, J. Geophys. Res., 112, D15201, https://doi.org/10.1029/2006JD007968, 2007.
Reid, J. S., Eck, T. F., Christopher, S. A., Koppmann, R., Dubovik, O.,
Eleuterio, D. P., Holben, B. N., Reid, E. A., and Zhang, J.: A review of
biomass burning emissions part III: intensive optical properties of biomass
burning particles, Atmos. Chem. Phys., 5, 827–849, https://doi.org/10.5194/acp-5-827-2005, 2005.
Rolph, G. D., Draxler, R. R., Stein, A. F., Taylor, A., Ruminski, M. G.,
Kondragunta, S., Zeng, J., Huang, H.-C. C., Manikin, G., McQueen, J. T., and
Davidson, P. M.: Description and verification of the NOAA smoke forecasting
system: The 2007 fire season, Weather Forecast., 24, 361–378,
https://doi.org/10.1175/2008WAF2222165.1, 2009.
Ruminski, M. and Kondragunta, S.: Monitoring fire and smoke emissions with
the hazard mapping system, in: Disaster Forewarning Diagnostic Methods and
Management, vol. 6412, edited by: Kogan, F., Habib, S., Hegde, V. S., and
Matsuoka, M., Proc. SPIE 6412, Disaster Forewarning Diagnostic Methods and Management, 64120B, https://doi.org/10.1117/12.694183, 2006.
Ruminski, M., Simko, J., Kibler, J., Kondragunta, S., Draxler, R., Davidson,
P., and Li, P.: Use of multiple satellite sensors in NOAA's operational near
real-time fire and smoke detection and characterization program, in: Remote
Sensing of Fire: Science and Application, vol. 7089, edited by: Hao, W. M., Proc. SPIE 7089, Remote Sensing of Fire: Science and Application, 70890A, https://doi.org/10.1117/12.807507, 2008.
Schroeder, W., Ruminski, M., Csiszar, I., Giglio, L., Prins, E., Schmidt, C.,
and Morisette, J.: Validation analyses of an operational fire monitoring product: The Hazard Mapping System, Int. J. Remote Sens., 29, 6059–6066, https://doi.org/10.1080/01431160802235845, 2008.
Schroeder, W., Ellicott, E., Ichoku, C., Ellison, L., Dickinson, M. B., Ottmar, R. D., Clements, C., Hall, D., Ambrosia, V., and Kremens, R.: Integrated active fire retrievals and biomass burning emissions using
complementary near-coincident ground, airborne and spaceborne sensor data,
Remote Sens. Environ., 140, 719–730, https://doi.org/10.1016/j.rse.2013.10.010, 2014.
Seiler, W. and Crutzen, P. J.: Estimates of gross and net fluxes of carbon
between the biosphere and the atmosphere from biomass burning, Climatic Change, 2, 207–247, https://doi.org/10.1007/BF00137988, 1980.
Singh, H. B. B., Cai, C., Kaduwela, A., Weinheimer, A., and Wisthaler, A.:
Interactions of fire emissions and urban pollution over California: Ozone
formation and air quality simulations, Atmos. Environ., 56, 45–51,
https://doi.org/10.1016/j.atmosenv.2012.03.046, 2012.
Sofiev, M., Vankevich, R., Lotjonen, M., Prank, M., Petukhov, V., Ermakova,
T., Koskinen, J., and Kukkonen, J.: An operational system for the assimilation of the satellite information on wild-land fires for the needs
of air quality modelling and forecasting, Atmos. Chem. Phys., 9, 6833–6847, https://doi.org/10.5194/acp-9-6833-2009, 2009.
Spracklen, D. V., Mickley, L. J., Logan, J. A., Hudman, R. C., Yevich, R.,
Flannigan, M. D., and Westerling, A. L.: Impacts of climate change from 2000
to 2050 on wildfire activity and carbonaceous aerosol concentrations in the
western United States, J. Geophys. Res., 114, D20301, https://doi.org/10.1029/2008JD010966, 2009.
Stein, A. F., Rolph, G. D., Draxler, R. R., Stunder, B., and Ruminski, M.:
Verification of the NOAA Smoke Forecasting System: Model Sensitivity to the
Injection Height, Weather Forecast., 24, 379–394, https://doi.org/10.1175/2008WAF2222166.1, 2009.
Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B. B., Cohen, M.
D., and Ngan, F.: NOAA's HYSPLIT Atmospheric Transport and Dispersion Modeling System, B. Am. Meteorol. Soc., 96, 2059–2077,
https://doi.org/10.1175/BAMS-D-14-00110.1, 2015.
Strand, T. M., Larkin, N., Craig, K. J., Raffuse, S., Sullivan, D., Solomon,
R., Rorig, M., Wheeler, N.,and Pryden, D.: Analyses of BlueSky Gateway PM2.5 predictions during the 2007 southern and 2008 northern California fires, J. Geophys. Res.-Atmos., 117, D17301, https://doi.org/10.1029/2012JD017627, 2012.
Turnbull, J. C., Karion, A., Davis, K. J., Lauvaux, T., Miles, N. L., Richardson, S. J., Sweeney, C., McKain, K., Lehman, S. J., Gurney, K. R.,
Patarasuk, R., Liang, J., Shepson, P. B., Heimburger, A., Harvey, R., and
Whetstone, J.: Synthesis of Urban CO2 Emission Estimates from Multiple Methods from the Indianapolis Flux Project (INFLUX), Environ. Sci. Technol., 53, 287–295, https://doi.org/10.1021/acs.est.8b05552, 2019.
Valerino, M. J., Johnson, J. J., Izumi, J., Orozco, D., Hoff, R. M., Delgado, R., and Hennigan, C. J.: Sources and composition of PM2.5 in the Colorado Front Range during the DISCOVER-AQ study, J. Geophys. Res.-Atmos.,
122, 566–582, https://doi.org/10.1002/2016JD025830, 2017.
Val Martin, M., Logan, J. A., Kahn, R. A., Leung, F.-Y. Y., Nelson, D. L., and Diner, D. J.: Smoke injection heights from fires in North America: Analysis of 5 years of satellite observations, Atmos. Chem. Phys., 10, 1491–1510, https://doi.org/10.5194/acp-10-1491-2010, 2010.
van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M.,
Kasibhatla, P. S., Morton, D. C., DeFries, R. S., Jin, Y., and van Leeuwen, T. T.: Global fire emissions and the contribution of deforestation, savanna,
forest, agricultural, and peat fires (1997–2009), Atmos. Chem. Phys., 10, 11707–11735, https://doi.org/10.5194/acp-10-11707-2010, 2010.
Vermote, E., Ellicott, E., Dubovik, O., Lapyonok, T., Chin, M., Giglio, L., and Roberts, G. J.: An approach to estimate global biomass burning emissions of organic and black carbon from MODIS fire radiative power, J. Geophys. Res., 114, 1–22, https://doi.org/10.1029/2008JD011188, 2009.
Wiedinmyer, C., Quayle, B., Geron, C., Belote, A., McKenzie, D., Zhang, X.,
O'Neill, S., Wynne, K. K., O'Neill, S., and Wynne, K. K.: Estimating emissions from fires in North America for air quality modeling, Atmos. Environ., 40, 3419–3432, https://doi.org/10.1016/j.atmosenv.2006.02.010, 2006.
Wiedinmyer, C., Akagi, S. K., Yokelson, R. J., Emmons, L. K., Al-Saadi, J. A., Orlando, J. J., and Soja, A. J.: The Fire INventory from NCAR (FINN): a
high resolution global model to estimate the emissions from open burning,
Geosci. Model Dev., 4, 625–641, https://doi.org/10.5194/gmd-4-625-2011, 2011.
Zhang, X., Kondragunta, S., Ram, J., Schmidt, C., and Huang, H.-C.: Near-real-time global biomass burning emissions product from geostationary
satellite constellation, J. Geophys. Res.-Atmos., 117, D14201, https://doi.org/10.1029/2012JD017459, 2012.
Zhu, C., Byrd, R. H., Lu, P., and Nocedal, J.: Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization, ACM
Trans. Math. Softw., 23, 550–560, https://doi.org/10.1145/279232.279236, 1997.
Zidikheri, M. J. and Lucas, C.: Using Satellite Data to Determine Empirical
Relationships between Volcanic Ash Source Parameters, Atmosphere (Basel), 11, 342, https://doi.org/10.3390/atmos11040342, 2020.
Short summary
Smoke forecasts have been challenged by high uncertainty in fire emission estimates. We develop an inverse modeling system, the HYSPLIT-based Emissions Inverse Modeling System for wildfires, that estimates wildfire emissions from the transport and dispersion of smoke plumes as measured by satellite observations. Using NOAA HYSPLIT and GOES Aerosol/Smoke Product (GASP), the system resolves smoke source strength as a function of time and vertical level and outperforms current operational system.
Smoke forecasts have been challenged by high uncertainty in fire emission estimates. We develop...
Altmetrics
Final-revised paper
Preprint